[go: up one dir, main page]

JPS6160871A - Manufacture of titanium alloy - Google Patents

Manufacture of titanium alloy

Info

Publication number
JPS6160871A
JPS6160871A JP17945084A JP17945084A JPS6160871A JP S6160871 A JPS6160871 A JP S6160871A JP 17945084 A JP17945084 A JP 17945084A JP 17945084 A JP17945084 A JP 17945084A JP S6160871 A JPS6160871 A JP S6160871A
Authority
JP
Japan
Prior art keywords
working
alloy
processing
stage
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17945084A
Other languages
Japanese (ja)
Inventor
Shohei Hamai
浜井 升平
Eiji Ishii
石井 英士
Motoki Shinkai
新海 元己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP17945084A priority Critical patent/JPS6160871A/en
Publication of JPS6160871A publication Critical patent/JPS6160871A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To manufacture a Ti alloy having superior strength and toughness by subjecting a Ti alloy to multistage working in which the working temp. in the succeeding stage is made lower than the working temp. in the preceding stage and rapid cooling is carried out every time a working stage is finished and by subjecting the worked Ti alloy to conventional heat treatment. CONSTITUTION:When a superplastic Ti alloy material, a high strength and toughness forged or rolled Ti alloy article or the like is manufactured, a Ti alloy is subjected to multistage working. In the multistage working, the working temp. in the succeeding stage is made lower than the working temp. in the preceding stage, the final working temp. is made as low as possible, and rapid cooling is carried out every time a working stage is finished. The cooling rate is made as high as possible to make the grains fine and to increase the strength. The worked Ti alloy is subjected to conventional heat treatment by soln. heat treatment and aging to improve the toughness.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はチタン合金の製造法に関し、特にチタン合金超
塑性材料の製造、高強度・高靭性チタン合金鍛造品、圧
延品等の製造に有利に適用し得る方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing titanium alloys, and is particularly advantageous for producing titanium alloy superplastic materials, high-strength and high-toughness titanium alloy forged products, rolled products, etc. relates to a method applicable to

(従来の技術) チタン合金の鍛造品、圧延品等の製造は、通常β変態点
(材質により異なる)以下の温度で行う方法と、特に高
い靭性値が要求避れる場合には、β変態点以上の高温で
行う方法とがある。
(Prior art) The production of titanium alloy forged products, rolled products, etc. is usually carried out at a temperature below the β-transformation point (varies depending on the material), and when a particularly high toughness value is required, There is a method of performing the process at higher temperatures.

しかるに、これらの方法は、いずれも結晶粒は粗大(@
に後者の場合は顕著でおる)でおシ、前者の場合は、靭
性が低く、後者の場合は靭性は向上するが、強度低下(
前者に比べ約10%程度)t−生ずる。
However, in all of these methods, the crystal grains are coarse (@
In the former case, the toughness is low, and in the latter case, the toughness improves but the strength decreases (
(approximately 10% compared to the former) occurs.

(本発明が解決しようとする問題点) 本発明は、上記従来法の欠点を解消し、結晶粒の微細化
をはかシ、その結果、強度、靭性が向上するチタン合金
の製造法を提供しようとするものである。
(Problems to be Solved by the Present Invention) The present invention provides a method for producing a titanium alloy that eliminates the drawbacks of the above-mentioned conventional methods, refines crystal grains, and improves strength and toughness as a result. This is what I am trying to do.

(問題を解決するための手段) 本発明は、後段の加工温度、例えば鍛造温度や圧延温度
(以下、単に加工温度という)が、前段の加工温度より
低く、各加工工程終了ごとく急冷する多段加工、該多段
加工後に通常の熱処理を施すことt−特徴とするチタン
合金の製造法でおる。
(Means for Solving the Problem) The present invention provides multi-stage processing in which the processing temperature of the subsequent stage, such as forging temperature or rolling temperature (hereinafter simply referred to as processing temperature), is lower than the processing temperature of the previous stage and is rapidly cooled at the end of each processing step. The method for producing a titanium alloy is characterized in that a conventional heat treatment is performed after the multi-stage processing.

