JPS6160871A - Manufacture of titanium alloy - Google Patents
Manufacture of titanium alloyInfo
- Publication number
- JPS6160871A JPS6160871A JP17945084A JP17945084A JPS6160871A JP S6160871 A JPS6160871 A JP S6160871A JP 17945084 A JP17945084 A JP 17945084A JP 17945084 A JP17945084 A JP 17945084A JP S6160871 A JPS6160871 A JP S6160871A
- Authority
- JP
- Japan
- Prior art keywords
- working
- alloy
- processing
- stage
- toughness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001069 Ti alloy Inorganic materials 0.000 title claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims abstract description 10
- 238000001816 cooling Methods 0.000 abstract description 8
- 239000000956 alloy Substances 0.000 abstract description 5
- 230000032683 aging Effects 0.000 abstract description 4
- 239000013078 crystal Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 238000005242 forging Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はチタン合金の製造法に関し、特にチタン合金超
塑性材料の製造、高強度・高靭性チタン合金鍛造品、圧
延品等の製造に有利に適用し得る方法に関する。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing titanium alloys, and is particularly advantageous for producing titanium alloy superplastic materials, high-strength and high-toughness titanium alloy forged products, rolled products, etc. relates to a method applicable to
(従来の技術)
チタン合金の鍛造品、圧延品等の製造は、通常β変態点
(材質により異なる)以下の温度で行う方法と、特に高
い靭性値が要求避れる場合には、β変態点以上の高温で
行う方法とがある。(Prior art) The production of titanium alloy forged products, rolled products, etc. is usually carried out at a temperature below the β-transformation point (varies depending on the material), and when a particularly high toughness value is required, There is a method of performing the process at higher temperatures.
しかるに、これらの方法は、いずれも結晶粒は粗大(@
に後者の場合は顕著でおる)でおシ、前者の場合は、靭
性が低く、後者の場合は靭性は向上するが、強度低下(
前者に比べ約10%程度)t−生ずる。However, in all of these methods, the crystal grains are coarse (@
In the former case, the toughness is low, and in the latter case, the toughness improves but the strength decreases (
(approximately 10% compared to the former) occurs.
(本発明が解決しようとする問題点)
本発明は、上記従来法の欠点を解消し、結晶粒の微細化
をはかシ、その結果、強度、靭性が向上するチタン合金
の製造法を提供しようとするものである。(Problems to be Solved by the Present Invention) The present invention provides a method for producing a titanium alloy that eliminates the drawbacks of the above-mentioned conventional methods, refines crystal grains, and improves strength and toughness as a result. This is what I am trying to do.
(問題を解決するための手段)
本発明は、後段の加工温度、例えば鍛造温度や圧延温度
(以下、単に加工温度という)が、前段の加工温度より
低く、各加工工程終了ごとく急冷する多段加工、該多段
加工後に通常の熱処理を施すことt−特徴とするチタン
合金の製造法でおる。(Means for Solving the Problem) The present invention provides multi-stage processing in which the processing temperature of the subsequent stage, such as forging temperature or rolling temperature (hereinafter simply referred to as processing temperature), is lower than the processing temperature of the previous stage and is rapidly cooled at the end of each processing step. The method for producing a titanium alloy is characterized in that a conventional heat treatment is performed after the multi-stage processing.
結晶粒を微細化するには、通常、加工量を大きく取るこ
とにより行われるが、本発明の後段の加工温度が前段の
加工温度より低く、各加工工程終了ごとに急冷する2段
以上の多段加工方法によれば、同じ加工量の場合、従来
に比べ、更に微細な結晶粒を得ることができる。加工量
は大きい方が有利なことは従来と同等であるが、60チ
加工量を与える場合、最低2回、好ましくは3〜5回に
分割して加工を与え、加工後、急冷し、最終加工はでき
る限シ低温にて行うことが好適である。Refining grains is usually done by increasing the amount of processing, but in the present invention, the processing temperature in the latter stage is lower than the processing temperature in the previous stage, and two or more stages are used in which the processing temperature is rapidly cooled after each processing step. According to the processing method, even finer crystal grains can be obtained compared to the conventional method for the same amount of processing. It is the same as before that the larger the processing amount is, the more advantageous it is, but when processing 60 inches, the processing is divided into at least 2 times, preferably 3 to 5 times, and after processing, it is rapidly cooled and the final It is preferable that the processing be carried out at the lowest temperature possible.
