[go: up one dir, main page]

JPS6160518B2 - - Google Patents

Info

Publication number
JPS6160518B2
JPS6160518B2 JP10118279A JP10118279A JPS6160518B2 JP S6160518 B2 JPS6160518 B2 JP S6160518B2 JP 10118279 A JP10118279 A JP 10118279A JP 10118279 A JP10118279 A JP 10118279A JP S6160518 B2 JPS6160518 B2 JP S6160518B2
Authority
JP
Japan
Prior art keywords
column line
column
potential
transistor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10118279A
Other languages
Japanese (ja)
Other versions
JPS55160389A (en
Inventor
Hiroshi Iwahashi
Masamichi Asano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP10118279A priority Critical patent/JPS55160389A/en
Priority to US06/153,951 priority patent/US4340943A/en
Priority to DE3020688A priority patent/DE3020688C2/en
Priority to GB8018012A priority patent/GB2056209B/en
Publication of JPS55160389A publication Critical patent/JPS55160389A/en
Publication of JPS6160518B2 publication Critical patent/JPS6160518B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/08Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards using semiconductor devices, e.g. bipolar elements
    • G11C17/10Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards using semiconductor devices, e.g. bipolar elements in which contents are determined during manufacturing by a predetermined arrangement of coupling elements, e.g. mask-programmable ROM
    • G11C17/12Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards using semiconductor devices, e.g. bipolar elements in which contents are determined during manufacturing by a predetermined arrangement of coupling elements, e.g. mask-programmable ROM using field-effect devices

Landscapes

  • Read Only Memory (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明はMOS型トランジスタ(絶縁ゲート型
電界効果トランジスタともいう)を用いたメモリ
ー(記憶装置)として適する半導体メモリーに関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor memory suitable as a memory (memory device) using a MOS transistor (also referred to as an insulated gate field effect transistor).

この種の半導体メモリーにおいて、セルアレイ
の列線はその非選択時に、電気的に浮遊状態にお
かれることがあり、特にMOSメモリーにおいて
は、基板電圧の変動等で、メモリーの高速動作が
阻害されたり、誤動作が生じたりしていた。
In this type of semiconductor memory, the column lines of the cell array may be left in an electrically floating state when they are not selected, and in MOS memory in particular, high-speed operation of the memory may be inhibited due to fluctuations in substrate voltage, etc. , malfunctions were occurring.

第1図は、半導体基板に集積回路で形成される
半導体メモリーを示し、1,1,…はセルア
レイでの行線、2はアドレス入力A0,A1,A2
をもとに行線1,1,…のうちのいずれかを
選択する行デコーダ、311,312…,321,322
…はMOSトランジスタよりなるメモリーセル
で、該メモリーセルは対応する行線により駆動さ
れる。これらメモリーセルのうち、行線と交差す
る列線4,4…に一端(ドレイン)が接続さ
れたものが“0”記憶し、この一端(ドレイン)
が開放されているもの例えばセル322は“1”記
憶に対応する。これらメモリーセルの他端はソー
ス電位供給端VS(接地)に接続される。列線4
,4,…には列選択用トランジスタ5,5
,…が介挿され、このトランジスタのゲートは
列デコーダ6に接続される。この列デコーダ6は
アドレス入力a0,a1,a2,…をもとにトランジス
タ5,5,…のうちのいずれかを選択駆動す
る。電圧センス回路7は、選択された列線への出
力データが“1”か“0”かを検出し、バツフア
回路8を介して検出データを出力する。また負荷
素子としてのデブレツシヨン型トランジスタ9の
ソース及びゲートは、列選択トランジスタのドレ
イン側共通接続端(センス入力)に接続され、ド
レインは電源電圧Vcの供給端10に接続されて
いる。ここでは、使用しているMOSトランジス
タは全てNチヤネル型で、負荷MOS9を除く他
のトランジスタはエンハンスメント型であり、電
源電圧Vcは接地電位より高レベル側にあると考
えてよい。
FIG. 1 shows a semiconductor memory formed by integrated circuits on a semiconductor substrate, where 1 1 , 1 2 , . . . are row lines in a cell array, 2 are address inputs A 0 , A 1 , A 2 .
A row decoder that selects one of the row lines 1 1 , 1 2 , ... based on , 3 11 , 3 12 ..., 3 21 , 3 22 ,
... are memory cells made of MOS transistors, and the memory cells are driven by the corresponding row lines. Among these memory cells, those whose one ends (drains) are connected to the column lines 4 1 , 4 2 .
For example, cell 3 22 which is open corresponds to "1" storage. The other ends of these memory cells are connected to a source potential supply terminal V S (ground). column line 4
1 , 4 2 , ... are column selection transistors 5 1 , 5
2 , . . . are inserted, and the gates of these transistors are connected to the column decoder 6. The column decoder 6 selectively drives one of the transistors 5 1 , 5 2 , . . . based on address inputs a 0 , a 1 , a 2 , . The voltage sense circuit 7 detects whether the output data to the selected column line is "1" or "0" and outputs the detected data via the buffer circuit 8. The source and gate of the depletion transistor 9 as a load element are connected to the drain side common connection terminal (sense input) of the column selection transistor, and the drain is connected to the supply terminal 10 of the power supply voltage Vc . Here, all the MOS transistors used are N-channel type, and the transistors other than the load MOS 9 are enhancement type, and the power supply voltage V c can be considered to be at a higher level than the ground potential.

