[go: up one dir, main page]

JPS6161860B2 - - Google Patents

Info

Publication number
JPS6161860B2
JPS6161860B2 JP9434481A JP9434481A JPS6161860B2 JP S6161860 B2 JPS6161860 B2 JP S6161860B2 JP 9434481 A JP9434481 A JP 9434481A JP 9434481 A JP9434481 A JP 9434481A JP S6161860 B2 JPS6161860 B2 JP S6161860B2
Authority
JP
Japan
Prior art keywords
gas
combustion
temperature
chamber
combustion gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9434481A
Other languages
Japanese (ja)
Other versions
JPS57207541A (en
Inventor
Koichiro Kanefuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP9434481A priority Critical patent/JPS57207541A/en
Publication of JPS57207541A publication Critical patent/JPS57207541A/en
Publication of JPS6161860B2 publication Critical patent/JPS6161860B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/14Production of inert gas mixtures; Use of inert gases in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】 この発明は各種工業炉用あるいは食品工業用等
に雰囲気ガスとして用いられる発焼形ガスの製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a sintering gas used as an atmospheric gas for various industrial furnaces, food industries, and the like.

従来発熱形ガスを製造するにはプロパン、ブタ
ン、天然ガスなどのガス燃料や灯油などの液体燃
料を燃焼室内で不完全燃焼させ、得られた高温
(1050〜1350℃)の燃焼ガスを冷却装置により露
点5℃程度まで冷却して除湿し、所望の発熱形ガ
スを得ていた。この燃焼ガスの冷却装置としては
一般に水冷式の冷却器が用いられ、対流およびガ
スふく射による熱伝達によつて熱の授受がおこな
われている。しかしガスのふく射能力は固体のふ
く射能力に比べ大巾に劣るため、主として対流熱
伝達にたよらざるを得ず、大形の冷却器を用いて
も冷却速度はなかなか大きくできない。一方CO
を含む燃焼ガスにおいては、ガス温度900℃以下
における冷却の際に、ブドア反応 2COCO2+C により炭素(煤)を析出する現象を生じ、冷却器
のガス通路への煤の付着による冷却能力の劣化、
熱処理炉その他の使用側に至る配管および使用側
における炉内や製品などの各部への煤の付着など
種々の弊害を生じる。この炭素析出を防止するに
は燃焼ガスを特に900〜450℃の間において急冷す
る必要があるが、前述のように水冷式の冷却器に
よつてはこの急冷は不可能であつた。
Conventionally, to produce exothermic gas, gaseous fuels such as propane, butane, and natural gas and liquid fuels such as kerosene are incompletely combusted in a combustion chamber, and the resulting high-temperature (1050-1350°C) combustion gas is cooled using a cooling device. The desired exothermic gas was obtained by cooling and dehumidifying the gas to a dew point of approximately 5°C. A water-cooled cooler is generally used as a cooling device for this combustion gas, and heat is exchanged by heat transfer by convection and gas radiation. However, the radiation ability of gas is much inferior to that of solids, so convection heat transfer must be relied upon, and the cooling rate cannot be increased even if a large cooler is used. On the other hand, CO
When a combustion gas containing carbon dioxide is cooled at a gas temperature of 900°C or lower, carbon (soot) is precipitated by the Boudouard reaction 2COCO 2 +C, and the cooling capacity deteriorates due to soot adhering to the gas passage of the cooler. ,
This causes various problems such as soot adhesion to the heat treatment furnace and other piping leading to the user side, as well as to various parts of the furnace and products on the user side. In order to prevent this carbon precipitation, it is necessary to rapidly cool the combustion gas, particularly to a temperature between 900 and 450°C, but as mentioned above, this rapid cooling has not been possible with a water-cooled cooler.

