[go: up one dir, main page]

JPS6167813A - Projection lens - Google Patents

Projection lens

Info

Publication number
JPS6167813A
JPS6167813A JP19116184A JP19116184A JPS6167813A JP S6167813 A JPS6167813 A JP S6167813A JP 19116184 A JP19116184 A JP 19116184A JP 19116184 A JP19116184 A JP 19116184A JP S6167813 A JPS6167813 A JP S6167813A
Authority
JP
Japan
Prior art keywords
lens
curvature
screen
formula
aberration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19116184A
Other languages
Japanese (ja)
Inventor
Atsushi Hosoya
淳 細矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP19116184A priority Critical patent/JPS6167813A/en
Publication of JPS6167813A publication Critical patent/JPS6167813A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To obtain a projection lens having a large aperture, a wide picture angle and superior picture quality by arranging a meniscus lens having positive refractive index, a both-convex shaped lens and a convex lens having a large curvature successively and setting up the radiuses of curvature and intervals between surfaces on an optical axis so that specific formulas are satisfied. CONSTITUTION:The positive meniscus lens L1, the both-convex type lens L2 and the concave lens L3 having a large curvature which are made of plastic lenses are arranged successively from the screen side. Specific conditional formulas are set up between the radiuses R of curvature of respective lens surfaces and surface intervals D on the axis. The formula (1) is used for the compensation of corona aberration and spherical aberration, the formulas (3), (4) are used for the compensation of spherical aberration, out-axis aberration and comma aberration and the formula (5) is used for the compensation of an image surface curve and the formula (9) compensates the spherical and out-axis aberrations. In addition, the formula (6) is used for the cost reduction and the improvement of accuracy, the formula (7) expands the picture angle of the lens and the formulas (6) is used for the cost reduction and the improvement of accuracy, the formula (7) expands the picture angle of the lens and the formulas (1)-(4), (6), (9) suppress the increase of lens power. Consequently, the projection lens having a large aperture, a wide picture angle and superior picture quality can be obtained.

Description

【発明の詳細な説明】 本発明は投影用レンズに関し、特に電子映像管に映出さ
れた画像をスクリーン上に拡大投影するためのに好適で
、大画面を実現し得る様な拡大投影用レンズに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a projection lens, and in particular to an enlarged projection lens suitable for enlarging and projecting an image projected on an electronic picture tube onto a screen and capable of realizing a large screen. Regarding.

一般に映像表示用投影レンズではカラー映像表示用とし
て赤、青、緑の3色の単色陰極線管を用い各々の画像を
投影レンズによりスクリーン上に投影するのであるが3
色の発色特性ともスペクトル巾が比較的狭い為色消しレ
ンズである必要はない。
In general, a projection lens for displaying images uses monochromatic cathode ray tubes in three colors of red, blue, and green for displaying color images, and each image is projected onto a screen by the projection lens.
Since both the color development characteristics and the spectral width are relatively narrow, it is not necessary to use an achromatic lens.

投影レンズとして望まれる条件として大口径及び広画角
化が拳げられる。大口径化により明るい画像を得る奥が
可能となり、又広画角化により短い投影距離で所望の投
影像を得る事が出来、装置全体の小型化が図れるもので
ある。
The desired conditions for a projection lens are a large aperture and a wide angle of view. The large aperture makes it possible to obtain a bright image, and the wide angle of view makes it possible to obtain a desired projected image at a short projection distance, making it possible to downsize the entire device.

従来投影レンズとしては球面のみによる球面レンズや非
球面を含んだ非球面レンズが知られているが1球面レン
ズではaI&枚数を減らし高性能化を図る事は極めて困
難で近年は非球面を導入した非球面レンズが主流を占め
ている。
Conventional projection lenses include spherical lenses with only spherical surfaces and aspheric lenses that include aspherical surfaces, but it is extremely difficult to reduce aI and the number of lenses and improve performance with a single spherical lens, so aspherical lenses have been introduced in recent years. Aspheric lenses are the mainstream.