ところで第1図の如く構成されたメモリーにあ
つては、電源ノイズがあると基板電位変動のた
め、電気的に浮遊状態になつている列線の電位変
動が生じ、また内部ノード(例えば行線)の電位
変化により、セルのゲート部を介して列線の電位
が変動したりする。また列線が非選択時で列線が
電気的に浮遊状態になつている場合、別途基板バ
イアスを印加して使用するもの(3電源方式)で
は、列線或いは列線につながれているメモリーセ
ルのドレイン等のPN接合のリーク電流等によ
り、列線の電位は基板電位まで下ろうとし、列線
電位が列選択トランジスタ5,5,…のゲー
トをVG、そのスレツシヨルド電圧をVthとすれ
ば、“VG−Vth”まで列線電位が下つた時に列選
択トランジスタがオン状態となり、負荷トランジ
スタ9によりリーク電流分が保障され、列線電位
はソース電位(通常0ボルト)に対し或る一定の
負電圧に保たれる。またEPROM(Erasable
Programmable ROM)のように外部光に直接さ
らされるデバイスでは、PN接合における光電流
等により電気的に浮遊状態にあるノード(例えば
列線)は、基板電位(0ボルト)に対しPN接合
の順方向電圧分ほど負電位になつてしまう。以上
のような状態となつた時、選択された列線は負電
位から充電されなければならず、その分だけデー
タ読み出し速度が遅くなる。また例えばデータ読
み出し途中に、ノイズ等により基板が負電位にな
ると、電気的浮遊状態にある非選択列線が全て基
板との結合容量により負電位になり、そのためオ
フ状態にあつた列選択トランジスタがオン状態と
なつて負荷トランジスタ9により、各列線を全て
充電しなければならず、非常に大きな容量を充電
することになり、従つてデータ読み出し速度は極
端に遅くなる。更にデータ読み出し後に基板電位
が下がり、前記と同様な状態になつた時、列選択
トランジスタのオンによりノード11の電位が
“1”状態であれば、そのレベルが下がることに
より電圧センス回路7は“0”と検知し、ノード
11が“1”に充電されるまで誤まつたデータを
出力し、誤動作となる。
By the way, in the case of a memory configured as shown in Fig. 1, when there is power supply noise, the potential of the electrically floating column lines will change due to fluctuations in the substrate potential, and internal nodes (for example, the row lines) will fluctuate. ), the potential of the column line fluctuates through the gate of the cell. In addition, when a column line is not selected and the column line is electrically floating, if a separate substrate bias is applied (three power supply system), the column line or the memory cell connected to the column line The potential of the column line tends to fall to the substrate potential due to leakage current of the PN junction at the drain , etc. of Then, when the column line potential drops to "V G - V th ", the column selection transistor turns on, the leakage current is guaranteed by the load transistor 9, and the column line potential becomes the source potential (usually 0 volts). On the other hand, it is maintained at a certain constant negative voltage. Also EPROM (Erasable)
In devices that are directly exposed to external light such as ROM (Programmable ROM), nodes (e.g. column lines) that are electrically floating due to photocurrent in the PN junction, etc. The potential becomes negative by the amount of voltage. When the above state occurs, the selected column line must be charged from a negative potential, and the data read speed is reduced accordingly. For example, if the substrate becomes negative potential due to noise or the like during data reading, all non-selected column lines that are in an electrically floating state become negative potential due to the coupling capacitance with the substrate, and as a result, the column selection transistor that was in the off state becomes When turned on, each column line must be completely charged by the load transistor 9, which results in charging a very large capacitance, and therefore the data read speed becomes extremely slow. Furthermore, when the substrate potential decreases after data reading and becomes the same state as above, if the potential of the node 11 is in the "1" state due to the column selection transistor being turned on, the voltage sense circuit 7 becomes "1" as the level decreases. 0" and outputs erroneous data until the node 11 is charged to "1", resulting in malfunction.

