JPS6161917A - Air intake device of engine with supercharger - Google Patents
Air intake device of engine with superchargerInfo
- Publication number
- JPS6161917A JPS6161917A JP59183282A JP18328284A JPS6161917A JP S6161917 A JPS6161917 A JP S6161917A JP 59183282 A JP59183282 A JP 59183282A JP 18328284 A JP18328284 A JP 18328284A JP S6161917 A JPS6161917 A JP S6161917A
- Authority
- JP
- Japan
- Prior art keywords
- evaporator
- supercharger
- temperature
- engine
- air intake
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B29/00—Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
- F02B29/04—Cooling of air intake supply
- F02B29/0406—Layout of the intake air cooling or coolant circuit
- F02B29/0437—Liquid cooled heat exchangers
- F02B29/0443—Layout of the coolant or refrigerant circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B29/00—Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
- F02B29/04—Cooling of air intake supply
- F02B29/0406—Layout of the intake air cooling or coolant circuit
- F02B29/0412—Multiple heat exchangers arranged in parallel or in series
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supercharger (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、所謂吸気過給を行なうための過給機を備えた
エンジンの吸気装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an intake system for an engine equipped with a supercharger for performing so-called intake supercharging.
[従来技術1
ターボ過給機等の過給機を備え、吸気過給による充填効
率の向にによって出力性能の向上を図った過給機付エン
ジンは汎用されている。[Prior art 1] Supercharged engines equipped with a supercharger such as a turbo supercharger and designed to improve output performance by improving charging efficiency through intake supercharging are widely used.
かかる過給機付エンジンが抱える大トな問題の一つは、
吸気が過給機によって断熱圧縮され、過給気温か太幅に
上■するため、過給圧を高めても、過給圧の一1r、昇
程には、実質的な充填効率をアップすることかで外ない
という問題である。One of the major problems faced by such supercharged engines is
The intake air is adiabatically compressed by the supercharger and raised to a wide range above the supercharging temperature, so even if the boost pressure is increased, the charging efficiency will actually increase when the boost pressure increases by 1r. This is an obvious problem.
かかる問題を解消するため、過給機下流の吸気通路に、
水冷もしくは空冷のインタークーラを設け、過給気温を
低下させるようにしたものが知られているが、この種の
インタークーラは、冷却能力が不十分で過給気温を外気
温以下に低下させることができず、また冷却能が外気温
に左右されるといった本質的な欠点がある。In order to solve this problem, in the intake passage downstream of the turbocharger,
It is known that a water-cooled or air-cooled intercooler is installed to lower the supercharging temperature, but this type of intercooler has insufficient cooling capacity and may cause the supercharging temperature to drop below the outside temperature. They have the essential drawbacks of not being able to do this, and that their cooling capacity is dependent on the outside temperature.
また、」1記のような水冷や空冷のインタークーラに代
えて、過給機下流の吸気通路に設けた吸気脈動緩衝用の
サージタンク内に冷凍サイクルのエバポレータを設置し
、エバポレータによって過給気を積極的に冷却するよう
にした過給機付エンジンの吸気装置が提案されている(
特開昭55−142932号公報参照)。In addition, instead of a water-cooled or air-cooled intercooler as described in item 1, an evaporator of the refrigeration cycle is installed in a surge tank for buffering intake pulsation, which is installed in the intake passage downstream of the supercharger, and the evaporator uses the evaporator to air the supercharged air. An intake system for a supercharged engine that actively cools the engine has been proposed (
(See Japanese Patent Application Laid-open No. 142932/1983).
上記のように、冷凍サイクルのエバボレー9ft用いて
過給気を冷却する方式は、過給気を外気温より低い温度
まで冷却することかできる点で空冷や水冷による過給気
冷却方式に比して優れている。As mentioned above, the method of cooling supercharged air using the 9ft evaporator of the refrigeration cycle is superior to supercharged air cooling methods using air cooling or water cooling in that it can cool the supercharged air to a temperature lower than the outside temperature. It's excellent.
