[go: up one dir, main page]

JPS6165441A - Treatment method for plasma silicon nitride insulation film - Google Patents

Treatment method for plasma silicon nitride insulation film

Info

Publication number
JPS6165441A
JPS6165441A JP59188424A JP18842484A JPS6165441A JP S6165441 A JPS6165441 A JP S6165441A JP 59188424 A JP59188424 A JP 59188424A JP 18842484 A JP18842484 A JP 18842484A JP S6165441 A JPS6165441 A JP S6165441A
Authority
JP
Japan
Prior art keywords
silicon nitride
insulating film
plasma silicon
insulation film
nitride insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59188424A
Other languages
Japanese (ja)
Other versions
JPH0329297B2 (en
Inventor
Sunao Nishioka
西岡 直
Hiroshi Koyama
浩 小山
Yoji Masuko
益子 洋治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59188424A priority Critical patent/JPS6165441A/en
Priority to US06/773,918 priority patent/US4636400A/en
Publication of JPS6165441A publication Critical patent/JPS6165441A/en
Publication of JPH0329297B2 publication Critical patent/JPH0329297B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To prevent the generation of cracks by relieving the internal stress of the following insulation film by irradiating a plasma Si nitride insulation film increased in temperature with light. CONSTITUTION:The plasma Si nitride insulation film 2 is formed on a semicon ductor element 1. The element 1 is mounted on a heater 4, where the insulation film 2 is irradiated with light 3. Then, atom-molecule bond cutting-re combination, translation-rotation-oscillation, chemical reaction of radical seeds, etc. generate by photon energy, and the spatial density of atoms or the fluctua tion in coordination number in the insulation film 2 reduces. As a result, the internal stress of the insulation film 2 diminishes, and the generation of its cracks is prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、半導体素子に用いられるプラズマ窒化シリ
コン絶縁膜のクラックを防止するための処理方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a processing method for preventing cracks in plasma silicon nitride insulating films used in semiconductor devices.

[従来の技術] 従来、プラズマ窒化シリコン絶縁膜のクラック防止法と
して、前記4!8縁膜を生成させるときのパラメータ、
たとえばモノシラン・ガス、アンモニア・ガスの圧力、
流量、濃度比などを制御していた(M、 J、 Ran
d : J、 Vac、 Set、 Technol。
[Prior Art] Conventionally, as a method for preventing cracks in a plasma silicon nitride insulating film, parameters for forming the 4!8 edge film,
For example, the pressure of monosilane gas, ammonia gas,
It controlled the flow rate, concentration ratio, etc. (M, J, Ran
d: J, Vac, Set, Technol.

、Vol、16,1979.4200 )aそして生成
侵の前記絶縁膜に対しては、クラック防止のための特別
な処理は施されていなかった。
, Vol. 16, 1979.4200)a) No special treatment was applied to the insulating film to prevent cracking.

従来のプラズマ窒化シリコン絶縁膜のクラック防止法は
、前記絶縁膜を生成する諸条件を変化させ、クラックの
発生原因の内部応力を最小とする最適条件を選び出す方
法であった。すなわち、モノシラン・ガスやアンモニア
・ガスなどの反応ガスの圧力、流示、濃度比、基板瀧度
など生成パラメータを変えて作成された前記絶縁面のう
ち、内部応力が最小となる生成パラメータ条件を採用す
る方法がとられていた。また、生成後の前記絶縁膜の俊
処理として、内部応力を緩和するための特別な処理は施
されていなかった。
A conventional method for preventing cracks in a plasma silicon nitride insulating film is to vary various conditions for forming the insulating film and select optimal conditions that minimize the internal stress that causes cracks. In other words, among the insulating surfaces created by changing the production parameters such as the pressure, flow rate, concentration ratio, and substrate density of a reactive gas such as monosilane gas or ammonia gas, the production parameter conditions that minimize the internal stress are determined. The method of recruitment was adopted. Further, as a treatment for the insulating film after formation, no special treatment was performed to relieve internal stress.