しかしながら非球面を使用して収差補正をした投影レン
ズ自体の歴史は古く、英国特許第593514が知られ
ている。この特許に開示された投影レンズは像面側より
順に両凸レンズと両凹レンズの貼り合わせレンズで第1
面に非球面をもち主として開口に依存する収差と軸上の
色収差を補正する第ILスクリーン側に凸面を向けた2
枚の平凸レンズより構成された正の第2群、像面平坦化
手段の為の負の屈折力を有する第3nより構成され、全
てプラスチックレンズが使われている。しかしながらこ
の構成によると球面収差、像面弯曲、コマ収差の各収差
の内、第1群レンズにより球面収差、コマ収差、又@3
群により像面弯曲、歪曲収差を補正しているが@1群に
より補正している球面収差、コマ収差の補正は不充分で
特にコマ収差の補正が悪いものとなっている。この為フ
レアーとして結像性能に障害を及ぼす結果となり半画角
25°以上の広画角な投影レンズを提供する事を難しく
している。
However, the history of the projection lens itself in which aberrations are corrected using an aspheric surface is long, and British Patent No. 593,514 is known. The projection lens disclosed in this patent is a composite lens consisting of a biconvex lens and a biconcave lens in order from the image plane side.
2, which has an aspherical surface and has a convex surface facing the IL screen side, which corrects aberrations that mainly depend on the aperture and axial chromatic aberration.
It consists of a positive second group consisting of two plano-convex lenses, and a third n-th group having negative refractive power for image plane flattening means, all of which are made of plastic lenses. However, with this configuration, among the aberrations of spherical aberration, curvature of field, and coma, the first group lens causes spherical aberration, coma aberration, and @3
Although field curvature and distortion are corrected by the first group, the correction of spherical aberration and coma aberration corrected by the first group is insufficient, and the correction of coma aberration is particularly poor. This results in a flare that impairs the imaging performance, making it difficult to provide a projection lens with a wide field angle of 25 degrees or more.

(目的) 本発明の目的は、大口径、広画角で画質の優れた投影レ
ンズを提供することにある。
(Objective) An object of the present invention is to provide a projection lens with a large diameter, a wide angle of view, and excellent image quality.

そして後述の実施例は口径比1:1.2、半画角251
′以上の大口径、広画角を達成している。
The example described later has an aperture ratio of 1:1.2 and a half angle of view of 251.
It has achieved a large aperture and wide angle of view of over 200mm.

b述の目的を実現するため、第1図乃至第。In order to realize the purpose mentioned above, FIGS.

3図に示す投影レンズはスクリーン側より順に凸面をス
クリーンへ向けて正屈折力のメニスカス第1レンズLl
と両凸形状の第2レンズL2と曲事大なる凹面をスクリ
ーンへ向け。
The projection lens shown in Figure 3 has a first meniscus lens Ll with a positive refractive power, with its convex surface facing the screen in order from the screen side.
The second lens L2, which has a biconvex shape, and its large concave surface face the screen.

フィールドフラットナーとして働く、負屈折力の第3レ
ンズL3を具備し、第1レンズ。
The first lens includes a third lens L3 having a negative refractive power and serves as a field flattener.

i2レンズ、第3レンズは全てプラスチック製で夫々1
面以上の非球面を具え、以下の条件を満足する。尚、一
般にプラスチックは光学レンズに比して屈折率が低下す
る。
The i2 lens and the 3rd lens are all made of plastic and are 1 each.
It has an aspheric surface that is larger than a surface and satisfies the following conditions. Note that plastics generally have a lower refractive index than optical lenses.

(1)  0.8f <酊< 1.4f(2)    
5f <田< 31f (3)  0.85f < TT < 1.4f(4)
  −1,3t < T; < −o、5i(5) −
0,52f ([< −0,34f(6)  O,13
f (Dl< 0.3f(7)  0.45f < 0
2 < 0.6f(8)  0.24f < 03 <
 0.4f(9)  0.5f < 04< 0.7f
訂と■二部ルンズのスクリーン側の面 と原画像側の面の近軸曲率半径。
(1) 0.8f < drunkenness < 1.4f (2)
5f < ta < 31f (3) 0.85f < TT < 1.4f (4)
−1,3t <T;< −o, 5i(5) −
0,52f ([< -0,34f(6) O,13
f (Dl< 0.3f(7) 0.45f<0
2 < 0.6f (8) 0.24f < 03 <
0.4f (9) 0.5f < 04 < 0.7f
Paraxial radius of curvature of the surface on the screen side and the surface on the original image side of the two parts.

訂と11°:第2レンズのスクリーン側の面と原画像側
の面の近軸曲率半径。
Correction and 11°: Paraxial radius of curvature of the screen-side surface and the original image-side surface of the second lens.

fo:第3レンズのスクリーン側の面の近軸曲率半径。fo: Paraxial radius of curvature of the screen-side surface of the third lens.