以上のような列線または基板電位の変動はどの
タイミングで生じるか一定ではなく、いわゆるア
クセス動作が遅くなつたり、種々の誤動作の原因
となるものである。
The timing at which such column line or substrate potential fluctuations occur is not constant, and may cause a delay in so-called access operations or various malfunctions.

本発明は上記実情に鑑みてなされたもので、列
線もしくは基板電位変動時に、前記列線をメモリ
ーセルのソース側電位近辺に保持する手段をメモ
リー本体に設けることにより、前記従来の問題点
を一掃し得る半導体メモリーを提供しようとする
ものである。
The present invention has been made in view of the above-mentioned circumstances, and solves the above-mentioned conventional problems by providing a memory main body with means for maintaining the column line near the source side potential of the memory cell when the column line or substrate potential changes. The aim is to provide a semiconductor memory that can be completely wiped out.

以下図面を参照して本発明の一実施例を説明す
る。第2図は同実施例の説明に用いる回路である
が、ここでは第1図のものと対応させたメモリー
の例であるので、対応する個所には同一符号を付
して、重復する個所の説明は省略する。ここでの
特徴は、列線4,4,…の電気的浮遊状態時
に該列線を電圧VS近辺に保持するために、Nチ
ヤネル型トランジスタ21のドレインを列線4
に、Nチヤネルトランジスタ21のドレイン
を列線4に接続し、以下同様に各列線に対応す
るトランジスタのドレインを接続し、電圧供給回
路22の出力端23をトランジスタ21,21
,…のゲートへ共通接続する。またトランジス
タ21,21,…のソースは電圧VS供給端
(通常接地)に接続し、電圧供給回路22は、電
圧VC供給端10とアース間に、デプレツシヨン
N型トランジスタ24、エンハンスメントN型ト
ランジスタ25を直列接続し、トランジスタ24
のゲートは自巳のソースへ、トランジスタ25の
ゲートは自巳のドレインつまり出力端23に接続
したものである。なおここでトランジスタ21
,21,…25等は集積回路の製造工程で同
時に形成され、互に同一形状(特性)となつてい
て、電圧供給回路22の出力端23の出力電位は
トランジスタ25のスレツシヨルド電圧よりやや
高めの値となつている。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 2 is a circuit used to explain the same embodiment, but here it is an example of a memory that corresponds to that in FIG. Explanation will be omitted. The feature here is that the drain of the N-channel transistor 21 1 is connected to the column line 4 in order to maintain the column line near the voltage V S when the column line 4 1 , 4 2 , ... is in an electrically floating state.
1 , the drain of the N-channel transistor 21 2 is connected to the column line 4 2 , and the drain of the transistor corresponding to each column line is similarly connected to the output terminal 23 of the voltage supply circuit 22 to the transistor 21 1 , 21 .
2. Commonly connected to the gates of... Further, the sources of the transistors 21 1 , 21 2 , . type transistors 25 are connected in series, and transistors 24
The gate of the transistor 25 is connected to the source of the transistor 25, and the gate of the transistor 25 is connected to the drain of the transistor 25, that is, the output terminal 23. Note that here the transistor 21
1 , 21, 2 ,...25, etc. are formed simultaneously in the integrated circuit manufacturing process, and have the same shape (characteristics), and the output potential of the output terminal 23 of the voltage supply circuit 22 is slightly higher than the threshold voltage of the transistor 25. The value is high.