[51!!明が解決しようとする問題点]上記のような
従来の生成パラメータのlす仰によるクラック防止法は
、非常に多くのパラメータを制御しなければならず、ま
た生成装置の個性もあって最適条件を帷持することが極
めて困難な欠点があった。またI[u!l!l理として
の内部応力を緩和する熱処理(アニール処理)は、半導
体素子には前記絶縁膜で被覆される低融点のアルミニウ
ム配線が内在することもあって、効果的な高温処理を行
なうことができず、俊処理を施し難い欠点があった。
[51! ! [Problems that Akira aims to solve] The conventional crack prevention method by adjusting the production parameters as described above requires controlling a large number of parameters, and due to the characteristics of the production equipment, it is difficult to find optimal conditions. It had the drawback that it was extremely difficult to maintain it. Also I[u! l! Thermal treatment (annealing) for relieving internal stress is an effective high-temperature treatment because the semiconductor element contains low-melting-point aluminum wiring that is covered with the insulating film. However, it had the drawback that it was difficult to perform quick processing.

この発明は、かかる問題点を解決するためになされたも
ので、半導体素子に形成されるプラズマ窒化シリコン絶
縁膜のクラックの発生を防止できるプラズマ窒化シリコ
ン絶縁膜の処理方法を得ることを目的とする。
The present invention was made to solve such problems, and an object of the present invention is to obtain a method for processing a plasma silicon nitride insulating film that can prevent the occurrence of cracks in the plasma silicon nitride insulating film formed on a semiconductor element. .

[問題点を解決するだめの手段] この発明にかかるプラズマ窒化シリコン絶縁膜の処理方
法は、前記絶縁膜を昇温せしめ、光線より放射される光
を前記絶縁膜へ照射する。
[Means for Solving the Problems] The plasma silicon nitride insulating film processing method according to the present invention raises the temperature of the insulating film and irradiates the insulating film with light emitted from a light beam.

[作用] この発明においては、昇温されたプラズマ窒化シリコン
絶縁膜に光を照射すると、前記絶縁膜の内部応力が緩和
されるので、前記絶縁膜のクラックの発生を防止できる
[Function] In the present invention, when the heated plasma silicon nitride insulating film is irradiated with light, the internal stress of the insulating film is alleviated, so that cracks in the insulating film can be prevented.

[実施例1 以下、この発明の実施例を図によって説明する。[Example 1 Embodiments of the present invention will be described below with reference to the drawings.

第1図は、この発明の実施例であるプラズマ窒化シリコ
ン絶縁膜の処理方法を説明するための断面図である。初
めに、この処理方法の構成について説明する。図におい
て、半導体素子1上にはプラズマ窒化シリコン絶縁膜2
が形成されている。半導体素子1は、半導体装置として
の製造プロセスが未完了の状態にあるものである。半導
体素子1はヒータ4上に載置される。ヒータ4は半導体
装きく存在し、これが内部応力を増大させている。
FIG. 1 is a cross-sectional view for explaining a method of processing a plasma silicon nitride insulating film according to an embodiment of the present invention. First, the configuration of this processing method will be explained. In the figure, a plasma silicon nitride insulating film 2 is formed on a semiconductor element 1.
is formed. The semiconductor element 1 is in an incomplete state of manufacturing process as a semiconductor device. Semiconductor element 1 is placed on heater 4 . The heater 4 is mostly made of semiconductor, which increases internal stress.

そこで、光3をプラズマ窒化シリコン絶縁膜2に照射し
てやれば、光子エネルギによって原子・分子の結合ボン
ドの切断・再結合、並進・回転・振動、ラジカル種の化
学反応などが発生し、プラズマ窒化シリコン絶縁膜2に
おける原子の空間的密度や配位数のゆらぎは減少する。
Therefore, if the light 3 is irradiated onto the plasma silicon nitride insulating film 2, the photon energy will cause cutting/recombination of atoms/molecules, translation/rotation/vibration, chemical reactions of radical species, etc. The spatial density of atoms and fluctuations in the coordination number in the insulating film 2 are reduced.

その結果、プラズマ富化シリコン絶縁膜2の内部応力は
小さくなり、イのクラックの発生は防止される。
As a result, the internal stress of the plasma-enriched silicon insulating film 2 is reduced, and the occurrence of cracks (a) is prevented.

ヒータ4によるプラズマ窒化シリコン絶縁膜2の昇温は
、上述の作用を促進する効果がある。光3を照射せず、
単にプラズマ窒化シリコン絶縁膜2を昇温するならば、
非晶質の稙造塑和・内部応力の緩和に高?易・艮時間を
要する。
Elevating the temperature of the plasma silicon nitride insulating film 2 by the heater 4 has the effect of promoting the above-mentioned effect. Without irradiating light 3,
If the temperature of the plasma silicon nitride insulating film 2 is simply increased,
Is it effective for amorphous crystal plasticity and relaxation of internal stress? Easy and time consuming.