ところで、上記冷凍サイクルの冷却能力は、エンジンの
最高負荷状態でその時の過給気温を所定の温度にまで冷
却する際に過給気が放出する熱量に等しく設定し、それ
に応じて、エンジンにより駆動されるコンプレッサの容
量やコンプレッサとともに冷凍装置を構成するエバポレ
ータやコンデンサの容量(能力)が決定されることにな
る。By the way, the cooling capacity of the above-mentioned refrigeration cycle is set equal to the amount of heat released by the supercharged air when cooling the supercharged air temperature at that time to a predetermined temperature in the engine's maximum load state, The capacity of the compressor and the capacity (capacity) of the evaporator and condenser that constitute the refrigeration system together with the compressor are determined.
しかしながら、実際の運転に際しては、以下のような問
題を生ずる。However, during actual operation, the following problems occur.
即九、冷凍装置の冷却能力は、コンプレッサの回転数か
エンジン回転数に比例するため、エンジン回転数にリニ
アに比例して増大する。一方、過給気を所定の温度に低
下させる際に過給気が放出する熱量は、過給の開始時に
あっては、過給圧がエンノン回転数に比例せず、エバポ
レータの冷却能力を下用ってしまう。また、エンジン回
転数が高い場合でも、部分負荷時には、吸気量が少ない
ため、上記と同様エバポレータの冷却能力を下用ること
となる。この事情を、具体的な数値で示せば、例えば、
エンジン回転数4 、0(’l (l rpm :全負
荷状態時に、9 (1’Cの過給気を3(1’cに冷却
するように、冷凍装置の冷却能力を設定した場合、過給
が開始されるl 、 (’l (’l f’l rpm
付近では6 T’) ′Cの過給気温が10’C以下に
冷却され過冷却となってしまう。In other words, the cooling capacity of the refrigeration system is proportional to the compressor rotation speed or the engine rotation speed, so it increases linearly in proportion to the engine rotation speed. On the other hand, the amount of heat released by the supercharged air when lowering the supercharged air to a predetermined temperature is due to the fact that at the start of supercharging, the supercharging pressure is not proportional to the engine rotation speed, which reduces the cooling capacity of the evaporator. I end up using it. Further, even when the engine speed is high, the amount of intake air is small at partial load, so the cooling capacity of the evaporator is used less as described above. If this situation can be expressed in concrete numbers, for example,
If the cooling capacity of the refrigeration system is set to cool the supercharged air of 9 (1'C) to 3 (1'C) at full load, the l , ('l ('l f'l rpm
In the vicinity, the supercharging temperature of 6 T')'C is cooled to below 10'C, resulting in supercooling.
このように、過給気が過冷却状態でエンジンに供給され
ると、充填効率が過大となり、また)熱料の気化・霧化
状態が悪化して、ノッキングの発生やエミッション性能
の低下を招来し、出力性能も低下する。In this way, if supercharged air is supplied to the engine in a supercooled state, the charging efficiency will be excessive, and the vaporization and atomization state of the heating charge will deteriorate, leading to knocking and a decline in emission performance. However, the output performance also deteriorates.
」−記のことから明らかなように、冷凍サイクル内を循
環する冷媒の流通量は、基本的には、エンジンにより駆
動されるコンプレッサの回転数(エンジン回転数)によ
り決定されるが、実際には、エバポレータの入口側冷媒
通路に設置した膨張弁によって調整されるようになって
いる。この膨張弁の開度は、エバポレータの出口側冷媒
通路を形成する管壁に取付けた感温筒によって制御され
る。” - As is clear from the above, the flow rate of refrigerant circulating within the refrigeration cycle is basically determined by the rotation speed of the compressor (engine rotation speed) driven by the engine, but in reality is adjusted by an expansion valve installed in the refrigerant passage on the inlet side of the evaporator. The opening degree of this expansion valve is controlled by a temperature-sensitive cylinder attached to a pipe wall forming an outlet-side refrigerant passage of the evaporator.