第2図の如き構成とすれば、各列線のうち例え
ば列線4が、電圧的浮遊状態で負電位となつて
も、これによりトランジスタ21が導通状態と
なり、VS側の電圧が列線4へ速やかに伝達さ
れて該列線4がメモリーセルのソース側電位V
Sと略同じ値になる。この動作は、第1図のとこ
ろで述べたいかなる理由により列線4が負電位
となつた場合も同様に行なわれ、列線4への充
電はVS電位近辺から行なわれるから、メモリー
のアクセス時間の短縮が可能となり、また列線4
に得られた“1”データが途中で“0”になる
等の誤動作も防止できるものである。なお上記ト
ランジスタ21で列線4をVSレベルにした
後は、該トランジスタ21はオフ状態となり、
回路動作に何らの支障を与えることはない。
If the configuration is as shown in FIG. 2, even if the column line 41 among the column lines is in a voltage floating state and has a negative potential, the transistor 211 becomes conductive and the voltage on the V S side increases. It is quickly transmitted to the column line 4-1 , and the column line 4-1 becomes the source side potential V of the memory cell.
It becomes approximately the same value as S. This operation is performed in the same way even if the column line 41 becomes negative potential for any of the reasons mentioned in FIG. 1, and since the column line 41 is charged from near the V S potential, Access time can be shortened, and row line 4
This also prevents malfunctions such as "1" data obtained at 1 becoming "0" midway through. Note that after the column line 41 is brought to the V S level by the transistor 211 , the transistor 211 is turned off.
It does not cause any trouble to the circuit operation.

第3図は電圧供給回路22の具体的回路図であ
り、実際的なものである。ただし、ここでは第2
図の場合とは逆で、トランジスタ21,21
,…の駆動電圧が、これらトランジスタのスレ
ツシヨルド電圧Vth以下となるようにしている。
このことは概略次のように説明できる。即ち第3
図の回路の各使用トランジスタが集積回路製造工
程でトランジスタ21,21,…と同時形成
され、これらと同一形状(特性)であるとすれ
ば、トランジスタ31,32により接続端36は
2Vthの電位となり、従つて接続端23はトランジ
スタ34によりVthの電位となるが、トランジス
タ35が存在することにより接続端23の出力電
位はVth以下となるものである。ここでトランジ
スタ31,32,34,35はNチヤネルエンハ
ンスメント型、トランジスタ33はデプレツシヨ
ン型(負荷)としている。
FIG. 3 is a concrete circuit diagram of the voltage supply circuit 22, which is practical. However, here the second
Contrary to the case shown in the figure, transistors 21 1 , 21
The driving voltages of transistors 2 , . . . are set to be lower than the threshold voltage V th of these transistors.
This can be roughly explained as follows. That is, the third
If each transistor used in the circuit shown in the figure is formed simultaneously with the transistors 21 1 , 21 2 , etc. in the integrated circuit manufacturing process and has the same shape (characteristics) as these, then the connection end 36 is formed by the transistors 31 and 32.
The potential of the connecting end 23 becomes 2V th , and therefore the potential of the connecting end 23 becomes V th due to the transistor 34, but the output potential of the connecting end 23 becomes less than V th due to the presence of the transistor 35. Here, transistors 31, 32, 34, and 35 are of N-channel enhancement type, and transistor 33 is of depletion type (load).

