JPS6161450B2 - - Google Patents
Info
- Publication number
- JPS6161450B2 JPS6161450B2 JP54075311A JP7531179A JPS6161450B2 JP S6161450 B2 JPS6161450 B2 JP S6161450B2 JP 54075311 A JP54075311 A JP 54075311A JP 7531179 A JP7531179 A JP 7531179A JP S6161450 B2 JPS6161450 B2 JP S6161450B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- optical
- recording medium
- photodetector
- optical recording
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Optical Head (AREA)
- Automatic Focus Adjustment (AREA)
- Optical Recording Or Reproduction (AREA)
Description
【発明の詳細な説明】
本発明は、半導体レーザの光を公知のビデオデ
イスクにおいて行なわれるように微小の径(約φ
1μm)の光に絞つて、光記録材料を塗布した記
録媒体に照射し、映像や音声等の情報を光学的に
高密度に記録再生する装置あるいはすでに記録さ
れた情報を再生する装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for transmitting semiconductor laser light to a microscopic diameter (approximately φ
This relates to a device that optically records and reproduces information such as video and audio with high density, or a device that reproduces already recorded information by focusing the light (1 μm) on a recording medium coated with an optical recording material. be.
一般に、半導体レーザは、光変調器を使用せず
にその出力光を電気信号によつて直接変調が可能
であること、他のレーザと比較して小形であるこ
と、などの特徴を有し、各種の機器の光源として
使用されつつある。例えば光通信用の光源とし
て、上記の特徴を生かした使い方が研究されてい
る。また公知の光学式ビデオデイスクの再生用光
源としても実用化が検討されている。 In general, semiconductor lasers have the following characteristics: their output light can be directly modulated by electrical signals without using an optical modulator, and they are small compared to other lasers. It is being used as a light source for various devices. For example, research is being conducted on how to use it as a light source for optical communications, taking advantage of the above characteristics. Practical use is also being considered as a light source for playback of known optical video discs.
半導体レーザを上記の光学的記録再生装置の光
源として使用する場合、前記光記録材料の感度に
対応して、ある程度高い出力パワーの光を発生す
ることが必要とされる。例えば、光記録材料とし
て、光照射後に現象、定着処理が必要な銀塩フイ
ルムを用いる場合はそれほどの出力パワーは不要
であるが、現像、定着処理の不必要なリアルタイ
ム記録材料、例えば、金属薄膜や顔料薄等を用い
る場合には、記録材料上で100〜1000mJ/cm2の
記録エネルギーが必要となり、光源の出力パワー
も数10mW以上必要となる。 When a semiconductor laser is used as a light source in the optical recording/reproducing device described above, it is necessary to generate light with a relatively high output power corresponding to the sensitivity of the optical recording material. For example, when using a silver halide film that requires development and fixing processing after light irradiation as an optical recording material, such output power is not required, but real-time recording materials that do not require development and fixing processing, such as metal thin film In the case of using a thin pigment or the like, recording energy of 100 to 1000 mJ/cm 2 is required on the recording material, and the output power of the light source is also required to be several tens of mW or more.
また、光記録材料上で上記の記録エネルギーを
満足させるためには、半導体レーザの出力光を微
小径に絞る光学系において、その光の伝達効率を
できるだけ高くする必要がある。半導体レーザの
出力光は本質的に拡がりを有した光となるので、
この点において特に配慮が必要となる。 Furthermore, in order to satisfy the above recording energy on the optical recording material, it is necessary to make the transmission efficiency of the light as high as possible in the optical system that narrows the output light of the semiconductor laser to a minute diameter. Since the output light of a semiconductor laser is essentially spread light,
Particular consideration must be given to this point.
また光記録材料に照射する光のビーム径は、前
記の記録エネルギーの条件を満足させるため、お
よび少しでも高密度に信号を記録再生するために
できるだけ小さなビーム径に絞ることが必要であ
る。更に前記光ビーム径の微小スポツト部分を常
に光記録材料面上に保持する必要がある。 Furthermore, the beam diameter of the light irradiated onto the optical recording material needs to be narrowed down to the smallest possible beam diameter in order to satisfy the above-mentioned recording energy conditions and to record and reproduce signals as densely as possible. Furthermore, it is necessary to always maintain a minute spot portion having the above-mentioned light beam diameter on the surface of the optical recording material.