結晶粒を微細化するには、通常、加工量を大きく取るこ
とにより行われるが、本発明の後段の加工温度が前段の
加工温度より低く、各加工工程終了ごとに急冷する2段
以上の多段加工方法によれば、同じ加工量の場合、従来
に比べ、更に微細な結晶粒を得ることができる。加工量
は大きい方が有利なことは従来と同等であるが、60チ
加工量を与える場合、最低2回、好ましくは3〜5回に
分割して加工を与え、加工後、急冷し、最終加工はでき
る限シ低温にて行うことが好適である。
Refining grains is usually done by increasing the amount of processing, but in the present invention, the processing temperature in the latter stage is lower than the processing temperature in the previous stage, and two or more stages are used in which the processing temperature is rapidly cooled after each processing step. According to the processing method, even finer crystal grains can be obtained compared to the conventional method for the same amount of processing. It is the same as before that the larger the processing amount is, the more advantageous it is, but when processing 60 inches, the processing is divided into at least 2 times, preferably 3 to 5 times, and after processing, it is rapidly cooled and the final It is preferable that the processing be carried out at the lowest temperature possible.

一般に結晶粒を微細化すると強度は向上するが、破壊靭
性(以下靭性)は低下する。しかしながら本発明は、上
記した特殊な加工により結晶粒を微細化し、熱処理と組
合せることにより、強度と靭性とを向上させるものであ
る。
Generally, when crystal grains are made finer, strength improves, but fracture toughness (hereinafter referred to as toughness) decreases. However, the present invention improves strength and toughness by refining crystal grains through the above-described special processing and combining this with heat treatment.

本発明の好ましい実施態様は、最蔦加工温度をβ変態点
以上とし、β変態点以下を適当量組合せ各々の加工後急
冷を行い、特にβ変態点以下の加工は前述した分割加工
を行い、最終加工はできる限)低温で行うことであり、
これにより結晶粒の微細化と同時lCa性の向上も可能
となる。
In a preferred embodiment of the present invention, the final machining temperature is set to be above the β-transformation point, and an appropriate amount of the β-transformation temperature or below is combined, and quenching is performed after each process. In particular, the processing below the β-transformation point is performed by the above-mentioned split processing, The final processing should be carried out at the lowest temperature possible.
This makes it possible to refine the crystal grains and improve lCa properties at the same time.

なお、上記の各加工後に行う急冷に、微細な針状マルテ
ンサイトの析出と、内・部応力を高くしておくことが目
的であシ、冷却速度が速い程結晶粒微細化への効果が大
きい。
Note that the purpose of the rapid cooling performed after each of the above processing is to precipitate fine acicular martensite and to keep the internal stress high, and the faster the cooling rate, the more effective it is in grain refinement. big.

本発明では、上記の加工後に通常の熱処理を行う。この
熱処理は、材料によって異なるが、基本的には溶体化処
理十時効処理であシ、この熱処理によ〕ミクロ組織的に
はβ−マトリックス中に初相α相の晶出した状況を呈す
る。なお、溶体化処理を2段以上とすれば、β相より析
出するα相が成長した状況を呈し、靭性の向上を図るこ
とができる。但し、靭性と強度とは相反する性質故、両
者を比例して向上嘔せることがきず、溶体化処理を余)
多くの段数で行うと靭性は向上するが、強度は低下して
しまうので、所望の靭性と強度に応じて熱処理条件(選
定する。
In the present invention, normal heat treatment is performed after the above processing. Although this heat treatment differs depending on the material, it is basically a solution treatment and an aging treatment, and this heat treatment results in a microstructure in which an initial α phase crystallizes in a β-matrix. Note that if the solution treatment is performed in two or more stages, the α phase precipitated from the β phase will grow, and the toughness can be improved. However, since toughness and strength are contradictory properties, it is not possible to improve them proportionately, so solution treatment is not necessary.
If a large number of stages are used, the toughness will improve, but the strength will decrease, so the heat treatment conditions (select) depending on the desired toughness and strength.