この感温筒は、エーテルの熱膨張を利用したもので、エ
バポレータの出口側における冷媒温度を検出し、冷媒温
度が一]二昇したと外には、膨張弁の開度を天外くして
冷媒流通量を増加し、冷却能力が増大するように膨張弁
を制御するためのものである。This temperature-sensing tube uses the thermal expansion of ether to detect the refrigerant temperature at the outlet side of the evaporator, and when the refrigerant temperature rises by one or two degrees, it detects the refrigerant by increasing the opening of the expansion valve. This is to control the expansion valve to increase the flow rate and cooling capacity.
かかる感温筒−膨張弁による冷媒流通量の制御は、そも
そも、その目的が冷却能力を制御することにあるが、制
御の応答性がトわめて緩慢である。Although the purpose of controlling the refrigerant flow rate using such a temperature-sensitive tube-expansion valve is to control the cooling capacity, the responsiveness of the control is extremely slow.
また、制御幅をさほど大幅にとることかで外ないといっ
た欠点がある。In addition, there is a drawback that the control range is not too large.
さらに、かかる制御方式の本質的欠点は、感温筒によっ
て検出される冷媒温度とエバポレータを通過する過給気
の温度との間には、明確な一対一の対応がないため、過
給気の温度を一定に維持することかでトない点である。Furthermore, an essential drawback of such a control method is that there is no clear one-to-one correspondence between the refrigerant temperature detected by the thermosensor and the temperature of the supercharged air passing through the evaporator. The key is to maintain a constant temperature.
[発明の目的1
本発明の目的は、冷凍装置のエバポレータによって冷却
した過給気の温度を検出しつつ、エバポレータ下流にお
ける過給気温を一定に維持すること一4=
かできる過給機付エンジンの吸気装置を提供することで
ある。[Objective of the Invention 1 The object of the present invention is to detect the temperature of the supercharged air cooled by the evaporator of the refrigeration system and to maintain the supercharged air temperature downstream of the evaporator constant. The purpose of the present invention is to provide an intake device for the following.
[発明の構成1
かかる目的を達成するため、本発明は、エバポレータの
入口側の冷媒循環路に冷媒の流通量を制御する制御弁を
設けるとともに、エバポレータ下流の過給気の温度を検
出するようにし、検出した過給気温に応じて、エバポレ
ータの入口側に設置した制御弁の開度を直接に制御する
ようにしたことを特徴としている。[Structure 1 of the Invention] In order to achieve the above object, the present invention provides a control valve for controlling the flow rate of the refrigerant in the refrigerant circulation path on the inlet side of the evaporator, and also detects the temperature of the supercharged air downstream of the evaporator. The system is characterized in that the opening degree of the control valve installed on the inlet side of the evaporator is directly controlled according to the detected supercharging temperature.
即ち、本発明においては、エバポレータ内を流通する冷
媒流通量をエバポレータ下流の過給気温に応じて制御す
ることにより、エバポレータの冷却能を過給気の要求冷
却能、つまり過給気を所望の低い温度にまで冷却するた
め1こ、エバポレータが過給気から奪うべ外熱量に一致
させるように制御する。That is, in the present invention, by controlling the flow rate of refrigerant flowing through the evaporator according to the supercharging temperature downstream of the evaporator, the cooling capacity of the evaporator can be adjusted to the required cooling capacity of the supercharging air, that is, the desired supercharging air. In order to cool down to a low temperature, the evaporator is controlled to match the amount of external heat taken from the supercharged air.
[発明の効果1
本発明によれば、エンジンの運転状態にかかわらず、エ
ンジンに供給する過給気の温度を一定にできる。[Advantageous Effects of the Invention 1] According to the present invention, the temperature of the supercharging air supplied to the engine can be kept constant regardless of the operating state of the engine.