Dl、第1レンズの軸上厚 D2: 第1レンズと第2レンズの軸上面間隔。Dl, axial thickness of the first lens D2: Distance between the first lens and the second lens on the axis.

D3;第2レンズの軸上厚。D3: Axial thickness of the second lens.

D4: 第2レンズと第3レンズの軸上面間隔。D4: Distance between the second lens and the third lens on the axis.

f :全県の焦点距離。f: Focal length of all prefectures.

但し、近軸曲率半径πは次の通り定義される。まず非球
面の形状は光軸方向をX軸とした直角座標において、H
を光軸からの高さ、Rを頂点の曲率半径。
However, the paraxial radius of curvature π is defined as follows. First, the shape of the aspheric surface is defined by H
is the height from the optical axis, and R is the radius of curvature of the vertex.

A、B、C,D、E、A′、B’ 、C’ 、D’を非
球面係数マを光軸方向の変位とするとき、次式で表わさ
れる。
When A, B, C, D, E, A', B', C', and D' are aspherical coefficients and M is a displacement in the optical axis direction, it is expressed by the following equation.

+A’H3+B’H5+C′H7+D’H3当式でAの
項が零でないとき、近軸曲率半径は次の通りである。
+A'H3+B'H5+C'H7+D'H3 When the term A in this equation is not zero, the paraxial radius of curvature is as follows.

次に各条件式及び数値範囲の極値の、a aを説明する
Next, each conditional expression and the extreme value a of the numerical range will be explained.

条件式(1)は、第1レンズのスクリーン側の面の曲率
半径に関するもので、下限を越えるとき、第1レンズに
よるパワーの分担が大となり、第2レンズへの軸外光束
の入射角が大きくなってフナ収差等の補正が困難となる
Conditional expression (1) relates to the radius of curvature of the screen-side surface of the first lens, and when the lower limit is exceeded, the first lens shares a large amount of power, and the angle of incidence of the off-axis light beam on the second lens increases. This becomes large, making it difficult to correct Huna aberrations and the like.

上限を越えるとき第2レノズによるパワーが人トナリ1
球面収差の補正をI困難なものとする。
When the upper limit is exceeded, the power from the second renozu is 1 person
This makes correction of spherical aberration extremely difficult.

条件式(2)は、第1レンズの映像管側の面の曲率半径
に関するもので下限を越えるとき。
Conditional expression (2) relates to the radius of curvature of the picture tube side surface of the first lens and exceeds the lower limit.

第2レンズによるパワーが大となり球面収差の補正を困
難なものとし、又上限を越えるとき軸外収差の発生が大
となり収差補正を困難なものとなる。
The power of the second lens becomes large, making it difficult to correct spherical aberrations, and when the upper limit is exceeded, off-axis aberrations occur, making it difficult to correct aberrations.

条件式(3)は、第2レンズのスクリーン側の面の曲率
半径に関するもので、下限を越えるとき、軸外収差の発
生特にコマ収差の発生が大となり補正を困難なものとす
る。上限を越えるとき、第2レンズの映像管側の面の正
のパワーの分担が増大する為球面収差の発生が大きくな
り、補正が困難となる。
Conditional expression (3) relates to the radius of curvature of the screen-side surface of the second lens, and when the lower limit is exceeded, off-axis aberrations, especially comatic aberrations, become large and difficult to correct. When the upper limit is exceeded, the share of the positive power of the surface of the second lens on the picture tube side increases, which increases the occurrence of spherical aberration, making it difficult to correct it.

条件式(4)は、第2レンズの映像管側の面の曲率半径
に関するもので、下限を越えるとき。
Conditional expression (4) relates to the radius of curvature of the surface of the second lens on the picture tube side, and when the lower limit is exceeded.

第1レンズのパワーの分担が大きくなって球面収差の補
正が困難となる。上限を越えるとき軸外収差、特にコマ
収差、ハロの発生が太きくなり補正が困難となる。
The share of the power of the first lens increases, making it difficult to correct spherical aberration. When the upper limit is exceeded, off-axis aberrations, especially comatic aberrations and halos, become thicker and difficult to correct.

条件式(5)は、第3レンズのスクリーン側の而の曲率
半径に関するもので、下限を越えるとぎ像面弯曲の補正
が困難となり、上限を越えるとき軸外収差の補正が困難
となる。
Conditional expression (5) relates to the radius of curvature of the third lens on the screen side; when the lower limit is exceeded, it becomes difficult to correct the field curvature, and when the upper limit is exceeded, it becomes difficult to correct the off-axis aberration.