本発明方法が適用できるチタン合金としてにα型、α+
β型、β型の全てでお夛、α型としては、純テj17、
Ti−5A4−458n CELI (不純物の少ない
材料のこと)も含む〕、TiTi−8Aj−IV−1等
がα+β型としてはTi−6At−4V (ELIも含
む)、Ti−6At−6v−29n %Ti、−7At
−4Mo。
Titanium alloys to which the method of the present invention can be applied include α-type and α+
Both β-type and β-type are available, and α-type is pure Tej17,
Ti-5A4-458n (including CELI (a material with few impurities)), TiTi-8Aj-IV-1, etc. are α+β types such as Ti-6At-4V (including ELI), Ti-6At-6v-29n% Ti, -7At
-4Mo.

TiTi−6A4−2EIn−42r−2、T1−6ム
t−28n−4Zr−6Mo等がβ型としてはBeta
 pi (Ti−j 1.5Mo−6Zr−4,5Sn
 )?1−3At−87−60!r−4Mo−4Zr 
 。
TiTi-6A4-2EIn-42r-2, T1-6mut-28n-4Zr-6Mo, etc. are Beta as β type.
pi (Ti-j 1.5Mo-6Zr-4,5Sn
)? 1-3At-87-60! r-4Mo-4Zr
.

Ti−10V−21’e−3ムL% Ti−13’7−
11or−5ムL 。
Ti-10V-21'e-3muL% Ti-13'7-
11or-5mmL.

Ti−157−3Or−3ムL−38n等がある。Examples include Ti-157-3Or-3 and L-38n.

(実施例) 実施例1 T1−6ムA−28n−42r−6Mo合金について、
第1図に示す条件にて本発明(よる処理を行った。
(Example) Example 1 Regarding T1-6Mo A-28n-42r-6Mo alloy,
The treatment according to the present invention was carried out under the conditions shown in FIG.

なお、図中、1,2.5は鋳造加工、WQは水冷。AC
は空冷、930℃XIHWQ、は溶体化処理、595℃
X 611AOは時効処理を示している。
In addition, in the figure, 1 and 2.5 are casting processing, and WQ is water cooling. A.C.
is air cooled, 930℃XIHWQ, is solution treated, 595℃
X 611AO indicates aging treatment.

比較の丸めに、上記合金の市販の鍛造品〔β−変態点以
下で行ったもので、ビレット段階の鍛造比が約1.7程
度(約70%)、以後の鍛造比が2以上〕につき、上記
と同一条件で熱処理した(以下、従来のものと記す)。
For comparison purposes, commercially available forged products of the above alloys [those made below the β-transformation point, with a forging ratio of about 1.7 (about 70%) at the billet stage, and a subsequent forging ratio of 2 or more] , heat treated under the same conditions as above (hereinafter referred to as conventional).

これらの結果を第2図蓮ン(本発明方法によるもの)、
第2図@)(従来のもの)の顕微鏡写真に示す。
These results are shown in Figure 2 (according to the method of the present invention).
It is shown in the micrograph of Figure 2 @) (conventional).

第2図CA)の本発明方法によるものは結晶粒度1〜3
μ、第2図中)の従来のものは結晶粒度20〜30μで
あった。
The crystal grain size of the product according to the method of the present invention shown in Fig. 2 CA) is 1 to 3.
The conventional crystal grain size (μ, in FIG. 2) was 20 to 30 μ.

また、上記の本発明方法によるものと、従来のものにつ
いての強度特性を下表に示す。
In addition, the strength characteristics of the above method of the present invention and the conventional method are shown in the table below.

第  1  表 実施例2 超塑性材料の製造を目的とし、次の要領で実施した。Table 1 Example 2 The purpose was to manufacture a superplastic material, and the experiment was carried out as follows.

実施例1で用いたものと同じ合金を第3図に示す条件に
て本発明による処理と行った。なお、図中、1.2は鍛
造加工で、加工量7096のうち1.2各々35%づつ
笑施した。WQは水冷、ACは空冷、950℃X 1H
WQは1段目溶体化処理、800℃XIHW(Jは2段
目溶体化処理、593℃×6HACは時効処理を示す。
The same alloy used in Example 1 was treated according to the present invention under the conditions shown in FIG. Note that in the figure, 1.2 is forging processing, and 1.2 was forged by 35% each out of the 7096 working amounts. WQ is water cooling, AC is air cooling, 950℃X 1H
WQ indicates first-stage solution treatment, 800°C XIHW (J indicates second-stage solution treatment, and 593°C x 6HAC indicates aging treatment.