高出力の半導体レーザの発光面における光ビー
ムの断面形状は、一般的にその接合面に関連し
て、接合面の厚み方向で1〜2μm、接合面と平
行な方向で10μm程度と、偏平な形となつてい
る。またそこから放射される光ビームはかなり大
きな拡がり角度を有し、例えば接合面に垂直な方
向で±15゜〜25゜、また接合面に平向な方向で±
5゜〜10゜の拡がりを有しており、一般のHeNe
ガスレーザに比して著しく異なつた扱いを必要と
する。 The cross-sectional shape of the light beam at the light emitting surface of a high-power semiconductor laser is generally flat, 1 to 2 μm in the thickness direction of the bonded surface and approximately 10 μm in the direction parallel to the bonded surface, in relation to the bonded surface. It is taking shape. In addition, the light beam emitted from it has a fairly large spread angle, for example, ±15° to 25° in the direction perpendicular to the joint surface, and ±15° in the direction parallel to the joint surface.
It has a spread of 5° to 10°, and is similar to general HeNe.
Requires significantly different handling than gas lasers.
光学式ビデイオデイスクに用いられる光学系の
従来例の一つに特開昭52−129246が知られてい
て、第1図にその概略を示す。11は光源であ
り、半導体レーザやガスレーザが用いられる。光
源11より拡がる細線Iは光軸(一点鎖線で示さ
れている)の周りの光路を示す。12及び13は
対物レンズであり、対物レンズ12で一度L点に
光源の像を作り、絞り対物レンズ13で前記L点
での像から拡がる光ビームを絞り込んで光記録デ
イスク14上に照射する。前記絞り対物レンズ1
3と前記光記録デイスク14の距離の変化は公知
である非点収差法に依り知る事ができ、以下に非
点収差法の概要を説明する。前記光記録デイスク
14からの反射光ビームは再び絞り対物レンズ1
3を通り絞り込まれようとする。15はビームス
プリツタであり、前記反射光ビームは前記ビーム
スプリツタ15により入射光路より分離され(光
路Rで表わされる)、M点に向つて絞られようと
する。16は凸シリンドリカルレンズであり、そ
の軸(第1図bの×印で示す)は光軸に対して垂
直(紙面に垂直)に位置し、前記分離された反射
光ビームの一部に影響を与える。すなわち、第1
図bはシリンドリカルレンズ16に影響される反
射光ビーム部分の光路Rを示し、反射光ビームは
N点に向つて一度絞り込まれた後再び拡がつて光
検出器17に照射される。第1図c(この場合凸
シリンドリカルレンズ16の軸は紙面に平行に描
かれている)はシリンドリカルレンズ16に影響
されない反射光ビーム部分の光路Rを示し、反射
光ビームはM点に向つて透過しようとするが、絞
り込まれることはなく、その途中で光検出器17
に照射される。ここで、第1図bの光路Rが入射
光ビームの光路Iの上下端部分に対する反射光ビ
ームの光路に相当するとすれば、第2図cの光路
Rは光路Iの左右端部分に対する光路に相当す
る。入射光が絞り対物レンズ13により正確に光
記録デイスク14上に焦点を結ぶ場合に、反射光
ビームの太さが凸シリンドリカルレンズ16が影
響を与える方向と与えない方向とで等しくなる様
な位置に光検出器17を設置する事にする。この
場合絞り対物レンズ13と光記録デイスク14と
の距離の変化により、光検出器17上で光ビーム
の形がどの様に変化するかを考える。絞り対物レ
ンズ13と光記録デイスク14との距離が近づい
た時は第1図cの方向ではM点は凸シリンドリカ
ルレンズ16から遠ざかり、光検出器17上での
ビームの太さは太くなる。一方、第1図bの方向
ではN点はやはり凸シリンドリカルレンズ16よ
り遠ざかり、光検出器17上での光ビームの太さ
は細くなる。又絞り対物レンズ13と光記録デイ
スク14との距離が大きくなる時には、M点もN
点も凸シリンドリカルレンズ16に近づき、光検
出器17上での光ビームの形は第1図cの方向に
細く、逆に第1図bの方向に太い形となる。 One of the conventional examples of an optical system used in an optical video disc is disclosed in Japanese Patent Application Laid-Open No. 129246/1983, and its outline is shown in FIG. 11 is a light source, and a semiconductor laser or a gas laser is used. A thin line I extending from the light source 11 indicates an optical path around the optical axis (indicated by a dashed line). Reference numerals 12 and 13 designate objective lenses. The objective lens 12 once forms an image of the light source at point L, and the aperture objective lens 13 narrows down the light beam that spreads from the image at point L and irradiates it onto the optical recording disk 14. The aperture objective lens 1
The change in the distance between the optical recording disk 14 and the optical recording disk 14 can be determined by the well-known astigmatism method, and an outline of the astigmatism method will be explained below. The reflected light beam from the optical recording disk 14 is again passed through the aperture objective lens 1.