また、エバポレータ下流の過吸気温に応して、エバポレ
ータの冷媒流通量を直接的に制御するので、エバポレー
タの冷却能力を応答性よく制御することかで外、制御の
応答性を向」−することができる。In addition, since the refrigerant flow rate of the evaporator is directly controlled according to the superintake air temperature downstream of the evaporator, the responsiveness of the control can be improved by controlling the cooling capacity of the evaporator with good responsiveness. be able to.
[実施例)
以下、添伺図面を参照しつつ本発明の実施例を詳細に説
明する。[Embodiments] Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
第1図に示すように、エンノン1は、吸気通路2と排気
通路3とに跨って設置したターボ過給機4を備えている
。このターボ過給機4は、よく知られているように、排
気弁5によって開閉される排気ポート6から排気通路3
に排出される排気ガスによってタービン7か高速駆動さ
れると、タービン出力軸8に結合されたブロア9を高速
駆動し、ブロア9によってエアクリーナ10を通して吸
入する吸気を昇圧して、吸気弁11によって吸気ポート
12が開かれたと外に、昇圧した吸気即ち過給気を燃焼
室13に供給する。As shown in FIG. 1, the ennon 1 includes a turbo supercharger 4 installed across an intake passage 2 and an exhaust passage 3. As is well known, this turbo supercharger 4 has an exhaust port 6 which is opened and closed by an exhaust valve 5, and an exhaust passage 3.
When the turbine 7 is driven at high speed by the exhaust gas discharged from the engine, the blower 9 connected to the turbine output shaft 8 is driven at high speed, and the blower 9 boosts the pressure of the intake air taken in through the air cleaner 10. When the port 12 is opened, pressurized intake air or supercharged air is supplied to the combustion chamber 13.
上記ブロアg下流の吸気通路2には、吸気脈動を吸収緩
和するためのサージタンク1,1が設けられ、サージタ
ンク1,4内には、後に詳述する冷凍装置のエバポレー
タ15が設置され、サージタンク14のさらに下流(こ
は、エンジン運転状態に対応した燃料を噴射するように
制御される燃料噴射ノズル16およびエンジン負荷に応
じて開度が設定されるスロットルバルブ17が設置され
ている。The intake passage 2 downstream of the blower g is provided with surge tanks 1, 1 for absorbing and mitigating intake pulsation, and in the surge tanks 1, 4, an evaporator 15 of a refrigeration system, which will be described in detail later, is installed. Further downstream of the surge tank 14, a fuel injection nozzle 16 that is controlled to inject fuel corresponding to the engine operating state and a throttle valve 17 whose opening degree is set according to the engine load are installed.
」―記冷凍装置は、自動中のクーラに使用するものと同
様、電磁クラッチ18によってエンノン出力軸(図示せ
ず。)に月し大切される冷媒圧縮用コンプレッサ19と
、圧縮された冷媒を液化するコンデンサ20と、コンデ
ンサ20によって液化された冷媒を貯溜するリキッドタ
ンク21と、サージタンク14内に設置されたエバポレ
ータ15とか冷媒循環路22によって一連に連通された
基本構成を有し、エバポレータ15の冷媒の流入側の冷
媒循環路22には、エバポレータ15内の冷媒流通量を
制御する制御弁23が設置されている。'' - Similar to those used in automatic coolers, the refrigeration system includes a compressor 19 for compressing refrigerant, which is connected to an output shaft (not shown) by an electromagnetic clutch 18, and a compressor 19 that liquefies the compressed refrigerant. It has a basic configuration in which a condenser 20 is connected in series with a liquid tank 21 that stores the refrigerant liquefied by the condenser 20, and an evaporator 15 installed in the surge tank 14 and a refrigerant circulation path 22. A control valve 23 that controls the flow rate of refrigerant within the evaporator 15 is installed in the refrigerant circulation path 22 on the refrigerant inflow side.
この制御弁23は、エバポレータ1S下流の吸電通路2
に臨設した過給気温センサ25の出力信号、即ちエバポ
レータ15下流の過給気温を入力とする制御回路2・1
によってその開度が可変制御され、その開度に応じてエ
バポレータ15内を流通する冷媒流通量を制御し、エバ
ポレータ15の冷却能力を変化させる。This control valve 23 is connected to the electricity absorption passage 2 downstream of the evaporator 1S.