比較のために、上記合金の市販の鍛造品〔β−変態点以
上で行ったものと、β−変態点以下で行ったものの2h
類で、鍛造比は実施例1で用いた市販の鍛造品と同じ〕
につき、上記と同一条件で熱処理した(以下、従来のも
のとhピす)、これらの結果t−第4図(A) (本発
明方法によるもの)、第4図中)(β−変態点以下の場
合の従来のもの)、第4図(C)(β−変態点以上の場
合の従来のもの)の類8&鏡写真に示す。
For comparison, commercially available forged products of the above alloys [one made at a temperature above the β-transformation point and one made at a temperature below the β-transformation point for 2 hours] were used.
, and the forging ratio is the same as the commercially available forged product used in Example 1]
The results were heat-treated under the same conditions as above (hereinafter referred to as "conventional"). The conventional type in the following cases) is shown in the class 8 & mirror photograph of Fig. 4(C) (the conventional type in the case of β-transformation point or higher).

第4図(A)の本発明方法によるものく結晶粒度1〜3
μ、第4図申)の従来のものは結晶粒度20〜30μ、
第4図(0)の従来のものは結晶粒度20〜50μであ
った。
Fig. 4(A), crystal grain size 1 to 3 obtained by the method of the present invention
μ, Figure 4) The conventional type has a grain size of 20 to 30 μ,
The conventional one shown in FIG. 4(0) had a crystal grain size of 20 to 50 μm.

また、これらの強度特性につき下表に示す。The strength characteristics of these materials are also shown in the table below.

第  2  表Table 2

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第3図は本発明の実施例における加工(鍛造
)及び熱地理条件を示す図、第2図及び第4図は本発明
の実施例で得られた金属組織の顕微鏡写真である。 復代理人   内 1)  明 後代理人   萩 原 亮 − 第1図 一+吟間 帛3図 □時間 毘2図 (ハ)                   (已)
x50D               x500児4
図 (A)              (8)(C)
Figures 1 and 3 are diagrams showing processing (forging) and thermogeographical conditions in examples of the present invention, and Figures 2 and 4 are microscopic photographs of metal structures obtained in examples of the present invention. . Sub-agent 1) Post-Morning agent Ryo Hagiwara - Figure 1 1 + Ginma 3 Figure □ Time page 2 Figure (c) (2)
x50D x500 children 4
Figure (A) (8) (C)

Claims (1)

【特許請求の範囲】[Claims] 後段の加工温度が、前段の加工温度より低く、各加工工
程終了ごとに急冷する多段加工と、該多段加工後に通常
の熱処理を施すことを特徴とするチタン合金の製造法。
A method for producing a titanium alloy, characterized by multistage processing in which the processing temperature in the subsequent stage is lower than the processing temperature in the previous stage, in which the processing temperature is quenched at the end of each processing step, and ordinary heat treatment is performed after the multistage processing.
JP17945084A 1984-08-30 1984-08-30 Manufacture of titanium alloy Pending JPS6160871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17945084A JPS6160871A (en) 1984-08-30 1984-08-30 Manufacture of titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17945084A JPS6160871A (en) 1984-08-30 1984-08-30 Manufacture of titanium alloy

Publications (1)

Publication Number Publication Date
JPS6160871A true JPS6160871A (en) 1986-03-28

Family

ID=16066065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17945084A Pending JPS6160871A (en) 1984-08-30 1984-08-30 Manufacture of titanium alloy

Country Status (1)

Country Link
JP (1) JPS6160871A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2952559A1 (en) * 2009-11-16 2011-05-20 Snecma Manufacturing a titanium alloy part, which is useful in aeronautical industry, comprises performing N-successive treatment cycles of hot forging treatment at a specified temperature until the part obtains a uniform temperature
JP2016517471A (en) * 2013-03-15 2016-06-16 エイティーアイ・プロパティーズ・インコーポレーテッド Thermomechanical processing of alpha-beta titanium alloys
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10144999B2 (en) 2010-07-19 2018-12-04 Ati Properties Llc Processing of alpha/beta titanium alloys
US10287655B2 (en) 2011-06-01 2019-05-14 Ati Properties Llc Nickel-base alloy and articles
US10337093B2 (en) 2013-03-11 2019-07-02 Ati Properties Llc Non-magnetic alloy forgings
US10422027B2 (en) 2004-05-21 2019-09-24 Ati Properties Llc Metastable beta-titanium alloys and methods of processing the same by direct aging
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US10570469B2 (en) 2013-02-26 2020-02-25 Ati Properties Llc Methods for processing alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US12344918B2 (en) 2023-07-12 2025-07-01 Ati Properties Llc Titanium alloys