The list will be narrowed down through 3. Reference numeral 15 denotes a beam splitter, and the reflected light beam is separated from the incident optical path by the beam splitter 15 (represented by optical path R) and is focused toward point M. 16 is a convex cylindrical lens whose axis (indicated by the cross in FIG. give. That is, the first
FIG. b shows the optical path R of the reflected light beam portion affected by the cylindrical lens 16. The reflected light beam is once narrowed down toward the N point, then expands again and is irradiated onto the photodetector 17. FIG. 1c (in this case, the axis of the convex cylindrical lens 16 is drawn parallel to the plane of the paper) shows the optical path R of the reflected light beam portion that is not affected by the cylindrical lens 16, and the reflected light beam is transmitted toward point M. However, it is not narrowed down, and in the process, the photodetector 17
is irradiated. Here, if the optical path R in FIG. 1b corresponds to the optical path of the reflected light beam to the upper and lower end portions of the optical path I of the incident light beam, the optical path R in FIG. 2c corresponds to the optical path to the left and right end portions of the optical path I. Equivalent to. When the incident light is accurately focused on the optical recording disk 14 by the aperture objective lens 13, the thickness of the reflected light beam is the same in the direction in which the convex cylindrical lens 16 affects and in the direction in which it does not. A photodetector 17 will be installed. In this case, consider how the shape of the light beam on the photodetector 17 changes as the distance between the aperture objective lens 13 and the optical recording disk 14 changes. When the distance between the aperture objective lens 13 and the optical recording disk 14 becomes closer, the M point moves away from the convex cylindrical lens 16 in the direction shown in FIG. 1c, and the beam on the photodetector 17 becomes thicker. On the other hand, in the direction shown in FIG. 1b, point N is further away from the convex cylindrical lens 16, and the thickness of the light beam on the photodetector 17 becomes thinner. Also, when the distance between the aperture objective lens 13 and the optical recording disk 14 becomes large, the M point also becomes N.
The point also approaches the convex cylindrical lens 16, and the shape of the light beam on the photodetector 17 becomes narrower in the direction of FIG. 1c, and conversely becomes thicker in the direction of FIG. 1b.
第2図に光検出器17を、第3図に光検出器1
7上の光ビームの形を示す。光検出器17は4分
割されており、各々の光検出部分を第3図のとお
りA,B,C,Dとし、例えばA,Bの方向(一
点鎖線で示される方向)を第1図bの光軸に平行
な方向にとる。この場合、絞り対物レンズ13と
光記録デイスク14との距離が入射光ビームが正
確に絞り対物レンズ13により焦点を結ぶ距離に
等しければ、光ビームは第3図aの形をとり、光
記録デイスク14が絞り対物レンズ13に近づけ
ば第3図bの形、又逆に遠ざかれば第3図cの形
をとる。AとBの光検出器に照射される光量の和
と、CとDに照射される光量の和との差をSとす
れば、光記録デイスク14と対物レンズ13の距
離によりSは正負の値をとる。 The photodetector 17 is shown in Fig. 2, and the photodetector 1 is shown in Fig. 3.