条件式(6)は、wtJlレンズの中心厚に関するもの
で、上限を越えるとき必要以上に厚くなり収差補正上好
ましくない他、製造上もコストの−に昇、 j/i度の
低下を招くものとなる。下限を越えるとき第1レンズに
よるパワーが大きく出来ない為第2レンズの正の屈折力
の負担が増大し、収差補正が困難となる。
Conditional expression (6) relates to the center thickness of the wtJl lens, and when the upper limit is exceeded, it becomes thicker than necessary, which is not desirable for correcting aberrations, and also increases production costs and causes a decrease in j/i degrees. becomes. When the lower limit is exceeded, the power of the first lens cannot be increased, so the burden of the positive refractive power of the second lens increases, making it difficult to correct aberrations.

条件式(7)は第1レンズと第2レンズとの面間隔に関
するもので、下限を越えるとき軸外光束の結像力が不足
し、第2レンズの軸外光束の結像に対する負@量が増大
する為広画角化の大きな障害となる。上限を越えるとき
軸外光束の第2レンズの後面すなわち映像管側への入射
角が大となり、軸外光束の収差の発生量が大となる。
Conditional expression (7) relates to the spacing between the first lens and the second lens, and when the lower limit is exceeded, the imaging power of the off-axis light beam is insufficient, and the second lens has a negative @ amount for the imaging of the off-axis light beam. This increases the angle of view, which becomes a major obstacle to widening the angle of view. When the upper limit is exceeded, the angle of incidence of the off-axis light beam on the rear surface of the second lens, that is, on the picture tube side becomes large, and the amount of aberration generated in the off-axis light beam becomes large.

条件式(8)は、i2レンズの中心厚に関するもので、
下限を越えするとき第2レンズの屈折力が不足してw4
1レンズによる正の屈折力の負担が大きくなり1球面収
差の補正が困難となる。
Conditional expression (8) relates to the center thickness of the i2 lens,
When the lower limit is exceeded, the refractive power of the second lens is insufficient and w4
The burden of positive refractive power by one lens increases, making it difficult to correct one spherical aberration.

上限を越えるとき、第2レンズの屈折力が増太し収差の
補正が困難となる。
When the upper limit is exceeded, the refractive power of the second lens increases, making it difficult to correct aberrations.

条件式(9)は、第2レンズと第3レンズとの面間隔に
関するもので、下限を越えるとき第3レンズのパワーが
大きくなり、軸外収差の補正が困難となり、上限を越え
るとき第2レンズの正の屈折力が低下し、第1レンズの
正の屈折力の負担が増大し1球面収差の補正が困難とな
る。
Conditional expression (9) relates to the surface spacing between the second lens and the third lens; when the lower limit is exceeded, the power of the third lens increases, making it difficult to correct off-axis aberrations; The positive refractive power of the lens decreases, the burden of the positive refractive power of the first lens increases, and it becomes difficult to correct one spherical aberration.

以下、実施例のレンズ・データを記載するが。Lens data of Examples will be described below.

各記述においてR1,R2−−・はレンズ各面の曲率半
径、DI、02・・・はレンズ面間の肉厚又は空気間隔
、Nl、N2・・・は各レンズのe線(波長546.1
nmの光)に対する屈折率、υ1.υ ・・・はe線に
対するアラベ数である。又非球面の形状は光軸方向をX
軸とした直角座標において光軸方向の変位をマとすると
き +A′H3+B′H5+C’H7+D′H!!であられ
される対称非球面である。
In each description, R1, R2... is the radius of curvature of each lens surface, DI, 02... is the wall thickness or air gap between the lens surfaces, Nl, N2... is the e-line (wavelength 546...) of each lens. 1
refractive index for light (nm light), υ1. υ... is the Arabé number for the e-line. Also, the shape of the aspherical surface is
When the displacement in the direction of the optical axis is defined as Ma in the orthogonal coordinates, +A'H3+B'H5+C'H7+D'H! ! It is a symmetrical aspherical surface.

但し、H:光軸からの高さ R二項点の曲率半径 A、B、C,D、E、A′、B′、C’、D′:非球面
係数。
However, H: Height R from the optical axis Radius of curvature of the two-term point A, B, C, D, E, A', B', C', D': Aspheric coefficient.