第2図は、この発明の処理方法を、アルミニウム配線パ
ターンに被覆したプラズマ窒化シリコン絶縁膜2へ、<
a >適用した場合、(b )適用しない場合のアルミ
ニウム配れ段着部に発生したクラック数の実測例である
。縦軸はクラック発生数を、横軸はサンプル番号を各わ
す。この処理方法子1を介してプラズマ窒化シリコン絶
縁膜2を昇温させるための加熱手段であり、半導体素子
1およびプラズマ窒化シリコン絶縁膜2を200〜30
0℃の温度範囲内に昇温できるt3能を有する。
FIG. 2 shows that the processing method of the present invention is applied to a plasma silicon nitride insulating film 2 covering an aluminum wiring pattern.
(b) is an actual measurement example of the number of cracks generated in the stepped portion of the aluminum arrangement when (a) is applied and (b) is not applied. The vertical axis represents the number of cracks, and the horizontal axis represents the sample number. This processing method is a heating means for raising the temperature of the plasma silicon nitride insulating film 2 via the processing element 1, and the semiconductor element 1 and the plasma silicon nitride insulating film 2 are
It has the t3 ability to raise the temperature within the temperature range of 0°C.

光3は、光線および光学系くいずれも図示せず〉による
パワー強度の面積音度が均一な分布の光であって、プラ
ズマ窒化シリコン絶縁膜2を照射する光である。また光
3は、波長M2O0〜600rvの光を含むものであっ
て、その波長域内の光パワー強度が10W/cm2以上
の光である。この先3の光線としては、たとえば高圧水
銀灯、キセノン・ランプなどを用いることができる。
The light 3 is light whose power intensity has a uniform distribution of area soundness due to a light beam and an optical system (both not shown), and is light that irradiates the plasma silicon nitride insulating film 2. The light 3 includes light with a wavelength M2O0 to 600rv, and has an optical power intensity of 10 W/cm2 or more within that wavelength range. As the third light beam, for example, a high pressure mercury lamp, a xenon lamp, etc. can be used.

次に、この処理方法について説明する。光3をプラズマ
窒化シリコン絶tgI膜2へ照q寸することによって、
前記絶縁膜のクラックの発生原因である内部応力を緩和
する。プラズマ窒化シリコン絶縁膜2は、周知のごとり
一般にストイキオメトリから組成がずれてJ3す、その
膜中に水素を多く含んだ非晶質である。したがって、原
子レベルで見るならば、原子の空間的苫度や配位数にゆ
らぎが大をj今月した1合、サンプルm 号1 、4に
ついては若干クランクが発生しているが、他のサンプル
番号については全くクラックが発生しておらず、この発
明の処理方法がプラズマ窒化シリコン絶縁膜のクラック
の発生防止に明らかに有効であることがわかる。
Next, this processing method will be explained. By shining the light 3 onto the plasma silicon nitride tgI film 2,
The internal stress that causes cracks in the insulating film is alleviated. As is well known, the plasma silicon nitride insulating film 2 is generally amorphous with a composition deviating from stoichiometry J3 and containing a large amount of hydrogen in the film. Therefore, if we look at it at the atomic level, there are large fluctuations in the spatial torpor and coordination number of the atoms.There is a slight cranking in samples 1 and 4, which were made this month, but in other samples. As for the number, no cracks were observed at all, and it can be seen that the processing method of the present invention is clearly effective in preventing the occurrence of cracks in plasma silicon nitride insulating films.

また、この処理方法は、大口径ウェハのごとき寸法の大
きい半導体素子にも問単に適用でき、処理パラメータも
少ないので安定した条件でプラズマ窒化シリコン絶縁R
欠のクランク防止処理を行なうことができる。
In addition, this processing method can be easily applied to large-sized semiconductor devices such as large-diameter wafers, and since the processing parameters are small, plasma silicon nitride insulation can be processed under stable conditions.
It is possible to perform a process to prevent missing cranks.

なお、上記実施例では、半導体素子およびプラズマ窒化
シリコン絶縁膜を昇温さぜるためにヒータの熱伝導を用
いたが、赤外線ランプのごとき都田熱を用いてもよい。
In the above embodiment, the heat conduction of the heater was used to heat up the semiconductor element and the plasma silicon nitride insulating film, but Miyakoda heat such as an infrared lamp may also be used.

