JPS6159835B2 - - Google Patents
Info
- Publication number
- JPS6159835B2 JPS6159835B2 JP21864282A JP21864282A JPS6159835B2 JP S6159835 B2 JPS6159835 B2 JP S6159835B2 JP 21864282 A JP21864282 A JP 21864282A JP 21864282 A JP21864282 A JP 21864282A JP S6159835 B2 JPS6159835 B2 JP S6159835B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- energization
- voltage
- current
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000003466 welding Methods 0.000 claims description 64
- 238000000034 method Methods 0.000 claims description 22
- 230000001186 cumulative effect Effects 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000012369 In process control Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000010965 in-process control Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/24—Electric supply or control circuits therefor
- B23K11/25—Monitoring devices
- B23K11/252—Monitoring devices using digital means
- B23K11/258—Monitoring devices using digital means the measured parameter being a voltage
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Resistance Welding (AREA)
Description
【発明の詳細な説明】
本発明は、抵抗溶接制御方法に係り、抵抗溶
接、特にスポツト溶接の品質の向上と均一化を図
ることを目的とする。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a resistance welding control method, and an object of the present invention is to improve and make uniform the quality of resistance welding, particularly spot welding.
従来からスポツト溶接の溶接品質の向上を図る
ための方策として、(1)溶接条件の安定化制御、(2)
溶接ナゲツトの形成を何らかの物理量で検知し、
このナゲツト径が均一になるようにインプロセス
で制御を行うことの2通りの方法が考えられてい
る。(1)の方法は、いわゆる抵抗溶接の3大条件と
いわれる溶接電流、通電時限、加圧力を変動が少
ないように安定に制御する方法であり、例えば、
入力電圧変動を補償する回路や、負荷力率が異な
つた場合でも常に一定の電流を流すように制御す
る定電流制御回路等を組み込んだ同期式タイマー
にその具現化されたものをみることができる。し
かし、これらは、加圧力変動、分流、チツプ変形
もしくはワーク(被溶接物)の形状、表面状況、
当り具合等の変動に対しては、何ら補償する機能
をもつておらず、溶接品質を一定化することは困
難である。 Conventionally, measures to improve the welding quality of spot welding include (1) stabilization control of welding conditions; (2)
Detect the formation of weld nuggets using some physical quantity,
Two methods have been considered for performing in-process control so that the nugget diameter becomes uniform. Method (1) is a method of stably controlling the three major conditions of resistance welding, such as welding current, energization time, and pressurizing force, so that there are few fluctuations.
The embodiment of this can be seen in the synchronous timer, which incorporates a circuit that compensates for input voltage fluctuations and a constant current control circuit that controls the current to always flow at a constant level even when the load power factor varies. . However, these problems include pressure fluctuations, shunt flow, chip deformation, the shape of the workpiece (object to be welded), surface condition, etc.
It has no function to compensate for variations in contact, etc., and it is difficult to maintain constant welding quality.
一方、(2)の方法は、より直接的に溶接品質すな
わちナゲツト形成状況を音とか電圧によつて検出
し、ナゲツトが十分成長した時点で通電をカツト
することにより品質を一定化しようとするもので
ある。例えば、溶接中の溶接電極間電圧(以後、
これをチツプ間電圧と呼ぶ)を監視し、第1図に
示すように、毎サイクル毎のチツプ間電圧の各波
高値を監視し、その最大値(Vp)を検知し、Vp
に対して予め設定しておいた割合だけチツプ間電
圧が低下した時点(Vc値になつた時点)で通電
をカツトすることにより、上記の加圧力変動等が
あつた場合でも、溶接品質を溶接中、すなわちイ
ンプロセスで均一化せんとするものである(特開
昭52―114541号公報)。 On the other hand, method (2) more directly detects the welding quality, that is, the state of nugget formation, using sound or voltage, and attempts to stabilize the quality by cutting off the current when the nuggets have grown sufficiently. It is. For example, the voltage between welding electrodes during welding (hereinafter referred to as
As shown in FIG .
By cutting off the current when the inter-chip voltage decreases by a preset percentage (when it reaches the V c value), welding quality can be maintained even when the above-mentioned pressure fluctuations occur. The purpose is to achieve uniformity during welding, that is, in-process (Japanese Patent Application Laid-open No. 114541/1983).
しかし、この方法の欠点は、通電時現のみの制
御のため、例えば何らかの原因で溶接電流がかな
り低下した場合、通電時限は長くなるが、十分な
ナゲツト成長は望めず、したがつて強度も低いこ
とになる。ここで、第2図の()は十分なナゲ
ツトが得られた場合のチツプ間電圧の波高値のエ
ンベロープ、同()はナゲツト形成が不十分な
場合を示す。 However, the disadvantage of this method is that it only controls the welding current when it is energized, so if the welding current drops considerably for some reason, the energization time will be longer, but sufficient nugget growth cannot be expected, and the strength will be low. It turns out. Here, () in FIG. 2 shows the envelope of the peak value of the inter-chip voltage when sufficient nuggets are obtained, and () shows the envelope when nuggets are insufficiently formed.