この発明は上記の点にかんがみてなされたもの
で、高温の燃焼ガスを急冷して炭素析出を防止す
ることができる発熱形ガスの製造方法を提供しよ
うとするものである。
This invention has been made in view of the above points, and it is an object of the present invention to provide a method for producing exothermic gas that can rapidly cool high-temperature combustion gas and prevent carbon deposition.

しかしてこの発明は、燃焼室において燃料を不
完全燃焼させ、得られた燃焼ガスを上記燃焼室の
出口部または上記燃焼室に続く一次冷却室の出口
部に設けた通気性固体から成る仕切を通過させて
温度降下させたのち、この温度降下した燃焼ガス
をさらに他の冷却装置により冷却して発熱形ガス
を得ることを特徴とする発熱形ガスの製造方法で
ある。
However, this invention provides a partition made of a permeable solid that is provided at the outlet of the combustion chamber or at the outlet of the primary cooling chamber following the combustion chamber, for incomplete combustion of the fuel in the combustion chamber and the resulting combustion gas. This method of producing exothermic gas is characterized in that after the combustion gas is passed through the combustion chamber to lower its temperature, the combustion gas whose temperature has been lowered is further cooled by another cooling device to obtain exothermic gas.

この発明において通気性固体とは、金属やセラ
ミツク等の耐熱材料から成り、網状、ハニカム
状、せんい状、多孔質状などの通気性を有する形
状に形成された適宜厚さの固体をいう。この通気
性固体は小球あるいは小径線が多数集合したもの
と等価と考えられるので、実質的な表面積がきわ
めて大きく、この通気性固体にガスを流通させた
場合には、対流熱伝達係数が著しく大きい。
In the present invention, the term "breathable solid" refers to a solid made of a heat-resistant material such as metal or ceramic, formed into a shape having air permeability such as a net, honeycomb, fiber, or porous shape and having an appropriate thickness. This breathable solid is considered to be equivalent to a large number of small spheres or small diameter wires, so its effective surface area is extremely large, and when gas flows through this breathable solid, the convective heat transfer coefficient is significantly big.

以下第1図および第2図によりこの発明の一実
施例を説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. FIG.

図中、1は発熱形ガス発生機で、2はバーナで
あり、図示しない燃料混合装置からの配管3が接
続されている。4は燃焼室、5はこの燃焼室に隣
接する冷却室で、両室の間は仕切板状の通気性固
体6により仕切つてある。この通気性固体6とし
ては、ステンレス金網(線径0.6mm、16メツシ
ユ)を8層積層して厚さ10mmの平板状としたもの
を用いた。7は冷却室5内に取付けた水管式の一
冷冷却器で、内部を冷却水が流通する形式のもの
である。また8は水管式の二次冷却器である。
In the figure, 1 is an exothermic gas generator, 2 is a burner, and a pipe 3 from a fuel mixing device (not shown) is connected thereto. 4 is a combustion chamber, 5 is a cooling chamber adjacent to this combustion chamber, and the two chambers are partitioned by an air permeable solid 6 in the form of a partition plate. As the air-permeable solid 6, a plate-like material with a thickness of 10 mm was used by laminating 8 layers of stainless steel wire mesh (wire diameter: 0.6 mm, 16 meshes). Reference numeral 7 denotes a water tube type single-cooled cooler installed in the cooling chamber 5, through which cooling water flows. Further, 8 is a water tube type secondary cooler.