[発明の効果] 以上のように、この発明によれば、昇温したプラズマ窒
化シリコン絶縁膜へ光を照射するので、前記絶縁膜の内
部応力が緩和されてそのクラックのに生を防止すること
ができる。
[Effects of the Invention] As described above, according to the present invention, since the heated plasma silicon nitride insulating film is irradiated with light, the internal stress of the insulating film is relaxed and the formation of cracks is prevented. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の実施例であるプラズマ窒化シリコ
ン絶縁q4の処理方法を説明するための所面図である。 第2図は1この発明のプラズマ窒化シリコン絶縁族の処
理方法の効果を示す賞S11例である。 図において、1は半導体素子、2はプラズマ窒化シリコ
ン絶縁喪、3は光、4はヒータである。 なお、各図中同−汀づは同一または担当部分を示1
FIG. 1 is a top view for explaining a method of processing plasma silicon nitride insulation q4, which is an embodiment of the present invention. FIG. 2 is an example of award S11 showing the effects of the plasma silicon nitride insulation group processing method of the present invention. In the figure, 1 is a semiconductor element, 2 is a plasma silicon nitride insulator, 3 is a light, and 4 is a heater. In addition, in each figure, the same line indicates the same part or the part in charge.

Claims (3)

【特許請求の範囲】[Claims] (1)半導体素子に形成されるプラズマ窒化シリコン絶
縁膜の処理方法であって、 前記プラズマ窒化シリコン絶縁膜を昇温せしめ、光線よ
り放射される光を前記プラズマ窒化シリコン絶縁膜へ照
射することを特徴とするプラズマ窒化シリコン絶縁膜の
処理方法。
(1) A method for processing a plasma silicon nitride insulating film formed on a semiconductor device, the method comprising raising the temperature of the plasma silicon nitride insulating film and irradiating the plasma silicon nitride insulating film with light emitted from a light beam. Characteristic processing method for plasma silicon nitride insulating film.
(2)前記プラズマ窒化シリコン絶縁膜への照射におい
て、前記プラズマ窒化シリコン絶縁膜を200〜300
℃の温度に昇温する特許請求の範囲第1項記載のプラズ
マ窒化シリコン絶縁膜の処理方法。
(2) In irradiating the plasma silicon nitride insulating film, the plasma silicon nitride insulating film is
A method for processing a plasma silicon nitride insulating film according to claim 1, wherein the temperature is raised to a temperature of .degree.
(3)前記プラズマ窒化シリコン絶縁膜へ照射する前記
光を、200〜600nmの波長域を含む光とし、その
波長域内の光パワー強度を10W/cm^2以上とする
特許請求の範囲第1項記載のプラズマ窒化シリコン絶縁
膜の処理方法。
(3) The light irradiated to the plasma silicon nitride insulating film is light including a wavelength range of 200 to 600 nm, and the optical power intensity within the wavelength range is 10 W/cm^2 or more. The plasma silicon nitride insulating film processing method described above.
JP59188424A 1984-09-07 1984-09-07 Treatment method for plasma silicon nitride insulation film Granted JPS6165441A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59188424A JPS6165441A (en) 1984-09-07 1984-09-07 Treatment method for plasma silicon nitride insulation film
US06/773,918 US4636400A (en) 1984-09-07 1985-09-09 Method of treating silicon nitride film formed by plasma deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59188424A JPS6165441A (en) 1984-09-07 1984-09-07 Treatment method for plasma silicon nitride insulation film

Publications (2)

Publication Number Publication Date
JPS6165441A true JPS6165441A (en) 1986-04-04
JPH0329297B2 JPH0329297B2 (en) 1991-04-23

Family

ID=16223424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59188424A Granted JPS6165441A (en) 1984-09-07 1984-09-07 Treatment method for plasma silicon nitride insulation film

Country Status (2)

Country Link
US (1) US4636400A (en)
JP (1) JPS6165441A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307745A (en) * 1987-06-09 1988-12-15 Sanyo Electric Co Ltd Manufacture of silicon nitride film
JPH02122528A (en) * 1988-10-31 1990-05-10 Sony Corp Manufacture of semiconductor element
US5312771A (en) * 1990-03-24 1994-05-17 Canon Kabushiki Kaisha Optical annealing method for semiconductor layer and method for producing semiconductor device employing the same semiconductor layer
JP2007189533A (en) * 2006-01-13 2007-07-26 Canon Inc Imaging apparatus, and control method and control program of the apparatus
JP2010517307A (en) * 2007-01-24 2010-05-20 インターナショナル・ビジネス・マシーンズ・コーポレーション Dielectric cap layer