〔1!!値実施例1〕 F=100    FNO=l:1.2   2W=6
5゜R1=  332.99  DI=14.75  
N1−1.49375  υ1=57.4R2=310
1.15  D2−60.09R3=  109.05
 03=26.38  N2=1.49375  v2
=57.4R4=  −95,00D4=50.66R
5=  −91,9005=  5.02  N5=1
.49375  υ3=57.416=  929.1
5 06=  6.136R7=   oo   D7
−11.05  N4−1.54212  υ’4=5
9.5R8−5020,87 第1面      第4面      第5面A   
3.0OX10−3      0.    −4.6
5XlO−3B  −2,02XIO−75,54X1
0−7  −5.74XlO−7C−L、59X10−
11  −6.44XlO−113,82XIO−10
D  −3,06XlO−16−9,17X10−16
 −2.39XIO(3E  −2,91X10−14
1  1.81XIO−1134,26XIO−17A
 ′0.        0.        0゜B
’     O,O,O。
[1! ! Value example 1] F=100 FNO=l:1.2 2W=6
5°R1= 332.99 DI=14.75
N1-1.49375 υ1=57.4R2=310
1.15 D2-60.09R3= 109.05
03=26.38 N2=1.49375 v2
=57.4R4=-95,00D4=50.66R
5=-91,9005=5.02 N5=1
.. 49375 υ3=57.416=929.1
5 06= 6.136R7= oo D7
-11.05 N4-1.54212 υ'4=5
9.5R8-5020,87 1st side 4th side 5th side A
3.0OX10-3 0. -4.6
5XIO-3B-2,02XIO-75,54X1
0-7 -5.74XlO-7C-L, 59X10-
11 -6.44XIO-113,82XIO-10
D-3,06XlO-16-9,17X10-16
-2.39XIO(3E -2,91X10-14
1 1.81XIO-1134, 26XIO-17A
'0. 0. 0°B
'O, O, O.

c ′o、         o、         
o。
c'o, o,
o.

D ′0.         o、         
o。
D'0. o,
o.

〔数f1実施例2〕 F寓100     FNOMl:1.2    2W
=65’R1零  196.45  I)l−27,7
1N1=1.49375  υ1=57.4R2雪  
 541.38  D2=51.82R3−87,28
03千38.33  N2=1.49375  υ2=
57.4R4−−129,0004−87,00R5瓢
  −53,7405−4,95N3謀1.49375
  υ3=57.416−−4125.75 06麿 
1.31R7−oo   D7−10.88  N4=
1.54212  v4−59.5uax  4946
.82 第1面       第4面      第5面A  
 1.08X10−3      0.−    −4
.65XIO−3B   −1,58XlO−73,8
4X10−7   1.15X10−GC−5,35X
IO−12−2,6X10−11  1.06X10−
10D   −3,15XlO−16−1,1OXlo
−15−2,05XIO−13K   −6,13X’
l0−19   7.11XIO−195,54X10
−17A’     0.        0.   
      O。
[Number f1 Example 2] F 100 FNOML: 1.2 2W
=65'R1 zero 196.45 I) l-27,7
1N1=1.49375 υ1=57.4R2 snow
541.38 D2=51.82R3-87,28
03 thousand 38.33 N2=1.49375 υ2=
57.4R4--129,0004-87,00R5 Gourd -53,7405-4,95N3 plot 1.49375
υ3=57.416--4125.75 06maro
1.31R7-oo D7-10.88 N4=
1.54212 v4-59.5uax 4946
.. 82 1st side 4th side 5th side A
1.08X10-3 0. - -4
.. 65XIO-3B-1,58XIO-73,8
4X10-7 1.15X10-GC-5,35X
IO-12-2,6X10-11 1.06X10-
10D-3,15XlO-16-1,1OXlo
-15-2,05XIO-13K -6,13X'
l0-19 7.11XIO-195,54X10
-17A' 0. 0.
O.

B10.         O,O, c ’     o、         o、    
     o。
B10. O, O, c' o, o,
o.

D’     0.         O,O。D’    0. O, O.