一般に結晶粒を微細化すると強度は向上するが、破壊靭
性(以下靭性)は低下する。しかしながら本発明は、上
記した特殊な加工により結晶粒を微細化し、熱処理と組
合せることにより、強度と靭性とを向上させるものであ
る。Generally, when crystal grains are made finer, strength improves, but fracture toughness (hereinafter referred to as toughness) decreases. However, the present invention improves strength and toughness by refining crystal grains through the above-described special processing and combining this with heat treatment.
本発明の好ましい実施態様は、最蔦加工温度をβ変態点
以上とし、β変態点以下を適当量組合せ各々の加工後急
冷を行い、特にβ変態点以下の加工は前述した分割加工
を行い、最終加工はできる限)低温で行うことであり、
これにより結晶粒の微細化と同時lCa性の向上も可能
となる。In a preferred embodiment of the present invention, the final machining temperature is set to be above the β-transformation point, and an appropriate amount of the β-transformation temperature or below is combined, and quenching is performed after each process. In particular, the processing below the β-transformation point is performed by the above-mentioned split processing, The final processing should be carried out at the lowest temperature possible.
This makes it possible to refine the crystal grains and improve lCa properties at the same time.
なお、上記の各加工後に行う急冷に、微細な針状マルテ
ンサイトの析出と、内・部応力を高くしておくことが目
的であシ、冷却速度が速い程結晶粒微細化への効果が大
きい。Note that the purpose of the rapid cooling performed after each of the above processing is to precipitate fine acicular martensite and to keep the internal stress high, and the faster the cooling rate, the more effective it is in grain refinement. big.
本発明では、上記の加工後に通常の熱処理を行う。この
熱処理は、材料によって異なるが、基本的には溶体化処
理十時効処理であシ、この熱処理によ〕ミクロ組織的に
はβ−マトリックス中に初相α相の晶出した状況を呈す
る。なお、溶体化処理を2段以上とすれば、β相より析
出するα相が成長した状況を呈し、靭性の向上を図るこ
とができる。但し、靭性と強度とは相反する性質故、両
者を比例して向上嘔せることがきず、溶体化処理を余)
多くの段数で行うと靭性は向上するが、強度は低下して
しまうので、所望の靭性と強度に応じて熱処理条件(選
定する。In the present invention, normal heat treatment is performed after the above processing. Although this heat treatment differs depending on the material, it is basically a solution treatment and an aging treatment, and this heat treatment results in a microstructure in which an initial α phase crystallizes in a β-matrix. Note that if the solution treatment is performed in two or more stages, the α phase precipitated from the β phase will grow, and the toughness can be improved. However, since toughness and strength are contradictory properties, it is not possible to improve them proportionately, so solution treatment is not necessary.
If a large number of stages are used, the toughness will improve, but the strength will decrease, so the heat treatment conditions (select) depending on the desired toughness and strength.
本発明方法が適用できるチタン合金としてにα型、α+
β型、β型の全てでお夛、α型としては、純テj17、
Ti−5A4−458n CELI (不純物の少ない
材料のこと)も含む〕、TiTi−8Aj−IV−1等
がα+β型としてはTi−6At−4V (ELIも含
む)、Ti−6At−6v−29n %Ti、−7At
−4Mo。Titanium alloys to which the method of the present invention can be applied include α-type and α+
Both β-type and β-type are available, and α-type is pure Tej17,
Ti-5A4-458n (including CELI (a material with few impurities)), TiTi-8Aj-IV-1, etc. are α+β types such as Ti-6At-4V (including ELI), Ti-6At-6v-29n% Ti, -7At
-4Mo.
TiTi−6A4−2EIn−42r−2、T1−6ム
t−28n−4Zr−6Mo等がβ型としてはBeta
pi (Ti−j 1.5Mo−6Zr−4,5Sn
)?1−3At−87−60!r−4Mo−4Zr
。TiTi-6A4-2EIn-42r-2, T1-6mut-28n-4Zr-6Mo, etc. are Beta as β type.
pi (Ti-j 1.5Mo-6Zr-4,5Sn
)? 1-3At-87-60! r-4Mo-4Zr
.
Ti−10V−21’e−3ムL% Ti−13’7−
11or−5ムL 。Ti-10V-21'e-3muL% Ti-13'7-
11or-5mmL.
Ti−157−3Or−3ムL−38n等がある。Examples include Ti-157-3Or-3 and L-38n.