なお本発明は上記実施例のみに限られるもので
はなく、例えば使用MOSトランジスタにPチヤ
ネル型のものを用いた構成としてもよい。また本
発明はスタテイツク型ROMのみならずダイナミ
ツク型ROM、更にはRAM(Random Access
Memory)にも、これらの列線に本発明回路の特
有の部分を設けることにより、適用できる。
It should be noted that the present invention is not limited to the above-described embodiment, and may be configured, for example, by using a P-channel type MOS transistor. Furthermore, the present invention is applicable not only to static ROM, but also to dynamic ROM, and even RAM (Random Access
The present invention can also be applied to memory devices by providing specific parts of the circuit of the present invention in these column lines.

以上説明した如く本発明によれば、列線もしく
は基板電位変動時に、前記列線をメモリーセルの
ソース側電位近辺に保持する手段を設けたので、
高速動作、誤動作防止が可能な半導体メモリーが
提供できる。
As explained above, according to the present invention, a means is provided to maintain the column line near the source side potential of the memory cell when the column line or substrate potential changes.
We can provide semiconductor memory that operates at high speed and prevents malfunctions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体メモリーを示す回路図、
第2図は本発明の一実施例の説明に用いる回路
図、第3図は同回路の要部の具体例を示す回路図
である。 1,1…行線、2…行デコーダ、311〜3
22…メモリーセル、4,4…列線、5,5
…列選択トランジスタ、6…列デコーダ、7…
電圧センス回路、9…負荷MOSトランジスタ、
10…電源、11…ノード、VS…ソース電位供
給端、21,21…列線電位安定化用トラン
ジスタ、22…電圧供給回路。
Figure 1 is a circuit diagram showing a conventional semiconductor memory.
FIG. 2 is a circuit diagram used to explain one embodiment of the present invention, and FIG. 3 is a circuit diagram showing a specific example of the main part of the same circuit. 1 1 , 1 2 ... row line, 2 ... row decoder, 3 11 - 3
22 ...Memory cell, 4 1 , 4 2 ...Column line, 5 1 , 5
2 ... Column selection transistor, 6... Column decoder, 7...
Voltage sense circuit, 9...Load MOS transistor,
DESCRIPTION OF SYMBOLS 10... Power supply, 11... Node, V S ... Source potential supply end, 21 1 , 21 2 ... Transistor for column line potential stabilization, 22... Voltage supply circuit.

Claims (1)