The control circuit 2.1 receives the output signal of the supercharging temperature sensor 25 installed in the evaporator 15, that is, the supercharging temperature downstream of the evaporator 15.
The opening degree is variably controlled by the opening degree, and the amount of refrigerant flowing through the evaporator 15 is controlled according to the opening degree, thereby changing the cooling capacity of the evaporator 15.
なお、第1図に示すように、エバポレータ15の−1−
流の吸気通路2には、空冷もしくは水冷のインタークー
ラ26を設置し、ブロア9によって断熱圧縮されて高温
化した過給気をある程度まで冷却することが好ましい。In addition, as shown in FIG. 1, -1- of the evaporator 15
It is preferable that an air-cooled or water-cooled intercooler 26 be installed in the air intake passage 2 to cool the supercharged air, which has been adiabatically compressed and heated to a high temperature by the blower 9, to a certain degree.
インタークーラ26の設置は、特に、過給気量が増大す
る高回転高負荷時におけるエバポレータ15の負担の軽
減にとって有利であり、エバポレータ15の容量を比較
的小さくすることかできる。The installation of the intercooler 26 is particularly advantageous for reducing the load on the evaporator 15 at high speeds and high loads when the amount of supercharged air increases, and the capacity of the evaporator 15 can be made relatively small.
また、第1図中、27はターボ過給機4のタービン7を
バイパスさせて設けたウェストゲート通路、28はウェ
ストゲート通路27を開閉するウェストゲートバルブ、
29はサージタンク14内の過給気圧を作動源とするグ
イヤフラム式のデートバルブ◆アクチュエータであって
、エンシ゛ン1に供給される過給気圧が予め設定した最
高過給圧を越えて上昇しようとすると、デートバルブ・
アクチュエータ21〕がウェストゲートバルブ28を開
作動し、ウェストゲート通路27を通して排気ガスの一
部をバイパスさせ、タービン7の出力を抑制して、過給
圧を最高過給圧に制御する。In addition, in FIG. 1, 27 is a waste gate passage provided by bypassing the turbine 7 of the turbocharger 4, 28 is a waste gate valve that opens and closes the waste gate passage 27,
Reference numeral 29 is a diaphragm type date valve actuator which uses the supercharging pressure in the surge tank 14 as its operating source, and when the supercharging pressure supplied to the engine 1 attempts to rise beyond the preset maximum supercharging pressure, , date valve
actuator 21] opens the wastegate valve 28, bypasses part of the exhaust gas through the wastegate passage 27, suppresses the output of the turbine 7, and controls the boost pressure to the maximum boost pressure.
次に、上記制御弁23の制御構造を説明する。Next, the control structure of the control valve 23 will be explained.
第2図に示すように、」−記制御弁23は、リキッドタ
ンク21を介してコンデンサ2()側に接続される高圧
冷媒用ポー)30と、エバポレータ15の入口側に接続
される低圧用冷媒用ポート31とをバルブハウジング3
2に略直交させて形成し、両ポー)30.31を小径の
連通路33で連通させるとともに、該連通路33の高圧
冷媒用ポート30側を開閉するバルブ34を設けた構造
を有している。As shown in FIG. 2, the control valve 23 has a high-pressure refrigerant port 30 connected to the condenser 2 () side via the liquid tank 21, and a low-pressure refrigerant port 30 connected to the inlet side of the evaporator 15. Refrigerant port 31 and valve housing 3
2, the two ports 30 and 31 are connected through a small-diameter communication path 33, and a valve 34 is provided to open and close the high-pressure refrigerant port 30 side of the communication path 33. There is.