7 shows the shape of the light beam on top. The photodetector 17 is divided into four parts, and each photodetection part is designated as A, B, C, and D as shown in FIG. taken in a direction parallel to the optical axis of In this case, if the distance between the aperture objective lens 13 and the optical recording disk 14 is equal to the distance at which the incident light beam is precisely focused by the aperture objective lens 13, the light beam will take the form shown in FIG. If the aperture 14 approaches the objective lens 13, it will take the shape shown in FIG. 3b, and if it moves away from it, it will take the shape shown in FIG. 3c. If S is the difference between the sum of the amounts of light irradiated to photodetectors A and B and the sum of the amounts of light irradiated to C and D, then S can be positive or negative depending on the distance between the optical recording disk 14 and the objective lens 13. Takes a value.
第4図に光記録デイスク14の位置に対するS
の値の様子を示す。光記録デイスク14の位置の
零点は絞り対物レンズ13により入射光ビームが
正確に焦点を結ぶ位置にとる。又正の方向として
は光記録デイスク14と絞り対物レンズ13とが
遠ざかる方向とする。第4図の更に詳しい説明は
後述する。 FIG. 4 shows S relative to the position of the optical recording disk 14.
This shows the value of . The zero point of the optical recording disk 14 is set at a position where the incident light beam is accurately focused by the aperture objective lens 13. The positive direction is defined as the direction in which the optical recording disk 14 and the aperture objective lens 13 move away from each other. A more detailed explanation of FIG. 4 will be given later.
情報が既に記録された光記録デイスクから情報
の再生を行なうだけならば、低出力半導体レーザ
を用いてもよい。低出力の半導体レーザは発光面
が略円形のものがあり、第1図の光学系を用いて
光記録デイスク上に略円形の光スポツトを作る事
ができ品質の良い再生信号を得る事ができる。し
かし情報のリアルタイムな記録再生を行なう為に
は前述した様に高い光パワーが必要であり、高出
力半導体レーザは一般に長円形の発光面を有して
いる。第1図の光学系で光記録デイスク面上に微
小な略円形光スポツト(例えば直径1μm)に絞
る為には幾何光学的な長円形の像が光の回折によ
り必然的に略円形になつてしまう程の高い倍率を
必要とする。第1図の光学系での幾何光学的な像
は発行面の相似的に(fh/eg)倍の大きさとな
る。波動光学的によく絞る為には絞り対物レンズ
13の開口数を大きくする必要があり、又幾何光
学的にも小さな像を得るにはhは大きくできず、
絞り対物レンズ13の開口半径は限られてくる。
従つて、小さく絞るにはgを大きくする必要があ
るので、絞り対物レンズ13での光のけられが多
くなり、光伝達効率が低下する。伝達向率を向上
させるにはfを大きくしL点での光ビームの拡が
りを小さくすれば良いが、この場合には幾何光学
的な絞り像が大きくなつてしまう。 If information is only to be reproduced from an optical recording disk on which information has already been recorded, a low-power semiconductor laser may be used. Some low-power semiconductor lasers have a nearly circular light-emitting surface, and by using the optical system shown in Figure 1, it is possible to create a roughly circular light spot on an optical recording disk and obtain a high-quality reproduction signal. . However, in order to record and reproduce information in real time, high optical power is required as described above, and high-power semiconductor lasers generally have an oval light emitting surface. In order to focus the optical system shown in Figure 1 into a minute, approximately circular light spot (for example, 1 μm in diameter) on the surface of the optical recording disk, the geometrical optical oval image inevitably becomes approximately circular due to light diffraction. It requires extremely high magnification. The geometrical optical image in the optical system of FIG. 1 is analogously (fh/eg) times the size of the emission surface. In order to achieve good aperture in terms of wave optics, it is necessary to increase the numerical aperture of the aperture objective lens 13, and in terms of geometric optics, h cannot be increased to obtain a small image.
The aperture radius of the aperture objective lens 13 is limited.
Therefore, in order to narrow down the aperture, it is necessary to increase g, which increases the vignetting of light at the aperture objective lens 13 and reduces the light transmission efficiency. In order to improve the transmission ratio, f can be increased to reduce the spread of the light beam at point L, but in this case, the geometrical optic aperture image becomes large.
以上のように従来例の光学系では、高い光パワ
ーを光記録デイスク面上の微小部分に集める事は
できず、情報のリアルタイムな記録再生には不適
当である。 As described above, the conventional optical system cannot concentrate high optical power onto a minute portion on the surface of an optical recording disk, and is therefore unsuitable for real-time recording and reproduction of information.
