[go: up one dir, main page]

JPS616886A - Distributed feedback type semiconductor laser - Google Patents

Distributed feedback type semiconductor laser

Info

Publication number
JPS616886A
JPS616886A JP59125366A JP12536684A JPS616886A JP S616886 A JPS616886 A JP S616886A JP 59125366 A JP59125366 A JP 59125366A JP 12536684 A JP12536684 A JP 12536684A JP S616886 A JPS616886 A JP S616886A
Authority
JP
Japan
Prior art keywords
layer
current constriction
inp
ingaasp
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59125366A
Other languages
Japanese (ja)
Inventor
Tatsuya Ito
達也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP59125366A priority Critical patent/JPS616886A/en
Publication of JPS616886A publication Critical patent/JPS616886A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve reproducibility and yield by forming a current constriction layer with a striped window into a clad layer shaped onto a region in which beams are mainly confined. CONSTITUTION:A diffraction grating surface 2 at a fixed pitch having wavelength selectivity, an N-InGaAsP optical waveguide layer 4, an InGaAsP active layer 5, a P-InP clad layer 6 and a P-InP cap layer 8 are grown onto an N-InP substrate 2 in an epitaxial manner, and structure in which N-InGaAsp current constriction layers 7 to which striped windows are bored are buried at approximately the center of the clad layer 6 is formed. Accordingly, injection currents concentrate to stripes and flow because they are blocked by the current constriction layer, gain waveguide is conducted while beams are confined owing to an effective refractive-index difference generated by the presence of the current constriction layer, and a change into a single mode and the control of a transverse mode are enabled by properly setting the width of stripes.

Description

【発明の詳細な説明】 〔発明の分野〕 本発明は分布帰還形半導体レーデの構造に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to the structure of a distributed feedback semiconductor radar.

〔従来技術〕[Prior art]

分布帰還形半導体レーザは、活性領域を含む、レーザ光
の閉じ込められる領域に沿って、波長選択性を有する定
ピツチの回折格子を形成し、この回折格子による電磁波
のブラック回折反射を原理とした光共振器を用いた半導
体レーザである。
Distributed feedback semiconductor lasers form a wavelength-selective, constant-pitch diffraction grating along the region where laser light is confined, including the active region, and generate light based on the principle of black diffraction reflection of electromagnetic waves by this diffraction grating. This is a semiconductor laser that uses a resonator.

この型のレーデ素子は、ファプリ40−型の如く結晶骨
間面を光共振面とする構造ではないため、光集積回路へ
の適用が容易であり、モード選択性に優れる等の数々の
特徴を有している。
This type of Rade element does not have a structure in which the crystal bone plane is the optical resonant plane like the Fabry 40-type, so it is easy to apply to optical integrated circuits and has many features such as excellent mode selectivity. have.

さて、これまでに分布帰還形半導体レーデの構造、特に
横モード制御を目的とした導波構造としては、二重チャ
ンネルゾレーナ埋込みへテロ(DC−PBH)型、又は
埋込みへテロ(BH)型のような埋込み構造が主流であ
る。
Up until now, the structures of distributed feedback semiconductor radars, especially waveguide structures for the purpose of transverse mode control, have been the dual channel solena buried hetero (DC-PBH) type or the buried hetero (BH) type. Embedded structures such as these are the mainstream.

第3図は、このBH型レーザを光出射面よシ見た図であ
って、メサストライプ部を有する化合物半導体基板(例
えばn−InP)33上に、光導波路層(例えばn−I
nGaAsP) 37、活性層(例えばInGaAsP
) 39、クラ、ド層(例えばp−InP) 35等よ
りなる各半導体層が成長され、両脇を第1埋込層(例え
ばp −InP) 34、第2埋込み層(例えばn−I
nP)40.第2クラッド層(例えばn−InGaAs
P)36等によって埋込んだものである。
FIG. 3 is a diagram of this BH type laser seen from the light emitting surface, in which an optical waveguide layer (for example, n-I
nGaAsP) 37, active layer (e.g. InGaAsP)
) 39, cladding layer (for example, p-InP) 35, etc. are grown, and both sides are covered with a first buried layer (for example, p-InP) 34, a second buried layer (for example, n-I
nP)40. Second cladding layer (e.g. n-InGaAs)
P) 36 etc.