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4910043A (en) * 1987-07-16 1990-03-20 Texas Instruments Incorporated Processing apparatus and method
US4933206A (en) * 1988-08-17 1990-06-12 Intel Corporation UV-vis characteristic writing in silicon nitride and oxynitride films
US5013692A (en) * 1988-12-08 1991-05-07 Sharp Kabushiki Kaisha Process for preparing a silicon nitride insulating film for semiconductor memory device
US4962065A (en) * 1989-02-13 1990-10-09 The University Of Arkansas Annealing process to stabilize PECVD silicon nitride for application as the gate dielectric in MOS devices
US5264724A (en) * 1989-02-13 1993-11-23 The University Of Arkansas Silicon nitride for application as the gate dielectric in MOS devices
US6274510B1 (en) 1998-07-15 2001-08-14 Texas Instruments Incorporated Lower temperature method for forming high quality silicon-nitrogen dielectrics
CN102652936B (en) * 2012-04-26 2013-12-25 友达光电(苏州)有限公司 Photocuring method and device
US10191215B2 (en) 2015-05-05 2019-01-29 Ecole Polytechnique Federale De Lausanne (Epfl) Waveguide fabrication method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497388A (en) * 1972-05-11 1974-01-23

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4181751A (en) * 1978-05-24 1980-01-01 Hughes Aircraft Company Process for the preparation of low temperature silicon nitride films by photochemical vapor deposition
US4229502A (en) * 1979-08-10 1980-10-21 Rca Corporation Low-resistivity polycrystalline silicon film
US4277320A (en) * 1979-10-01 1981-07-07 Rockwell International Corporation Process for direct thermal nitridation of silicon semiconductor devices
US4469715A (en) * 1981-02-13 1984-09-04 Energy Conversion Devices, Inc. P-type semiconductor material having a wide band gap
JPS5958819A (en) * 1982-09-29 1984-04-04 Hitachi Ltd Formation of thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497388A (en) * 1972-05-11 1974-01-23

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307745A (en) * 1987-06-09 1988-12-15 Sanyo Electric Co Ltd Manufacture of silicon nitride film
JPH02122528A (en) * 1988-10-31 1990-05-10 Sony Corp Manufacture of semiconductor element
US5312771A (en) * 1990-03-24 1994-05-17 Canon Kabushiki Kaisha Optical annealing method for semiconductor layer and method for producing semiconductor device employing the same semiconductor layer
JP2007189533A (en) * 2006-01-13 2007-07-26 Canon Inc Imaging apparatus, and control method and control program of the apparatus
JP2010517307A (en) * 2007-01-24 2010-05-20 インターナショナル・ビジネス・マシーンズ・コーポレーション Dielectric cap layer

Also Published As

Publication number Publication date
US4636400A (en) 1987-01-13
JPH0329297B2 (en) 1991-04-23

Similar Documents

Publication Publication Date Title
US4581248A (en) Apparatus and method for laser-induced chemical vapor deposition
JPS6165441A (en) Treatment method for plasma silicon nitride insulation film
US5376591A (en) Method for manufacturing semiconductor device
EP0301463A2 (en) Thin film silicon semiconductor device and process for producing it
GB2065973A (en) Processes for manufacturing semiconductor devices
JPS6237527B2 (en)
US5238879A (en) Method for the production of polycrystalline layers having granular crystalline structure for thin-film semiconductor components such as solar cells
EP0684632B1 (en) Method of forming a film at low temperature for a semiconductor device
JPS5940525A (en) Growth of film
JPS61145819A (en) Heat processing method for semiconductor thin film
Ahmed et al. An overview of the deposition chemistry and the properties of in situ doped polysilicon prepared by low pressure chemical vapour deposition
US4210473A (en) Process for producing a semiconductor device
JPS62166529A (en) Formation of thin film
JPH0349217A (en) Plasma doping device for semiconductor substrate
JPS62240768A (en) Formation of deposited film
JPS61145818A (en) Heat processing method for semiconductor thin film
KR930001193B1 (en) Special photochemistry reaction furnace for si circle thin film deposition that is possibe in treating rapid tempeature managment
JPS59124729A (en) Formation of insulating film
Hirose Chemical vapor deposition
JP3607040B2 (en) Manufacturing method of semiconductor device
JPS60211078A (en) Formation of electrically conductive film
JPS6235512A (en) Manufacture of single crystal thin film of semiconductor
JPS60216539A (en) Manufacture of semiconductor device
JPH11195613A (en) Device and method for ultraviolet annealing
JPS61187323A (en) Thin film forming apparatus