本発明は、高パワーの光ビームを光記録デイス
ク面上に微小なスポツトとして絞る事ができ、か
つ、前記微小スポツト部分を常に光記録デイスク
面上に保持する事ができる様な小型の光学的記録
再生装置を提供するものである。 The present invention is a compact optical device that can focus a high-power light beam to a minute spot on the surface of an optical recording disk, and that can always maintain the minute spot portion on the surface of the optical recording disk. The present invention provides a recording/playback device.
以上本発明の一実施例を第5図により説明す
る。第1図と同じ構成要素のものには同一番号を
付けた。第5図において11は高出力半導体レー
ザであり、先軸(一点鎖線で示される)の周りの
光路を細線Iにより示している。第5図aは平面
図で、半導体レーザ11の活性層の接合面に垂直
な方向を表わし、一方、第5図bは側面図で、接
合面に平行な方向を表わしている。12は集光レ
ンズであり、光源11から拡がる光を集めて第5
図aの方向は太く、第5図bの方向には細い平行
光とする。22及び23はそれぞれ凹と凸のシリ
ンドリカルレンズであり、一般に長方形の発光形
態をなす半導体レーザの光を、前記2個のシリン
ドリカルレンズ22,23の焦点を一致させる
(F点で表わす)事により、第5図bの方向を拡
げて略円形又は略正方形の平行光に変換して絞り
対物レンズ13に導びく。 An embodiment of the present invention will be described above with reference to FIG. Components that are the same as those in FIG. 1 are given the same numbers. In FIG. 5, reference numeral 11 denotes a high-output semiconductor laser, and a thin line I indicates an optical path around the front axis (indicated by a chain line). FIG. 5a is a plan view showing a direction perpendicular to the bonding surface of the active layer of the semiconductor laser 11, while FIG. 5b is a side view showing a direction parallel to the bonding surface. 12 is a condensing lens, which collects the light spreading from the light source 11 and
It is assumed that the parallel light is thick in the direction shown in Figure 5a and thin parallel light in the direction shown in Figure 5B. 22 and 23 are concave and convex cylindrical lenses, respectively, and by aligning the focal points of the two cylindrical lenses 22 and 23 (represented by point F), the light of the semiconductor laser, which generally has a rectangular light emission form, is The parallel light beam is expanded in the direction shown in FIG.
この様に2個のシリンドリカルレンズ22,2
3を用いる事で略円形又は略正方形の像を作つて
微小部分に高い光パワーを集める事ができ、さら
に絞り対物レンズ13により絞られた光ビームは
情報をリアルタイムに記録しかつ再生する事がで
きる光記録媒体21上に照射される。記録すべき
情報により半導体レーザ11の光出力を直接変調
して形成され、さらに絞られた光ビームを照射さ
れた光記録媒体21は記録すべき情報に従つて局
所的に光学的性質を変えられ、微小なビツトとし
て情報を記録する。情報の再生は記録時よりも弱
いパワーの光ビームを既に情報の記録された光記
録媒体21上に照射し、前記光記録媒体21から
の反射光が微小ピツト状の光学的性質の相異によ
り変化を受ける事を感知する事で行なう。 In this way, two cylindrical lenses 22, 2
3, it is possible to create an approximately circular or approximately square image and concentrate high optical power in a minute area, and furthermore, the optical beam narrowed by the aperture objective lens 13 can record and reproduce information in real time. The light is irradiated onto the optical recording medium 21 that can be used. The optical recording medium 21 is formed by directly modulating the optical output of the semiconductor laser 11 according to the information to be recorded, and is irradiated with a further narrowed light beam, so that its optical properties can be locally changed according to the information to be recorded. , information is recorded as minute bits. To reproduce information, a light beam with a power weaker than that used during recording is irradiated onto the optical recording medium 21 on which information has already been recorded, and the reflected light from the optical recording medium 21 is caused by the difference in optical properties in the form of minute pits. This is done by sensing changes.