そして、周囲がへテロ接合によって囲まれた、主として
光が閉じ込められる領域である、光導波路層37、活性
層39の内、特に光導波路層の片面には定ピツチの回折
格子が形成されているため、安定した単−縦モード、基
本横モードの発振が実現できうるものである。
A diffraction grating with a constant pitch is formed on one side of the optical waveguide layer 37 and the active layer 39, which are mainly light-confined regions surrounded by heterojunctions. Therefore, stable single-longitudinal mode and fundamental transverse mode oscillation can be realized.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上述のBH構造分布帰還形半導体レーザを製
作する場合に次の2点が大きな問題点となっていた。
By the way, when manufacturing the above-mentioned BH structure distributed feedback semiconductor laser, the following two points have become major problems.

(1)化合物半導体基板上に例えば直接二光束干渉露光
法等のフォト・リングラフ法を用いて、サブミクロン周
期の回折格子を所望のビ、チ、深さ形状で形成し、その
上に順次光導波路層、活性層、クラッド層等をエピタキ
シャル成長させてゆくが、この工程で設計値を満足する
ような層厚を有するウェハを製作するための製造条件の
制御が非常に難かしく、再現性の良いレーザ素子の製作
が仲々出来なかった。
(1) A submicron periodic diffraction grating is formed on a compound semiconductor substrate using a photo-phosphorography method such as a direct two-beam interference exposure method, and a diffraction grating with a desired depth is formed on the grating, and the light guide is sequentially placed on the diffraction grating. The waveguide layer, active layer, cladding layer, etc. are grown epitaxially, but in this process it is extremely difficult to control the manufacturing conditions to produce a wafer with a layer thickness that satisfies the design value, and it is difficult to achieve good reproducibility. It was not possible to manufacture the laser element.

(2)前記の積層された半導体素子が形成された後、埋
込み構造とするために活性層の両脇をサイド・工、チし
、次いで第1埋込み層、第2埋込み層等を順次エピタキ
シャル埋込成長させてゆく力(活性層近辺忙埋込み層の
端部がくるように制御しながら、成長層の厚み、活性層
幅等を調整してゆくのは、前述の回折格子面を形成する
工程よ)もさらに困難性がともない、再現性がなかなか
得られなかった。
(2) After the laminated semiconductor elements are formed, side etching is performed on both sides of the active layer to form a buried structure, and then the first buried layer, second buried layer, etc. are sequentially epitaxially buried. The process of forming the diffraction grating plane mentioned above is to adjust the thickness of the grown layer, the width of the active layer, etc. while controlling the force of growing the buried layer so that the end of the buried layer is near the active layer. ) was also more difficult, and it was difficult to achieve reproducibility.

従って分布帰還形のBH構造レーザは、前述の製造時に
於ける個々の困難性が相乗する効果となって現われてく
るため工業生産的に非常に歩留まシの悪い構造の素子で
あった。
Therefore, the BH structure laser of the distributed feedback type is an element with a structure that has a very poor yield in terms of industrial production because the above-mentioned individual difficulties in manufacturing appear as a synergistic effect.

〔発明の目的〕[Purpose of the invention]

この発明は上述した問題点に鑑みてなされたものであっ
て、その目的とするところは、再現性に優れ、高い歩留
まシを有する、分布帰還形半導体レーザの構造を提供す
ることにある。
This invention has been made in view of the above-mentioned problems, and its purpose is to provide a distributed feedback semiconductor laser structure that has excellent reproducibility and high yield. .

〔問題を解決するための手段〕[Means to solve the problem]

この発明による分布帰還形半導体レーザは、光が主とし
て閉じ込められる領域上に形成されるクラッド層中に、
ストライプ状の窓を有する電流狭窄層を形成してなるも
のである。
The distributed feedback semiconductor laser according to the present invention includes a cladding layer formed on a region where light is mainly confined.
This is formed by forming a current confinement layer having striped windows.