〔数1111実施例3〕 F=100    FNO=l:1.2   2W=6
5゜R1=  104.69  DI=29.40  
N1−1.49375  υ1=57.4R2冨 95
6.06  D2=46.71R3=  138.48
 03−30.57  N2=1.49375  υ2
=57.414=−117.43 04−52.81R
5=  −54,5705=  5.02  N5=1
.49375  υ3=57.4Re−−531.95
  D6=  1.85R7−■  D7−11.04
  N4−1.54212  υ4=59.5R8−5
017.07 :jS1面       第4面      第5面A
1.08Xlo−30,、−4,65XlO−3B  
 −1,85X10−7   3.58X10−7  
 1.94X10−6C−1,70X10−12  −
2.39XlO−11−3,12X10−11D   
−3,23XlO−16−1,32Xlo−15−2,
0IX10−13E   −1,53X10−18  
−3.18XIO−189,90X10−17A ′0
.        0.         O。
[Number 1111 Example 3] F=100 FNO=l:1.2 2W=6
5゜R1= 104.69 DI=29.40
N1-1.49375 υ1=57.4R2 95
6.06 D2=46.71R3=138.48
03-30.57 N2=1.49375 υ2
=57.414=-117.43 04-52.81R
5=-54,5705=5.02 N5=1
.. 49375 υ3=57.4Re−531.95
D6= 1.85R7-■ D7-11.04
N4-1.54212 υ4=59.5R8-5
017.07: jS1 side 4th side 5th side A
1.08Xlo-30, -4,65XlO-3B
-1,85X10-7 3.58X10-7
1.94X10-6C-1,70X10-12-
2.39XlO-11-3, 12X10-11D
-3,23Xlo-16-1,32Xlo-15-2,
0IX10-13E -1,53X10-18
-3.18XIO-189,90X10-17A '0
.. 0. O.

B ′0.         O,O。B'0. O, O.

c ′o、         o、         
o。
c'o, o,
o.

D ′O,O,O。D'O, O, O.

第4図、小5図、第6図の縦及び横収差図は順に数値実
施例1.2.3の投影レンズ部分(R1−R6)の光学
性能を示している。
The longitudinal and lateral aberration diagrams in FIGS. 4, 5, and 6 sequentially show the optical performance of the projection lens portion (R1-R6) of Numerical Example 1.2.3.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は各々本発明の実施例を示す光
学断面図。 第4図、第5図、第6図は各々実施例の収差曲線図。 図中 Riはレンズ面、Diはレンズ面間隔1Mはメリデイオ
ナル像面、Sはサジタル像面である。
FIG. 1, FIG. 2, and FIG. 3 are optical sectional views each showing an embodiment of the present invention. FIG. 4, FIG. 5, and FIG. 6 are aberration curve diagrams of each example. In the figure, Ri is a lens surface, Di is a lens surface interval of 1M is a meridional image surface, and S is a sagittal image surface.

Claims (1)