記録時においては、前述した様に高い光パワー
を微小スポツトに集めなければならず、その為に
は絞り対物レンズ13により光ビームの一番よく
絞られた部分が光記録媒体21上に照射される
事、即ち、光記録媒体21上に焦点を結ぶ様に光
記録媒体21と対物レンズ13の距離を一定に保
つ必要がある。その為に前述のシリンドリカルレ
ンズによる非点収差を利用する方法を用いる。 During recording, as mentioned above, it is necessary to concentrate high optical power into a minute spot, and for this purpose, the most narrowed part of the light beam is irradiated onto the optical recording medium 21 by the aperture objective lens 13. In other words, it is necessary to keep the distance between the optical recording medium 21 and the objective lens 13 constant so that the light is focused on the optical recording medium 21. For this purpose, a method using astigmatism caused by the cylindrical lens described above is used.
光記録媒体21より反射された光ビームは、絞
り対物レンズ13及び凸シリンドリカルレンズ2
3を通過し、ビームスプリツタ15により入射光
路から分離される。分離された反射光ビームは凸
レンズ24により絞られて、光検出器17上に照
射される。第5図aの方向では第5図cの如く反
射光ビーム(光路Rで表わされる)は凸レンズ2
4によつてのみ絞られるが、第5図bの方向では
反射光ビームは凸シリンドリカルレンズ23及び
凸レンズ24の両方によつて事前に絞られる為、
第5図のaとbの方向で絞り焦点距離が異なる。
従つて光検出器17上の光ビームの形は第1図の
光学系の場合と同様に変化し、絞り対物レンズ1
3と光記録媒体21との距離が正確に絞り対物レ
ンズ13の焦点距離であれば、第3図aの様に円
形の光スポツトを光検出器17上に照射する。第
2図の光検出器17のA,Bの方向(一点鎖線で
示す。)を第5図bの光軸に平行に設置すれば、
絞り対物レンズ13と光記録媒体21が近づけば
光検出器17上の光ビームの形は第3図bの様
に、又逆に遠ざかれば第3図cの様な形になる。
AとBに照射される光量の和とCとDに照射され
る光量の和との差をSとすれば、光記録媒体21
と絞り対物レンズ13との距離によるSの変化は
やはり第4図の様になる。以上の様に光検出器1
7により得られた信号Sを端子Jに導びき、対物
レンズ駆動装置25によりSの値を零とする様に
対物レンズ13を調整する。Sの値が正の時は絞
り対物レンズ13を光記録媒体21に近づけ、又
逆に負の時は遠ざける。第4図から分る様に絞り
対物レンズ13と光記録媒体21とがT点以上に
離れるとますます離れてしまい、T点以上では焦
点制御はできなくなる。又A,B,C,Dの光検
出器の光量の全ての和は情報の再生信号として用
いる事ができる。 The light beam reflected from the optical recording medium 21 passes through the aperture objective lens 13 and the convex cylindrical lens 2.
3 and is separated from the incident optical path by a beam splitter 15. The separated reflected light beams are focused by a convex lens 24 and irradiated onto a photodetector 17. In the direction of FIG. 5a, the reflected light beam (represented by optical path R) is reflected by the convex lens 2 as shown in FIG. 5c.
4, but in the direction of FIG. 5b, the reflected light beam is previously focused by both the convex cylindrical lens 23 and the convex lens 24,
The aperture focal length differs in the directions a and b in FIG.
Therefore, the shape of the light beam on the photodetector 17 changes in the same way as in the optical system shown in FIG.
3 and the optical recording medium 21 is exactly the focal length of the aperture objective lens 13, a circular light spot is irradiated onto the photodetector 17 as shown in FIG. 3a. If the directions A and B of the photodetector 17 in FIG. 2 (indicated by the dashed-dotted line) are installed parallel to the optical axis in FIG. 5b,
If the aperture objective lens 13 and the optical recording medium 21 are brought closer together, the shape of the light beam on the photodetector 17 will be as shown in FIG.
If S is the difference between the sum of the amounts of light irradiated on A and B and the sum of the amounts of light irradiated on C and D, then the optical recording medium 21
The change in S depending on the distance between the aperture and the objective lens 13 is as shown in FIG. As described above, the photodetector 1
The signal S obtained in step 7 is led to the terminal J, and the objective lens 13 is adjusted by the objective lens driving device 25 so that the value of S becomes zero. When the value of S is positive, the aperture objective lens 13 is brought closer to the optical recording medium 21, and when the value of S is negative, it is moved away. As can be seen from FIG. 4, when the distance between the aperture objective lens 13 and the optical recording medium 21 exceeds point T, the distance increases, and focus control becomes impossible beyond point T. Further, the sum of all the light amounts of the photodetectors A, B, C, and D can be used as an information reproduction signal.