(実施例)
実施例1
T1−6ムA−28n−42r−6Mo合金について、
第1図に示す条件にて本発明(よる処理を行った。(Example) Example 1 Regarding T1-6Mo A-28n-42r-6Mo alloy,
The treatment according to the present invention was carried out under the conditions shown in FIG.
なお、図中、1,2.5は鋳造加工、WQは水冷。AC
は空冷、930℃XIHWQ、は溶体化処理、595℃
X 611AOは時効処理を示している。In addition, in the figure, 1 and 2.5 are casting processing, and WQ is water cooling. A.C.
is air cooled, 930℃XIHWQ, is solution treated, 595℃
X 611AO indicates aging treatment.
比較の丸めに、上記合金の市販の鍛造品〔β−変態点以
下で行ったもので、ビレット段階の鍛造比が約1.7程
度(約70%)、以後の鍛造比が2以上〕につき、上記
と同一条件で熱処理した(以下、従来のものと記す)。For comparison purposes, commercially available forged products of the above alloys [those made below the β-transformation point, with a forging ratio of about 1.7 (about 70%) at the billet stage, and a subsequent forging ratio of 2 or more] , heat treated under the same conditions as above (hereinafter referred to as conventional).
これらの結果を第2図蓮ン(本発明方法によるもの)、
第2図@)(従来のもの)の顕微鏡写真に示す。These results are shown in Figure 2 (according to the method of the present invention).
It is shown in the micrograph of Figure 2 @) (conventional).
第2図CA)の本発明方法によるものは結晶粒度1〜3
μ、第2図中)の従来のものは結晶粒度20〜30μで
あった。The crystal grain size of the product according to the method of the present invention shown in Fig. 2 CA) is 1 to 3.
The conventional crystal grain size (μ, in FIG. 2) was 20 to 30 μ.
また、上記の本発明方法によるものと、従来のものにつ
いての強度特性を下表に示す。In addition, the strength characteristics of the above method of the present invention and the conventional method are shown in the table below.
第 1 表 実施例2 超塑性材料の製造を目的とし、次の要領で実施した。Table 1 Example 2 The purpose was to manufacture a superplastic material, and the experiment was carried out as follows.
実施例1で用いたものと同じ合金を第3図に示す条件に
て本発明による処理と行った。なお、図中、1.2は鍛
造加工で、加工量7096のうち1.2各々35%づつ
笑施した。WQは水冷、ACは空冷、950℃X 1H
WQは1段目溶体化処理、800℃XIHW(Jは2段
目溶体化処理、593℃×6HACは時効処理を示す。The same alloy used in Example 1 was treated according to the present invention under the conditions shown in FIG. Note that in the figure, 1.2 is forging processing, and 1.2 was forged by 35% each out of the 7096 working amounts. WQ is water cooling, AC is air cooling, 950℃X 1H
WQ indicates first-stage solution treatment, 800°C XIHW (J indicates second-stage solution treatment, and 593°C x 6HAC indicates aging treatment.
比較のために、上記合金の市販の鍛造品〔β−変態点以
上で行ったものと、β−変態点以下で行ったものの2h
類で、鍛造比は実施例1で用いた市販の鍛造品と同じ〕
につき、上記と同一条件で熱処理した(以下、従来のも
のとhピす)、これらの結果t−第4図(A) (本発
明方法によるもの)、第4図中)(β−変態点以下の場
合の従来のもの)、第4図(C)(β−変態点以上の場
合の従来のもの)の類8&鏡写真に示す。For comparison, commercially available forged products of the above alloys [one made at a temperature above the β-transformation point and one made at a temperature below the β-transformation point for 2 hours] were used.
, and the forging ratio is the same as the commercially available forged product used in Example 1]
The results were heat-treated under the same conditions as above (hereinafter referred to as "conventional"). The conventional type in the following cases) is shown in the class 8 & mirror photograph of Fig. 4(C) (the conventional type in the case of β-transformation point or higher).
第4図(A)の本発明方法によるものく結晶粒度1〜3
μ、第4図申)の従来のものは結晶粒度20〜30μ、
第4図(0)の従来のものは結晶粒度20〜50μであ
った。Fig. 4(A), crystal grain size 1 to 3 obtained by the method of the present invention
μ, Figure 4) The conventional type has a grain size of 20 to 30 μ,
The conventional one shown in FIG. 4(0) had a crystal grain size of 20 to 50 μm.
また、これらの強度特性につき下表に示す。The strength characteristics of these materials are also shown in the table below.