上記構成の装置により発熱形ガスを製造するに
は、図示しない燃料混合装置により完全燃焼の空
気比より少ない空気比で混合された燃料ガスと空
気との混合気を、配管3を経てバーナ2に供給
し、燃焼室4内において不完全燃焼させる。得ら
れた燃焼ガスは第1図ロに示すように1000℃を越
す高温のガスであり、空気比に応じた量のCOを
含有する。この燃焼ガスは燃焼室4から通気性固
体6を通過して冷却室5内に流入するが、この際
通気性固体6は表面積が大きいため対流熱伝達に
より高温に加熱され、燃焼ガスは第1図ロに示す
ように短時間で450℃以下に温度降下して冷却室
5内に流入する。従つて前述のブドア反応はほと
んどおこらず、炭素(煤)の析出が防止されるの
である。一方加熱され高温となつた通気性固体6
は、主として燃焼ガス上流側にふく射熱を射出し
て燃焼室4内を高温に維持する。この通気性固体
6部におけるふく射エネルギ射出状態について第
2図に模式図により説明する、通気性固体6はガ
ス流通方向に厚さXを有するため、その層内には
通過する燃焼ガスとの対流熱伝達により曲線9で
示す温度勾配を生じる。そして各層x1,x2,……
x5において燃焼ガスの上流側Yおよび下流側Zに
射出するふく射エネルギは矢印y1,y2,……y5
およびz1,z2,……z5であるが、このうちふく射
エネルギz1,z2,y4,y5は通気性固体の遮蔽効果
により減衰されるので、結局ふく射エネルギの主
要部10は燃焼ガスの上流側Y方向に向き、燃焼
室4内の加熱に有効に利用される。さらに通気性
固体6は一種の熱遮蔽材あるいは断熱材として機
能し、冷却室5内の低温の影響はガス上流側の燃
焼室4内にはほとんど及ばず、燃焼室4内は熱損
失少なく高温に維持されるのである。
In order to produce exothermic gas using the apparatus configured as described above, a mixture of fuel gas and air mixed at an air ratio lower than the air ratio for complete combustion is supplied to the burner 2 through the pipe 3 using a fuel mixing device (not shown). The fuel is supplied and incompletely combusted in the combustion chamber 4. The resulting combustion gas is a high-temperature gas exceeding 1000°C, as shown in Figure 1B, and contains an amount of CO depending on the air ratio. This combustion gas passes through the air permeable solid 6 from the combustion chamber 4 and flows into the cooling chamber 5, but at this time, since the air permeable solid 6 has a large surface area, it is heated to a high temperature by convection heat transfer, and the combustion gas flows into the cooling chamber 5. As shown in Figure B, the temperature drops to below 450°C in a short period of time and flows into the cooling chamber 5. Therefore, the aforementioned Boudouard reaction hardly occurs, and the precipitation of carbon (soot) is prevented. On the other hand, the breathable solid 6 was heated and reached a high temperature.
maintains the inside of the combustion chamber 4 at a high temperature by injecting radiant heat mainly to the upstream side of the combustion gas. The state of radiant energy emission in this air-permeable solid 6 part is explained using a schematic diagram in FIG. Heat transfer produces a temperature gradient shown by curve 9. And each layer x 1 , x 2 ,...
The radiant energy emitted to the upstream side Y and downstream side Z of the combustion gas at x 5 is indicated by the arrows y 1 , y 2 , ... y 5 ,
and z 1 , z 2 , . is directed toward the Y direction on the upstream side of the combustion gas, and is effectively used for heating the inside of the combustion chamber 4. Furthermore, the breathable solid 6 functions as a kind of heat shielding material or heat insulating material, and the influence of the low temperature inside the cooling chamber 5 hardly reaches the inside of the combustion chamber 4 on the upstream side of the gas, so that the inside of the combustion chamber 4 has low heat loss and high temperature. It will be maintained.

上記通気性固体6の通過により温度降下した燃
焼ガスは、一次冷却器7により300℃程度迄冷却
したのち発熱形ガスの発生機1から流出させ、後
続の二次冷却器8あるいはたらに冷凍機(図示し
ない)などにより冷却して水分を除去し、必要に
応じてCO2あるいはCOを除去して所望の成分の
雰囲気ガスとして熱処理炉などの使用側に提供す
る。
The combustion gas whose temperature has been lowered by passing through the air permeable solid 6 is cooled down to about 300°C by the primary cooler 7, and then flows out from the exothermic gas generator 1, and is then sent to the subsequent secondary cooler 8 or to the refrigerator. (not shown) or the like to remove moisture, remove CO 2 or CO as necessary, and provide an atmospheric gas containing desired components to a user such as a heat treatment furnace.