上記バルブ34は、作動ロッド35を介してつオーム紬
36に結合されており、このウオーム軸36はサーボモ
ータ37によって駆動されるつ才−ム38に係合してい
る。サーボモータ37は、前記制御回路25から印加さ
れる駆動信号によって駆動制御されるようになっており
、サーボモータ37が駆動されると、つオーム38を介
してウオーム軸36が軸方向に進退され、バルブ34の
開度が設定される。図中、39はバルブ34を閉方向に
付勢するリターンスプリングである。The valve 34 is connected to a worm shaft 36 via an operating rod 35, and the worm shaft 36 engages a worm shaft 38 driven by a servo motor 37. The servo motor 37 is driven and controlled by a drive signal applied from the control circuit 25, and when the servo motor 37 is driven, the worm shaft 36 is moved back and forth in the axial direction via the ohm 38. , the opening degree of the valve 34 is set. In the figure, 39 is a return spring that biases the valve 34 in the closing direction.
上記の構成によれば、過給気温センサ24によって検出
されるエバポレータ15下流の過給気温が目標温度から
ずれた場合には、その偏差に応じた駆動信号をサーボモ
ータ37に印加することによって制御弁23のバルブ3
4を変位させ、エバポレータ15に流入する冷媒流通量
を増減し、過給気温を目標温度に制御することができる
。According to the above configuration, when the supercharging temperature downstream of the evaporator 15 detected by the supercharging temperature sensor 24 deviates from the target temperature, control is performed by applying a drive signal corresponding to the deviation to the servo motor 37. Valve 3 of valve 23
4, the amount of refrigerant flowing into the evaporator 15 can be increased or decreased, and the supercharging temperature can be controlled to the target temperature.
なお、本発明に係る冷媒流通量制御用の弁として、従来
の冷凍装置に用いられている膨張弁をそのまま用いるこ
とができる。Note that as the valve for controlling the flow rate of refrigerant according to the present invention, an expansion valve used in a conventional refrigeration system can be used as is.
また、エバポレータ15の冷媒流通量を制御する手段と
しては、上記の如ぎ流量制御弁を用いるほか、例えば、
コンプレッサ19を駆動する専用モータ(図示せず)を
設け、この専用モータを過給気温センサ24の出力に応
じて駆動制御するようにしてもよい。Further, as a means for controlling the flow rate of refrigerant in the evaporator 15, in addition to using the flow rate control valve as described above, for example,
A dedicated motor (not shown) may be provided to drive the compressor 19, and the drive of this dedicated motor may be controlled in accordance with the output of the supercharging air temperature sensor 24.
さらに、エンジン低回転域を除けば、ターボ過給(幾4
による過給気の要求冷却能は、エンジン回転数に比例す
ることから、エバポレータ15に対して設けた制御弁2
3をエンジン回転数に応じて制御することにより、エバ
ポレータ15下流の過給気温を目標温度に制御するよう
にしてもよい。Furthermore, except for the low engine speed range, turbo supercharging
Since the required cooling capacity of the supercharged air is proportional to the engine speed, the control valve 2 provided for the evaporator 15
3 in accordance with the engine speed, the supercharging air temperature downstream of the evaporator 15 may be controlled to the target temperature.
この場合には、過給気温センサ24によって検出される
エバポレータ15下流の過給気温とエンジン回転数とを
制御回路25に入力し、これら2つの入力情報を組合せ
て制御弁23を制御するようにすればよい。In this case, the supercharging temperature downstream of the evaporator 15 and the engine speed detected by the supercharging temperature sensor 24 are input to the control circuit 25, and the control valve 23 is controlled by combining these two pieces of input information. do it.
また、過給機としては、上記ターボ過給機のほか、ベー
ンタイプの容積型ポンプを用いることができる。In addition to the turbocharger described above, a vane-type positive displacement pump can be used as the supercharger.