【特許請求の範囲】 1 半導体基板に集積回路で形成される半導体メ
モリーにおいて、複数の行線と、この行線を選択
する行デコーダと、このデコーダ及び前記行線を
介して駆動されるメモリーセルと、このメモリー
セルからデータを受けるために設けられる複数の
列線と、この列線を選択する列デコーダと、前記
列線の電圧検出を行なう電圧センス回路と、前記
列線に接続される負荷素子と、一端が列線に接続
されると共に他端が前記メモリーセルのソース側
電位の供給端に接続されるMOS素子と、該MOS
素子のゲートを該MOS素子のしきい値近辺の電
位に保持する保持手段とを具備したことを特徴と
する半導体メモリー。 2 前記保持手段は、電源と出力端との間に設け
られる負荷トランジスタと、前記出力端にゲート
とドレインが接続されソースが前記メモリーセル
のソース側電位供給端に接続されたMOSトラン
ジスタとからなり、前記出力端の電位を前記
MOS素子のしきい値電圧よりやゝ高い電圧とす
るMOS回路からなることを特徴とする特許請求
の範囲第1項に記載の半導体メモリー。
[Scope of Claims] 1. In a semiconductor memory formed by an integrated circuit on a semiconductor substrate, a plurality of row lines, a row decoder that selects the row lines, and memory cells driven via the decoder and the row lines are provided. a plurality of column lines provided to receive data from this memory cell, a column decoder that selects this column line, a voltage sense circuit that detects the voltage of the column line, and a load connected to the column line. a MOS element, one end of which is connected to a column line and the other end of which is connected to a source-side potential supply end of the memory cell;
1. A semiconductor memory comprising: holding means for holding a gate of an element at a potential near a threshold value of the MOS element. 2. The holding means includes a load transistor provided between a power source and an output terminal, and a MOS transistor whose gate and drain are connected to the output terminal and whose source is connected to a source-side potential supply terminal of the memory cell. , the potential of the output terminal is
2. The semiconductor memory according to claim 1, comprising a MOS circuit whose voltage is slightly higher than the threshold voltage of a MOS element.
JP10118279A 1979-05-31 1979-08-10 Semiconductor memory Granted JPS55160389A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10118279A JPS55160389A (en) 1979-08-10 1979-08-10 Semiconductor memory
US06/153,951 US4340943A (en) 1979-05-31 1980-05-28 Memory device utilizing MOS FETs
DE3020688A DE3020688C2 (en) 1979-05-31 1980-05-30 Storage device
GB8018012A GB2056209B (en) 1979-05-31 1980-06-02 Memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10118279A JPS55160389A (en) 1979-08-10 1979-08-10 Semiconductor memory

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP54068034A Division JPS6016036B2 (en) 1979-05-31 1979-05-31 semiconductor memory

Publications (2)

Publication Number Publication Date
JPS55160389A JPS55160389A (en) 1980-12-13
JPS6160518B2 true JPS6160518B2 (en) 1986-12-20

Family

ID=14293839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10118279A Granted JPS55160389A (en) 1979-05-31 1979-08-10 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPS55160389A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5873093A (en) * 1981-10-27 1983-05-02 Nec Corp Semiconductor memory

Also Published As

Publication number Publication date
JPS55160389A (en) 1980-12-13

Similar Documents

Publication Publication Date Title
US5594687A (en) Completely complementary MOS memory cell with tunneling through the NMOS and PMOS transistors during program and erase
KR100395261B1 (en) Semiconductor device
US5276646A (en) High voltage generating circuit for a semiconductor memory circuit
JP2723278B2 (en) Decoder / driver circuit for high capacitance line programming
US4760561A (en) MOS static type RAM having a variable load
US4893275A (en) High voltage switching circuit in a nonvolatile memory
JPH0143464B2 (en)
US20070268752A1 (en) Nonvolatile semiconductor memory device
US6865129B2 (en) Differential amplifier circuit with high amplification factor and semiconductor memory device using the differential amplifier circuit
KR0153847B1 (en) Semiconductor memory
US4542485A (en) Semiconductor integrated circuit
US20110069574A1 (en) Semiconductor memory device
EP0175101A2 (en) Semiconductor memory device
US6292418B1 (en) Semiconductor memory device
US4496850A (en) Semiconductor circuit for enabling a quick rise of the potential _on the word line for driving a clock signal line
US6400615B2 (en) Voltage raising circuit for semiconductor memory
US5539701A (en) Sense circuit for semiconductor memory devices
US5168464A (en) Nonvolatile differential memory device and method
JPS6052997A (en) Semiconductor storage device
IE53368B1 (en) Mos dynamic memory device
EP0377841B1 (en) Semiconductor integrated circuit capable of preventing occurrence of erroneous operation due to noise
JPS6160518B2 (en)
JPS6027118B2 (en) semiconductor memory device
US5327392A (en) Semiconductor integrated circuit capable of preventing occurrence of erroneous operation due to noise
US8077499B2 (en) Semiconductor integrated memory circuit and trimming method thereof