第1図においてはシリンドリカルレンズ16の
軸(前述の如く光軸とは垂直で×印で示す)を光
検出器17のA,Bの方向(一点鎖線で示す。)
と垂直或いは平行に設置する必要がある(第1図
では例として垂直な場合を述べた。)非点収差法
により焦点制御する為には少なく共1個のシリン
ドリカルレンズが要る。本発明の光学系では2個
のシリンドリカルレンズを半導体レーザの絞り性
能を向上させる為に用いている為、2個のシリン
ドリカルレンズの中間に挿入されたビームスプリ
ツタ15により入射光路から分離された反射光路
中に凸レンズを用いる事で焦点制御できる。凸レ
ンズはシリンドリカルレンズとは異なり光軸に対
して対称である為、光検出器17のA,Bの方向
に留意する事なく設置する事ができる。 In FIG. 1, the axis of the cylindrical lens 16 (perpendicular to the optical axis and indicated by the x mark as described above) is aligned with the direction of A and B of the photodetector 17 (indicated by the dashed line).
It is necessary to install the lens perpendicularly or parallel to the lens (in FIG. 1, the perpendicular case is shown as an example).In order to control the focus using the astigmatism method, at least one cylindrical lens is required. Since the optical system of the present invention uses two cylindrical lenses to improve the aperture performance of the semiconductor laser, the beam splitter 15 inserted between the two cylindrical lenses separates the reflected light from the incident optical path. Focus can be controlled by using a convex lens in the optical path. Unlike a cylindrical lens, a convex lens is symmetrical with respect to the optical axis, so it can be installed without paying attention to the directions A and B of the photodetector 17.
以上のように、本発明では高出力の半導体レー
ザを用いて、高い光パワーを微小な光スポツトに
して光記録媒体上に集める事ができる光学系を提
供し、かつ、反射光路中には、一方向について倍
率を有するシリンドリカルレンズを用いる必要が
なくなり、凸レンズを光検出器に対する回転方向
に留意する事なく設置するだけで、絞り対物レン
ズと光記録媒体との距離を一定に保つ事ができる
利点を有する。 As described above, the present invention uses a high-output semiconductor laser to provide an optical system that can convert high optical power into a minute optical spot and focus it on an optical recording medium, and in addition, in the reflected optical path, There is no need to use a cylindrical lens with magnification in one direction, and the distance between the aperture objective lens and the optical recording medium can be kept constant by simply installing a convex lens without paying attention to the rotation direction with respect to the photodetector. has.
第1図a〜cは非点収差方式により焦点制御す
る光学系の従来例の構成で、aは平面図、bは側
面図、cはbのA−A矢視図、第2図は4分割さ
れた光検出器の平面図、第3図は前記光検出器上
での光ビームの形を示す説明図、第4図は前記光
検出器より得られる信号の絞り対物レンズと光記
録媒体との距離に対する様子を与える特性図、第
5図a〜cは本発明の光学系の構成図で、aは平
面図、bは側面図、cはbのB−B矢視図であ
る。
11……半導体レーザ、22,23……凹及び
凸シリンドリカルレンズ、13……絞り対物レン
ズ、15……ビームスプリツタ、17……光検出
器、21……光記録媒体、24……凸レンズ。
Figures 1 a to c show the configuration of a conventional example of an optical system that controls focus using an astigmatism method, where a is a plan view, b is a side view, c is a view taken along arrow A-A in b, and Figure 2 is a 4 A plan view of the divided photodetector, FIG. 3 is an explanatory diagram showing the shape of the light beam on the photodetector, and FIG. 4 is an aperture objective lens and an optical recording medium for the signal obtained from the photodetector. FIGS. 5a to 5c are block diagrams of the optical system of the present invention, in which a is a plan view, b is a side view, and c is a view taken along the line B-B of b. 11...Semiconductor laser, 22, 23...Concave and convex cylindrical lenses, 13...Aperture objective lens, 15...Beam splitter, 17...Photodetector, 21...Optical recording medium, 24...Convex lens.