〔実施例〕〔Example〕

第1図は、この発明にかかる分布帰還形半導体レーザの
一実施例を示す全体側視図である。すなはち、n−In
P基板2上に、波長選択性を有する定ピツチの回折格子
面3 n−InGaAsP光導波路層4、InGaAs
P活性層5、p−InPクラッド層6、p−InPキャ
ッゾ層8がエピタキシャル成長されていて、該クラッド
層6のほぼ中央にはストライプ状の窓が開けられたn−
IylGaAs+P電流狭窄層7が埋込まれた構造とな
っている。このため注入電流は、この電流狭窄層で!ロ
ックされるためストライプに集中して流れ利得導波が行
なわれると共に、電流狭窄層の有無により生ずる実効的
屈折率差のため光の閉じ込め作用がなされ、ストライプ
巾を適切にすることで、単一モード化、横モード制御が
可能となる。
FIG. 1 is an overall side view showing an embodiment of a distributed feedback semiconductor laser according to the present invention. In other words, n-In
On a P substrate 2, a constant pitch diffraction grating surface 3 having wavelength selectivity, an n-InGaAsP optical waveguide layer 4, and an InGaAs
A P active layer 5, a p-InP cladding layer 6, and a p-InP casso layer 8 are epitaxially grown, and a stripe-shaped window is opened approximately in the center of the cladding layer 6.
It has a structure in which an IylGaAs+P current confinement layer 7 is embedded. Therefore, the injected current is in this current confinement layer! Since the current is locked, the flow is concentrated in the stripe and gain waveguide is performed, and the effective refractive index difference caused by the presence or absence of the current confinement layer acts to confine light. Mode conversion and lateral mode control are possible.

このような構造の半導体レーデは次のような過程によっ
て形成されてゆく。
A semiconductor radar having such a structure is formed by the following process.

まず、第2図体)に示されるようにn−InP半導体基
板2上にフォト・リングラフ法によって定ピツチの回折
格子面3を形成する(あるいは半導体基板にn−InP
層を成長させたものを使ってもよい。)。
First, as shown in Figure 2), a diffraction grating surface 3 with a constant pitch is formed on an n-InP semiconductor substrate 2 by the photo-phosphorographic method (or a diffraction grating surface 3 with a constant pitch is formed on an n-InP semiconductor substrate 2).
You may also use one that has grown layers. ).

次いで、第2図(B)に示される如く、該回折格子面上
にn−InGaAsP光導波路層4、InGaAsP活
性層5、p−InPクラ、ド層6、n−InGaAsP
電流狭窄層7を順次エピタキシャル成長させ、その上に
ストライプ状の窓を有する耐工、チング保護膜を形成し
、クラッド層6に至るまでエツチングする(第2図−(
Q)。
Next, as shown in FIG. 2(B), an n-InGaAsP optical waveguide layer 4, an InGaAsP active layer 5, a p-InP layer 6, and an n-InGaAsP optical waveguide layer 4 are formed on the diffraction grating surface.
The current confinement layer 7 is epitaxially grown in sequence, and a resistive and anti-etching film having striped windows is formed thereon, and etched until the cladding layer 6 is reached (see FIG. 2).
Q).

そして、再びp−InPり2ラド層をエピタキシャル成
長させ、該クラッド層中に電流狭窄層7を埋込んだ構造
とする。
Then, a p-InP 2-rad layer is epitaxially grown again to form a structure in which the current confinement layer 7 is buried in the cladding layer.

最後に素子両面をラッピングした後、金属電極蒸着、拡
散してレーデ素子が完成する。なお、上記の実施例では
、光が主として閉じ込められる領域が活性層、光導波路
層2層よシなる構成であって光導波路層の片面に回折格
子面が形成されているものであるが、この領域の構成は
任意であって、例えば前記領域の構成を活性層と光導波
路層間に中間層を設けたものとし、中間層の片面に回折
格子面を形成してもよい。
Finally, after lapping both sides of the element, metal electrodes are deposited and diffused to complete the Rade element. In the above embodiment, the region in which light is mainly confined is composed of two layers: an active layer and an optical waveguide layer, and a diffraction grating surface is formed on one side of the optical waveguide layer. The structure of the region is arbitrary. For example, the region may have a structure in which an intermediate layer is provided between the active layer and the optical waveguide layer, and a diffraction grating surface is formed on one side of the intermediate layer.

またP型の化合物半導体基板、短波長系のGaAs/G
aA/As系の基板でも本発明が実現可能であることは
勿論のことである。
In addition, P-type compound semiconductor substrates, short wavelength GaAs/G
It goes without saying that the present invention can also be implemented with an aA/As-based substrate.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、この発明によれば、光が主
として閉じ込められる領域上にエピタキシャル形成され
るクラ、ド層中に、ストライプ状の窓を有する電流狭窄
層が埋込まれた構造であって、該電流狭窄層によって利
得導波が行なわれ、前記ストライプ状の窓にtlホ対応
してレーデ発光がなされるものである。
As described above in detail, the present invention has a structure in which a current confinement layer having a striped window is embedded in a cladding layer epitaxially formed on a region where light is mainly confined. Gain waveguiding is performed by the current confinement layer, and radar light is emitted in correspondence to the striped window.