第1図は本発明の実施例を示すエンジンのシステム構成
図、第2図は第1図の制御弁の制御構造を示す断面図で
ある。
1・・・エンジン、 2・・・吸気通路、4
・・・ターボ過給機、 15・・・エバポレータ、
22・・・冷媒循環路、 23・・・制御弁、24
・・・過給気温センサ、 25・・・制御回路。FIG. 1 is a system configuration diagram of an engine showing an embodiment of the present invention, and FIG. 2 is a sectional view showing the control structure of the control valve shown in FIG. 1... Engine, 2... Intake passage, 4
...turbocharger, 15...evaporator,
22... Refrigerant circulation path, 23... Control valve, 24
...Supercharging temperature sensor, 25...Control circuit.
Claims (1)
を設けたエンジンにおいて、 上記エバポレータを通過した過給気の温度を検出する温
度センサを設けるとともに、温度センサの出力を受けて
エバポレータの冷媒流通量を制御する制御手段を設けた
ことを特徴とする過給機付エンジンの吸気装置。(1) In an engine equipped with an evaporator of the refrigeration system in the intake passage downstream of the supercharger, a temperature sensor is provided to detect the temperature of the supercharged air that has passed through the evaporator, and the refrigerant of the evaporator is An intake device for a supercharged engine, characterized in that it is provided with a control means for controlling a flow rate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59183282A JPS6161917A (en) | 1984-08-31 | 1984-08-31 | Air intake device of engine with supercharger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59183282A JPS6161917A (en) | 1984-08-31 | 1984-08-31 | Air intake device of engine with supercharger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6161917A true JPS6161917A (en) | 1986-03-29 |
Family
ID=16132923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59183282A Pending JPS6161917A (en) | 1984-08-31 | 1984-08-31 | Air intake device of engine with supercharger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6161917A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130333674A1 (en) * | 2012-06-13 | 2013-12-19 | Ford Global Technologies, Llc | System and operating method for a supercharged internal combustion engine with charge-air cooling |
-
1984
- 1984-08-31 JP JP59183282A patent/JPS6161917A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130333674A1 (en) * | 2012-06-13 | 2013-12-19 | Ford Global Technologies, Llc | System and operating method for a supercharged internal combustion engine with charge-air cooling |
US9359936B2 (en) * | 2012-06-13 | 2016-06-07 | Ford Global Technologies, Llc | System and operating method for a supercharged internal combustion engine with charge-air cooling |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7100584B1 (en) | Method and apparatus for controlling an internal combustion engine | |
US20070028901A1 (en) | Exhaust gas recirculation system for internal combustion engine having superchargers | |
US20120018127A1 (en) | Charge air cooler, cooling system and intake air control system | |
WO2007005090A1 (en) | Air induction system having bypass flow control | |
KR20210061110A (en) | Intercooler assembly | |
KR20210061109A (en) | Intercooler assembly | |
US6655141B1 (en) | Airflow system for engine with series turbochargers | |
US20090320465A1 (en) | Method and device for producing ammonia for treating exhaust gas in internal combustion engines in a motor vehicle | |
JP2001342838A (en) | Diesel engine having supercharger | |
US11486331B2 (en) | Gas engine heat pump | |
JPS6093118A (en) | Intake air cooling device of engine with supercharger | |
JPS6161917A (en) | Air intake device of engine with supercharger | |
JPS6165017A (en) | Intake device of engine with supercharger | |
JPS6052290B2 (en) | Intake air cooler for internal combustion engine with supercharger | |
JPS6165016A (en) | Intake device of engine with supercharger | |
JPS6161916A (en) | Air intake device of engine with supercharger | |
CN114738099A (en) | Cooling unit for turbocharged engines | |
JPH0480208B2 (en) | ||
JPS60128930A (en) | Supercharging pressure controller for engine with supercharger | |
CN216198507U (en) | Low pressure EGR control system and vehicle | |
CN220336970U (en) | Intake air thermal management system, supercharged engine and vehicle | |
CN107939509B (en) | Two-stage supercharging interstage cooling control system and control method of engine | |
SU1333796A1 (en) | Cooling system for supercharged i.c.engine | |
JPS6149128A (en) | New charge temperature control system supercharger in engine | |
KR19980053771U (en) | Air supply chiller of turbocharged engine |