Claims (1)
記録再生する装置において、半導体レーザを光源
として備え、前記半導体レーザからの光を集光し
て平行光を発生する第1の光学手段と、前記平行
光を少なくとも2個のシリンドリカルレンズを用
いて入射平行光より幅の広い略円形又は略正方形
の平行光に変換する第2の光学手段と、前記略円
形又は略正方形の平行光を記録媒体上に微小な光
スポツトとして絞り記録媒体上に照射する第3の
光学手段と、前記2個のシリンドリカルレンズの
間に設置されたビームスプリツタと、前記記録媒
体よりの反射光が前記ビームスプリツタにより入
射光路から分離された反射光路中に配設された光
検出器を有し、前記ビームスプリツタと光検出器
の中間に凸レンズを設け、前記記録媒体と前記第
3の光学手段との距離を前記光検出器上での光の
形状変化として検出して前記距離を一定に制御す
るようにした事を特徴とする光学的記録再生装
置。1. In an apparatus for recording and reproducing information by focusing a minute light beam onto a recording medium, a first optical means includes a semiconductor laser as a light source and condenses light from the semiconductor laser to generate parallel light; a second optical means for converting the parallel light into substantially circular or square parallel light having a width wider than the incident parallel light using at least two cylindrical lenses; and a recording medium for converting the substantially circular or square parallel light to a recording medium. a third optical means that apertures the recording medium as a minute light spot; a beam splitter installed between the two cylindrical lenses; and a beam splitter that directs the reflected light from the recording medium to the beam splitter. a photodetector disposed in a reflected optical path separated from an incident optical path by a convex lens between the beam splitter and the photodetector; and a distance between the recording medium and the third optical means. An optical recording/reproducing apparatus characterized in that the distance is controlled to be constant by detecting the change in shape of light on the photodetector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7531179A JPS5639A (en) | 1979-06-14 | 1979-06-14 | Optical recording and reproducing unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7531179A JPS5639A (en) | 1979-06-14 | 1979-06-14 | Optical recording and reproducing unit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5639A JPS5639A (en) | 1981-01-06 |
JPS6161450B2 true JPS6161450B2 (en) | 1986-12-25 |
Family
ID=13572573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7531179A Granted JPS5639A (en) | 1979-06-14 | 1979-06-14 | Optical recording and reproducing unit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5639A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07118082B2 (en) * | 1987-10-05 | 1995-12-18 | キヤノン株式会社 | Optical head device |
JPH0636793Y2 (en) * | 1987-10-26 | 1994-09-28 | 株式会社モンベル | Sleeping bag |
FR2635334B1 (en) * | 1988-08-10 | 1990-11-09 | Rhone Poulenc Chimie | PROCESS FOR PRODUCING LACTIC ACID BY FERMENTATION |
-
1979
- 1979-06-14 JP JP7531179A patent/JPS5639A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5639A (en) | 1981-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6114689A (en) | Optical pickup device | |
JPS6161450B2 (en) | ||
JPS6043569B2 (en) | Optical recording and reproducing device using a semiconductor laser as a light source | |
JPS6232532B2 (en) | ||
US5742567A (en) | Master optical disk recording apparatus | |
JP4105281B2 (en) | Optical head and manufacturing method thereof | |
JP2660140B2 (en) | Optical head device | |
JP3033676B2 (en) | Light modulator | |
JPS5879207A (en) | Optical pickup device | |
JPS586534A (en) | Optical device for reproducer | |
JP2538192B2 (en) | Optical disk drive | |
JPH0127489B2 (en) | ||
JPH0219537B2 (en) | ||
JPH0954971A (en) | Optical pickup and reproducing device | |
JP2667962B2 (en) | Optical head device | |
KR100641088B1 (en) | Optical Pickup Apparatus | |
JPS6256581B2 (en) | ||
JP2501097B2 (en) | Optical head device | |
JPS6320725A (en) | Controlling method for coincidence of focus between two laser beam heads | |
JP2502484B2 (en) | Optical head device | |
JP2502482B2 (en) | Optical head device | |
JP2502483B2 (en) | Optical head device | |
JPS6145435A (en) | Optical head | |
JPH06148575A (en) | Optical element and optical head | |
JPS6117232A (en) | Optical head device |