従って、埋込み構造の如く、複雑な構造を有せず、製造
条件の制御に困難性を持たないため、再現性良く容易に
安定した基本横モード発振が実現でき、歩留まシに優れ
た分布帰還形半導体レーデの製作が可能になる効果を有
する。
Therefore, unlike a buried structure, it does not have a complicated structure and there is no difficulty in controlling manufacturing conditions, so it is possible to easily realize stable fundamental transverse mode oscillation with good reproducibility, and a distribution distribution with excellent yield. This has the effect of making it possible to manufacture a feedback type semiconductor radar.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す全体斜視図、第2図に
)、 (B) 、 (C’lけ本発明の一製造過程を示
す斜視図、第3図は従来の埋込み構造を光出射面よシ見
た断面図。 図中 2・・・半導体基板、3・・・回折格子面、4・
・・光導波路層、5・・・活性層、6・・・クラッド層
、7・・・電流狭窄層を示す。
FIG. 1 is an overall perspective view showing an embodiment of the present invention, FIG. 2 is a perspective view showing one manufacturing process of the present invention, and FIG. 3 is a conventional embedded structure. A cross-sectional view when viewed from the light emitting surface.In the figure, 2...semiconductor substrate, 3...diffraction grating surface, 4...
... optical waveguide layer, 5 ... active layer, 6 ... cladding layer, 7 ... current confinement layer.

Claims (1)

【特許請求の範囲】[Claims] 1、少なくとも活性層、光導波路層により構成される光
が主として閉じ込められる領域上に形成されたクラッド
層と、該クラッド層中に埋込まれたストライプ状の窓を
有する電流狭窄層とを有することを特徴とする分布帰還
形半導体レーザ。
1. It has a cladding layer formed on a region where light is mainly confined, which is composed of at least an active layer and an optical waveguide layer, and a current confinement layer having a striped window embedded in the cladding layer. Distributed feedback semiconductor laser featuring:
JP59125366A 1984-06-20 1984-06-20 Distributed feedback type semiconductor laser Pending JPS616886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59125366A JPS616886A (en) 1984-06-20 1984-06-20 Distributed feedback type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59125366A JPS616886A (en) 1984-06-20 1984-06-20 Distributed feedback type semiconductor laser

Publications (1)

Publication Number Publication Date
JPS616886A true JPS616886A (en) 1986-01-13

Family

ID=14908350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59125366A Pending JPS616886A (en) 1984-06-20 1984-06-20 Distributed feedback type semiconductor laser

Country Status (1)

Country Link
JP (1) JPS616886A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4799226A (en) * 1986-05-30 1989-01-17 Nec Corporation Distributed feedback laser diode comprising an active layer partly adjacent to a waveguide layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4799226A (en) * 1986-05-30 1989-01-17 Nec Corporation Distributed feedback laser diode comprising an active layer partly adjacent to a waveguide layer

Similar Documents

Publication Publication Date Title
JP3285426B2 (en) Semiconductor optical integrated device and method of manufacturing the same
US6577660B1 (en) Distributed feedback type semiconductor laser device having gradually-changed coupling coefficient
CA2139140C (en) A method for fabricating a semiconductor photonic integrated circuit
JP2982422B2 (en) Semiconductor laser and method of manufacturing the same
US4589117A (en) Butt-jointed built-in semiconductor laser
US5303255A (en) Distributed feedback semiconductor laser device and a method of producing the same
US4835788A (en) Distributed feedback semiconductor laser
US4922500A (en) Cross-coupled quantum-well stripe laser array
JPS6328520B2 (en)
JPS63166281A (en) Distributed feedback semiconductor laser
JPS616886A (en) Distributed feedback type semiconductor laser
CN115280609A (en) Optical device
JPH1168221A (en) Semiconductor laser
JPH0642583B2 (en) Semiconductor laser device
JP2004128372A (en) Distribution feedback semiconductor laser device
JPH0467355B2 (en)
JPH09246667A (en) Semiconductor laser and manufacture thereof
JP2810518B2 (en) Semiconductor laser device and method of manufacturing the same
JPH02281681A (en) Semiconductor laser
JPS61279192A (en) Semiconductor laser
JPS61270884A (en) Semiconductor laser
JPS60235483A (en) Distributed feedback type semiconductor laser with mode-filter
JPH02174181A (en) Distributed reflection type semiconductor laser with wavelength control function
JPH05235477A (en) Manufacture of semiconductor element
JPH08162712A (en) Semiconductor optical amplifier