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10422027B2 (en) 2004-05-21 2019-09-24 Ati Properties Llc Metastable beta-titanium alloys and methods of processing the same by direct aging
FR2952559A1 (en) * 2009-11-16 2011-05-20 Snecma Manufacturing a titanium alloy part, which is useful in aeronautical industry, comprises performing N-successive treatment cycles of hot forging treatment at a specified temperature until the part obtains a uniform temperature
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US10144999B2 (en) 2010-07-19 2018-12-04 Ati Properties Llc Processing of alpha/beta titanium alloys
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US10287655B2 (en) 2011-06-01 2019-05-14 Ati Properties Llc Nickel-base alloy and articles
US10570469B2 (en) 2013-02-26 2020-02-25 Ati Properties Llc Methods for processing alloys
US10337093B2 (en) 2013-03-11 2019-07-02 Ati Properties Llc Non-magnetic alloy forgings
US10370751B2 (en) 2013-03-15 2019-08-06 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
JP2016517471A (en) * 2013-03-15 2016-06-16 エイティーアイ・プロパティーズ・インコーポレーテッド Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US10619226B2 (en) 2015-01-12 2020-04-14 Ati Properties Llc Titanium alloy
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US11319616B2 (en) 2015-01-12 2022-05-03 Ati Properties Llc Titanium alloy
US12168817B2 (en) 2015-01-12 2024-12-17 Ati Properties Llc Titanium alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
US12344918B2 (en) 2023-07-12 2025-07-01 Ati Properties Llc Titanium alloys

Similar Documents

Publication Publication Date Title
US3686041A (en) Method of producing titanium alloys having an ultrafine grain size and product produced thereby
US5032189A (en) Method for refining the microstructure of beta processed ingot metallurgy titanium alloy articles
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
JPH0798989B2 (en) Method for producing titanium alloy parts comprising improved hot working and resulting parts
JPS6160871A (en) Manufacture of titanium alloy
JP2968822B2 (en) Manufacturing method of high strength and high ductility β-type Ti alloy material
JP2003055749A (en) BETA Ti ALLOY WITH HIGH STRENGTH AND LOW YOUNG'S MODULUS, AND ITS MANUFACTURING METHOD
JPH0734184A (en) Polyphase trace alloy steel
KR100219931B1 (en) High strength steel sway bars and method of making
US10011885B2 (en) Methods for producing titanium and titanium alloy articles
JPH03193850A (en) Production of titanium and titanium alloy having fine acicular structure
USH1659H (en) Method for heat treating titanium aluminide alloys
JP5941070B2 (en) Method for producing titanium alloy having high strength and high formability, and titanium alloy using the same
JP3362428B2 (en) Processing method of hot-formed product of β-type titanium alloy
JPH05255827A (en) Production of alloy based on tial intermetallic compound
JPH08144034A (en) Method for producing Ti-Al based intermetallic compound-based alloy
JPS63130755A (en) Working heat treatment of alpha+beta type titanium alloy
JPH0663076B2 (en) Method for producing titanium alloy material having equiaxed fine grain (α + β) two-phase structure
JP2004277873A (en) Titanium alloy incorporated with boron added
JPH01127653A (en) Manufacture of alpha+beta type titanium alloy cold rolled plate
JPH0726184B2 (en) Method for producing hot-worked material of α + β-type titanium alloy having ultrafine grain structure
JPH02310348A (en) Manufacture of alpha+beta titanium alloy rolled bar and wire having good structure
JP3343954B2 (en) Method of toughening treatment of near β type titanium alloy
JPH03130351A (en) Method for producing titanium and titanium alloys having a fine and equiaxed structure
JPH0617486B2 (en) Method for forging powder-made Ni-base superalloy