第 2 表Table 2
第1図及び第3図は本発明の実施例における加工(鍛造
)及び熱地理条件を示す図、第2図及び第4図は本発明
の実施例で得られた金属組織の顕微鏡写真である。
復代理人 内 1) 明
後代理人 萩 原 亮 −
第1図
一+吟間
帛3図
□時間
毘2図
(ハ) (已)
x50D x500児4
図
(A) (8)(C)Figures 1 and 3 are diagrams showing processing (forging) and thermogeographical conditions in examples of the present invention, and Figures 2 and 4 are microscopic photographs of metal structures obtained in examples of the present invention. . Sub-agent 1) Post-Morning agent Ryo Hagiwara - Figure 1 1 + Ginma 3 Figure □ Time page 2 Figure (c) (2)
x50D x500 children 4
Figure (A) (8) (C)
Claims (1)
程終了ごとに急冷する多段加工と、該多段加工後に通常
の熱処理を施すことを特徴とするチタン合金の製造法。A method for producing a titanium alloy, characterized by multistage processing in which the processing temperature in the subsequent stage is lower than the processing temperature in the previous stage, in which the processing temperature is quenched at the end of each processing step, and ordinary heat treatment is performed after the multistage processing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17945084A JPS6160871A (en) | 1984-08-30 | 1984-08-30 | Manufacture of titanium alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17945084A JPS6160871A (en) | 1984-08-30 | 1984-08-30 | Manufacture of titanium alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6160871A true JPS6160871A (en) | 1986-03-28 |
Family
ID=16066065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17945084A Pending JPS6160871A (en) | 1984-08-30 | 1984-08-30 | Manufacture of titanium alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6160871A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2952559A1 (en) * | 2009-11-16 | 2011-05-20 | Snecma | Manufacturing a titanium alloy part, which is useful in aeronautical industry, comprises performing N-successive treatment cycles of hot forging treatment at a specified temperature until the part obtains a uniform temperature |
JP2016517471A (en) * | 2013-03-15 | 2016-06-16 | エイティーアイ・プロパティーズ・インコーポレーテッド | Thermomechanical processing of alpha-beta titanium alloys |
US10053758B2 (en) | 2010-01-22 | 2018-08-21 | Ati Properties Llc | Production of high strength titanium |
US10094003B2 (en) | 2015-01-12 | 2018-10-09 | Ati Properties Llc | Titanium alloy |
US10144999B2 (en) | 2010-07-19 | 2018-12-04 | Ati Properties Llc | Processing of alpha/beta titanium alloys |
US10287655B2 (en) | 2011-06-01 | 2019-05-14 | Ati Properties Llc | Nickel-base alloy and articles |
US10337093B2 (en) | 2013-03-11 | 2019-07-02 | Ati Properties Llc | Non-magnetic alloy forgings |
US10422027B2 (en) | 2004-05-21 | 2019-09-24 | Ati Properties Llc | Metastable beta-titanium alloys and methods of processing the same by direct aging |
US10435775B2 (en) | 2010-09-15 | 2019-10-08 | Ati Properties Llc | Processing routes for titanium and titanium alloys |
US10502252B2 (en) | 2015-11-23 | 2019-12-10 | Ati Properties Llc | Processing of alpha-beta titanium alloys |
US10513755B2 (en) | 2010-09-23 | 2019-12-24 | Ati Properties Llc | High strength alpha/beta titanium alloy fasteners and fastener stock |
US10570469B2 (en) | 2013-02-26 | 2020-02-25 | Ati Properties Llc | Methods for processing alloys |
US11111552B2 (en) | 2013-11-12 | 2021-09-07 | Ati Properties Llc | Methods for processing metal alloys |
US12344918B2 (en) | 2023-07-12 | 2025-07-01 | Ati Properties Llc | Titanium alloys |
-
1984
- 1984-08-30 JP JP17945084A patent/JPS6160871A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10422027B2 (en) | 2004-05-21 | 2019-09-24 | Ati Properties Llc | Metastable beta-titanium alloys and methods of processing the same by direct aging |
FR2952559A1 (en) * | 2009-11-16 | 2011-05-20 | Snecma | Manufacturing a titanium alloy part, which is useful in aeronautical industry, comprises performing N-successive treatment cycles of hot forging treatment at a specified temperature until the part obtains a uniform temperature |
US10053758B2 (en) | 2010-01-22 | 2018-08-21 | Ati Properties Llc | Production of high strength titanium |