【特許請求の範囲】 (I)原画像をスクリーン上に拡大投影するための投影
レンズに於いて、スクリーン側より順に、凸面をスクリ
ーンへ向け正屈折力のメニスカス第1レンズと両凸形状
の第2レンズと曲率大なる凹面をスクリーンへ向け負屈
折力の第3レンズから成り、第1レンズ、第2レンズ、
第3レンズは全てプラスチック製で夫々1面以上の非球
面を具え、@R_1@と@R_2@を第1レンズのスク
リーン側の面と原画像側面の近軸曲率半径、@R_3@
と@R_4@を第2レンズのスクリーン側の面と原画像
側の面の近軸曲率半径、@R_5@を第3レンズのスク
リーン側の面の近軸曲率半径、D_1を第1レンズの軸
上厚、D_2を第1レンズと第2レンズの軸上面間隔、
D_3を第2レンズの軸上厚、D_4を第2レンズと第
3レンズの軸上面間隔、fを全系の焦点距離とするとき
以下の条件式を満足する投影レンズ。 (1)0.8f<@R_1@<1.4f (2)5f<@R_2@<31f (3)0.85f<@R_3@<1.4f (4)−1.3f<@R_4@<−0.9f(5)−0
.52f<@R_5@<−0.34f(6)0.13f
<D_1<0.3f (7)0.45f<D_2<0.6f (8)0.24f<D_3<0.4f (9)0.5f<D_4<0.7f 但し、近軸曲率半径@R@は次の通り定義される。 まず非球面の形状は光軸方向をX軸とした直角座標にお
いて、Hを光軸からの高さ、Rを頂点の曲率半径、A、
B、C、D、E、A′、B′、C′、D′を非球面係数
、Xを光軸方向の変位とするとき、@X@:R{1−√
(1−H^2/R^2)}+AH^2+BH^4+CH
^6+DH^8+EH^1^0+A′H^3+B′H^
5+C′H^7+D′H^9当式でAの項が零でないと
き、近軸曲率半径は次の通りである。 @R@=1/(1/R+2A)
[Claims] (I) In a projection lens for enlarging and projecting an original image onto a screen, from the screen side, the convex surface faces the screen, and the first meniscus lens has a positive refractive power and the second lens has a biconvex shape. It consists of two lenses and a third lens with a negative refractive power that faces the screen with a concave surface with a large curvature, the first lens, the second lens,
The third lens is all made of plastic and each has one or more aspherical surfaces, and @R_1@ and @R_2@ are the paraxial curvature radius of the screen-side surface of the first lens and the side surface of the original image, @R_3@
and @R_4@ are the paraxial radius of curvature of the screen-side surface and original image-side surface of the second lens, @R_5@ is the paraxial radius of curvature of the screen-side surface of the third lens, and D_1 is the axis of the first lens. The upper thickness, D_2, is the distance between the axial surfaces of the first lens and the second lens,
A projection lens that satisfies the following conditional expression, where D_3 is the axial thickness of the second lens, D_4 is the axial distance between the second and third lenses, and f is the focal length of the entire system. (1) 0.8f<@R_1@<1.4f (2) 5f<@R_2@<31f (3) 0.85f<@R_3@<1.4f (4) -1.3f<@R_4@< -0.9f(5)-0
.. 52f<@R_5@<-0.34f(6)0.13f
<D_1<0.3f (7) 0.45f<D_2<0.6f (8) 0.24f<D_3<0.4f (9) 0.5f<D_4<0.7f However, paraxial radius of curvature @R @ is defined as follows. First, the shape of the aspheric surface is expressed in rectangular coordinates with the optical axis direction as the X axis, where H is the height from the optical axis, R is the radius of curvature of the apex, A,
When B, C, D, E, A', B', C', and D' are the aspherical coefficients and X is the displacement in the optical axis direction, @X@:R{1-√
(1-H^2/R^2)}+AH^2+BH^4+CH
^6+DH^8+EH^1^0+A'H^3+B'H^
5+C'H^7+D'H^9 When the term A in this equation is not zero, the paraxial radius of curvature is as follows. @R@=1/(1/R+2A)
JP19116184A 1984-09-11 1984-09-11 Projection lens Pending JPS6167813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19116184A JPS6167813A (en) 1984-09-11 1984-09-11 Projection lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19116184A JPS6167813A (en) 1984-09-11 1984-09-11 Projection lens

Publications (1)

Publication Number Publication Date
JPS6167813A true JPS6167813A (en) 1986-04-08

Family

ID=16269914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19116184A Pending JPS6167813A (en) 1984-09-11 1984-09-11 Projection lens

Country Status (1)

Country Link
JP (1) JPS6167813A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309695A (en) * 2003-04-04 2004-11-04 Olympus Corp Imaging optical system and imaging apparatus using imaging optical system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309695A (en) * 2003-04-04 2004-11-04 Olympus Corp Imaging optical system and imaging apparatus using imaging optical system

Similar Documents

Publication Publication Date Title
JP2002107618A (en) Wide angle projecting lens and projection type image display device using the same
JPS58139111A (en) Refraction type optical system for video projector
JPH0827430B2 (en) Two-group zoom lens
US5493446A (en) Projection lens
JP2000330014A (en) Large-aperture lens
US4761063A (en) Projection lens system
JP2717552B2 (en) Telecentric projection lens
JPH07318803A (en) Rear conversion lens
JPH1048513A (en) Large diameter wide angle telecentric lens
JPS6243613A (en) Converter lens
JPH10301021A (en) Small-sized lens
JPH05346540A (en) Projection lens
JP2005156963A (en) Projection zoom lens and projector
US4993816A (en) Projection lens system for use in projection television
JP3101738B2 (en) Projection lens for projector
JPS6167813A (en) Projection lens
JPH04335610A (en) Projection lens
JPS6190115A (en) Objective lens for forming image
JP2002148514A (en) Image-formation optical system
JPH0638132B2 (en) Projection lens
JPH02146014A (en) Telephoto type objective
JPH0961711A (en) Projecting lens
JPS6167812A (en) Projection lens
JPH07294810A (en) Color picture reading lens
JP2800293B2 (en) Projection lens