上記実施例において、バーナの特性などにより
燃焼室内が2000℃近くまで昇温する場合は、燃焼
ガス温度を1500℃以下に維持して燃焼成分の熱解
離を防ぐために燃焼室4の壁面を一部水冷構造と
してもよい。
In the above embodiment, if the temperature inside the combustion chamber rises to nearly 2000°C due to the characteristics of the burner, part of the wall surface of the combustion chamber 4 is It may also have a water-cooled structure.

第3図イ,ロはこの発明の他の実施例を示し、
燃焼室4に水冷壁形式の冷却器11をそなえた一
次冷却室12を隣接させ、この一次冷却室12の
出口部を第1図と同様な通気性固体6により仕切
つてある。13は一次冷却室12に隣接する二次
冷却室で、14は水管式の二次冷却器、15は水
管式の三次冷却器である。
Figures 3A and 3B show other embodiments of this invention,
A primary cooling chamber 12 equipped with a water-cooled wall type cooler 11 is adjacent to the combustion chamber 4, and the outlet of the primary cooling chamber 12 is partitioned off by a permeable solid 6 similar to that shown in FIG. 13 is a secondary cooling chamber adjacent to the primary cooling chamber 12, 14 is a water tube type secondary cooler, and 15 is a water tube type tertiary cooler.

すなわちこの実施例は、燃焼ガス温度が比較的
高いため一旦一次冷却室12で燃焼ガス温度を
1000℃付近まで降下させ、その後通気性固体6に
より一挙に450℃付近まで降下させるようにした
ものであり、第1図の実施例と同様に燃焼ガス温
度900〜450℃間の急速降温により炭素(煤)の発
生が防止される。一次冷却室12を流出した燃焼
ガスの処理については第1図の実施例と同様にお
こなえばよい。
In other words, in this embodiment, since the combustion gas temperature is relatively high, the combustion gas temperature is temporarily lowered in the primary cooling chamber 12.
The temperature of the combustion gas is lowered to around 1000°C, and then lowered all at once to around 450°C using the air-permeable solid 6. As in the embodiment shown in Fig. 1, the combustion gas temperature is rapidly lowered between 900 and 450°C. (soot) generation is prevented. The combustion gas flowing out of the primary cooling chamber 12 may be treated in the same manner as in the embodiment shown in FIG.

なお上記各実施例において燃焼室と隣接する冷
却室、あるいは一次冷却室12を二次冷却室13
とは、それぞれ分離して配管により接続してもよ
い。また各冷却室における冷却器の構造は他の形
式のものとしてもよい。
In each of the above embodiments, the cooling chamber adjacent to the combustion chamber or the primary cooling chamber 12 is replaced by the secondary cooling chamber 13.
may be separated and connected by piping. Moreover, the structure of the cooler in each cooling chamber may be of another type.

以上説明したようにこの発明によれば、発熱形
ガスの製造時において、燃焼ガスを通気性固体か
ら成る仕切を通過させることにより燃焼ガスを急
速に温度降下させるので、極めてコンパクトで簡
潔な機構によりブドア反応による炭素(煤)の析
出が防止され、煤がガス通路、冷却器、あるいは
使用側の各部に付着するという弊害が一掃され
る。
As explained above, according to the present invention, when producing exothermic gas, the temperature of the combustion gas is rapidly lowered by passing the combustion gas through a partition made of a permeable solid, so that an extremely compact and simple mechanism is used. Precipitation of carbon (soot) due to the Boudoir reaction is prevented, and the harmful effects of soot adhering to gas passages, coolers, and other parts on the user side are eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ,ロはこの発明の方法を実施する装置
の一例を示す縦断面図および燃焼ガスの温度線
図、第2図は第1図の通気性固体のふく射射出状
態を示す模式図、第3図イ,ロはこの発明の方法
を実施する装置の他の例を示す縦断面図および燃
焼ガスの温度線図である。 1…発熱形ガス発生機、4…燃焼室、5…冷却
室、6…通気性固体、12…一次冷却室、13…
二次冷却室。
1A and 1B are a longitudinal cross-sectional view and a temperature diagram of combustion gas showing an example of an apparatus for carrying out the method of the present invention, and FIG. 2 is a schematic diagram showing the state of injection of the breathable solid in FIG. FIGS. 3A and 3B are a longitudinal sectional view and a temperature diagram of combustion gas showing another example of an apparatus for carrying out the method of the present invention. DESCRIPTION OF SYMBOLS 1... exothermic gas generator, 4... combustion chamber, 5... cooling chamber, 6... breathable solid, 12... primary cooling chamber, 13...
Secondary cooling room.