US10144999B2 (en) | 2010-07-19 | 2018-12-04 | Ati Properties Llc | Processing of alpha/beta titanium alloys |
US10435775B2 (en) | 2010-09-15 | 2019-10-08 | Ati Properties Llc | Processing routes for titanium and titanium alloys |
US10513755B2 (en) | 2010-09-23 | 2019-12-24 | Ati Properties Llc | High strength alpha/beta titanium alloy fasteners and fastener stock |
US10287655B2 (en) | 2011-06-01 | 2019-05-14 | Ati Properties Llc | Nickel-base alloy and articles |
US10570469B2 (en) | 2013-02-26 | 2020-02-25 | Ati Properties Llc | Methods for processing alloys |
US10337093B2 (en) | 2013-03-11 | 2019-07-02 | Ati Properties Llc | Non-magnetic alloy forgings |
US10370751B2 (en) | 2013-03-15 | 2019-08-06 | Ati Properties Llc | Thermomechanical processing of alpha-beta titanium alloys |
JP2016517471A (en) * | 2013-03-15 | 2016-06-16 | エイティーアイ・プロパティーズ・インコーポレーテッド | Thermomechanical processing of alpha-beta titanium alloys |
US11111552B2 (en) | 2013-11-12 | 2021-09-07 | Ati Properties Llc | Methods for processing metal alloys |
US10619226B2 (en) | 2015-01-12 | 2020-04-14 | Ati Properties Llc | Titanium alloy |
US10094003B2 (en) | 2015-01-12 | 2018-10-09 | Ati Properties Llc | Titanium alloy |
US11319616B2 (en) | 2015-01-12 | 2022-05-03 | Ati Properties Llc | Titanium alloy |
US12168817B2 (en) | 2015-01-12 | 2024-12-17 | Ati Properties Llc | Titanium alloy |
US10502252B2 (en) | 2015-11-23 | 2019-12-10 | Ati Properties Llc | Processing of alpha-beta titanium alloys |
US12344918B2 (en) | 2023-07-12 | 2025-07-01 | Ati Properties Llc | Titanium alloys |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3686041A (en) | Method of producing titanium alloys having an ultrafine grain size and product produced thereby | |
US5032189A (en) | Method for refining the microstructure of beta processed ingot metallurgy titanium alloy articles | |
JPH0686638B2 (en) | High-strength Ti alloy material with excellent workability and method for producing the same | |
JPH0798989B2 (en) | Method for producing titanium alloy parts comprising improved hot working and resulting parts | |
JPS6160871A (en) | Manufacture of titanium alloy | |
JP2968822B2 (en) | Manufacturing method of high strength and high ductility β-type Ti alloy material | |
JP2003055749A (en) | BETA Ti ALLOY WITH HIGH STRENGTH AND LOW YOUNG'S MODULUS, AND ITS MANUFACTURING METHOD | |
JPH0734184A (en) | Polyphase trace alloy steel | |
KR100219931B1 (en) | High strength steel sway bars and method of making | |
US10011885B2 (en) | Methods for producing titanium and titanium alloy articles | |
JPH03193850A (en) | Production of titanium and titanium alloy having fine acicular structure | |
USH1659H (en) | Method for heat treating titanium aluminide alloys | |
JP5941070B2 (en) | Method for producing titanium alloy having high strength and high formability, and titanium alloy using the same | |
JP3362428B2 (en) | Processing method of hot-formed product of β-type titanium alloy | |
JPH05255827A (en) | Production of alloy based on tial intermetallic compound | |
JPH08144034A (en) | Method for producing Ti-Al based intermetallic compound-based alloy | |
JPS63130755A (en) | Working heat treatment of alpha+beta type titanium alloy | |
JPH0663076B2 (en) | Method for producing titanium alloy material having equiaxed fine grain (α + β) two-phase structure | |
JP2004277873A (en) | Titanium alloy incorporated with boron added | |
JPH01127653A (en) | Manufacture of alpha+beta type titanium alloy cold rolled plate | |
JPH0726184B2 (en) | Method for producing hot-worked material of α + β-type titanium alloy having ultrafine grain structure | |
JPH02310348A (en) | Manufacture of alpha+beta titanium alloy rolled bar and wire having good structure | |
JP3343954B2 (en) | Method of toughening treatment of near β type titanium alloy | |
JPH03130351A (en) | Method for producing titanium and titanium alloys having a fine and equiaxed structure | |
JPH0617486B2 (en) | Method for forging powder-made Ni-base superalloy |