Claims (1)

【特許請求の範囲】[Claims] 1 燃焼室において燃料を不完全燃焼させ、得ら
れた燃焼ガスを上記燃焼室の出口部または上記燃
焼室に続く一次冷却室の出口部に設けた通気性固
体から成る仕切を通過させて温度降下させたの
ち、この温度降下した燃焼ガスをさらに他の冷却
装置により冷却して発熱形ガスを得ることを特徴
とする発熱形ガスの製造方法。
1 Fuel is incompletely combusted in a combustion chamber, and the resulting combustion gas is passed through a partition made of a permeable solid provided at the outlet of the combustion chamber or the outlet of a primary cooling chamber following the combustion chamber to lower the temperature. After that, the combustion gas whose temperature has been lowered is further cooled by another cooling device to obtain exothermic gas.
JP9434481A 1981-06-17 1981-06-17 Production of exothermic type gas Granted JPS57207541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9434481A JPS57207541A (en) 1981-06-17 1981-06-17 Production of exothermic type gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9434481A JPS57207541A (en) 1981-06-17 1981-06-17 Production of exothermic type gas

Publications (2)

Publication Number Publication Date
JPS57207541A JPS57207541A (en) 1982-12-20
JPS6161860B2 true JPS6161860B2 (en) 1986-12-27

Family

ID=14107661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9434481A Granted JPS57207541A (en) 1981-06-17 1981-06-17 Production of exothermic type gas

Country Status (1)

Country Link
JP (1) JPS57207541A (en)

Also Published As

Publication number Publication date
JPS57207541A (en) 1982-12-20

Similar Documents

Publication Publication Date Title
Gupta et al. Effect of air preheat temperature and oxygen concentration on flame structure and emission
EP0681143A2 (en) High intensity, low NOx matrix burner
JPS60213717A (en) Radiant surface burning burner
JPS6235013B2 (en)
JPS62210047A (en) Apparatus for reaction
JPS6161860B2 (en)
Jugjai et al. Parametric studies of thermal efficiency in a proposed porous radiant recirculated burner (PRRB): a design concept for the future burner
JPH0159520B2 (en)
US4384549A (en) Boilers
US4617870A (en) Method of accelerating radiative transfer
JPH0250166B2 (en)
US4232634A (en) High efficiency hot water boiler
SU954735A1 (en) Method of heating liquids
CN103534537A (en) Solar system for reproducing the effect of a combustion flame
US5785930A (en) Apparatus for burning a wide variety of fuels in air which produces low levels of nitric oxide and carbon monoxide emissions
JPH0259363B2 (en)
JPS5779110A (en) Operating method for heat treatment device
JPS591918A (en) Heating device for promoting radiation
US4641588A (en) Heat shield
RU2264853C1 (en) Method for recombining hydrogen and oxygen in gas medium and hydrogen-and-oxygen recombiner
JPS57105643A (en) Combustor
JP2529473B2 (en) Heating device
EP0430379B1 (en) Chemical reactor
JPS6222363B2 (en)
JPH0525537B2 (en)