また、この方法では、ワークとして軟鋼やステ
ンレスのような比抵抗の大きい材料しか適用でき
ない欠点を有している。何故なら、アルミ等の比
抵抗の小さい材料は、上記波高値のエンベロープ
に最高値があるとは限らないからである。 Furthermore, this method has the disadvantage that only materials with high resistivity, such as mild steel or stainless steel, can be used as the workpiece. This is because materials with low resistivity such as aluminum do not necessarily have a maximum value in the envelope of the wave height values.
他方、溶接中に溶接部から発生するアコーステ
イツクエミツシヨン(略してAEと記す)信号を
監視し、あるスレツシユホールドレベル(VTH)
以上のAE信号が検出された時点で通電をカツト
する方法も試みられている。これは特に溶接中の
中チリ発生に伴なう大きなAE信号を検出して、
中チリが発生する時点では十分なナゲツトが形成
されているという考えにもとずき、そこで通電を
カツトするものである。 On the other hand, the acoustic emission (abbreviated as AE) signal generated from the welding part during welding is monitored, and a certain threshold hold level (V TH ) is detected.
A method has also been attempted in which the energization is cut off when the above AE signal is detected. This detects the large AE signal associated with the generation of dust, especially during welding, and
It is based on the idea that sufficient nuggets have been formed at the time when medium dust occurs, and the current is cut off at that point.
しかし、この方法も上記チツプ間電圧方式と同
様、単に通電時限のみを制約するのみで、溶接電
流を積極的に制御する方式ではないため、例えば
電流低下等によりナゲツト形成が不十分な場合は
AE信号も小さく、通電時限のみが長くなるだけ
で、均一なナゲツト径を得ることはできない。 However, like the chip-to-chip voltage method, this method only restricts the energization time and does not actively control the welding current, so if nugget formation is insufficient due to a drop in current, etc.
The AE signal is also small, and only the energization time period becomes longer, making it impossible to obtain a uniform nugget diameter.
本発明は、チツプ間電圧がナゲツト成長に密接
な関連があることに着目し、溶接中のチツプ間電
圧を監視して、電源半サイクル分の通電に対応す
るチツプ間電圧を半サイクル分の通電範囲にわた
つて積分した積分値の整流した値の累積値の増加
分が予め設定していた値を超えた時点で通電をカ
ツトする通電制御方法であり、かつ最も重要な点
は、通電開始から一定期間は、そのワークの標準
溶接電流で通電を行い、その後溶接電流を各サイ
クル毎に略一定の割合で、順次増加させていく方
法を採用したことにある。 The present invention focuses on the fact that the inter-chip voltage is closely related to nugget growth, and monitors the inter-chip voltage during welding to adjust the inter-chip voltage corresponding to the energization for half a cycle of the power supply to the energization for half a cycle. This is an energization control method in which energization is cut off when the cumulative increase in the rectified value of the integral value integrated over a range exceeds a preset value, and the most important point is that from the start of energization The method is adopted in which the standard welding current for the workpiece is applied for a certain period of time, and then the welding current is sequentially increased at a substantially constant rate for each cycle.
まず、チツプ間電圧の監視方法に関して説明す
る。チツプ間電圧を検出する場合、第3図aに示
すように単に波高値を検出する場合と、同bに示
すように半サイクル分の通電に対応するチツプ間
電圧をその半サイクル分について積分した値とし
て検出する場合とがある。bの方法は、チツプ間
電圧の検出プルーブをスポツト溶接機の懐にそわ
せて配置した場合に特に顕著にみられる溶接電流
による誘起電圧の重畳分を大巾に除くことができ
るので検出精度の向上が図れる利点がある。さて
チツプ間電圧の通電開始後の時間的変化は、第2
図に示すようになる。ここで、第2図のチツプ間
電圧のエンベロープのピーク値近傍がナゲツト成
長の最盛期といわれ、その後、エンベロープカー
ブが下降するのは、ナゲツトの拡大により抵抗値
が減少し、したがつてチツプ間の電圧降下が低下
するためである。この傾向は、本発明による方法
のように、通電開始後もしくはそこから一定時限
後に溶接電流を増加させていく方式の場合も略同
一傾向を示す。したがつて、チツプ間電圧の半サ
イクル通電に対するチツプ間電圧を前記半サイク
ル分の通電範囲にわたつて積分した値を順次整流
しこれをさらに累積していきながら、その累積値
の増加分の変化を監視して、その変化分(増加
分)が予め設定していた値以下になつた場合に、
通電をカツトすることで、適正なナゲツトを得ん
とするものである。またこのことにより、チリの
防止も図ることができる。 First, a method for monitoring inter-chip voltage will be explained. When detecting the chip-to-chip voltage, there are two methods: simply detecting the peak value, as shown in Figure 3a, and integrating the chip-to-chip voltage corresponding to half a cycle of energization, as shown in Figure 3b, for that half cycle. There are cases where it is detected as a value. Method b can greatly eliminate the superimposed voltage induced by the welding current, which is especially noticeable when the inter-chip voltage detection probe is placed along the edge of the spot welding machine, thereby improving detection accuracy. This has the advantage of improving performance. Now, the temporal change in the inter-chip voltage after the start of energization is the second
The result will be as shown in the figure. Here, the vicinity of the peak value of the envelope of the inter-chip voltage in Fig. 2 is said to be the peak period of nugget growth, and the reason why the envelope curve declines after that is because the resistance value decreases due to the expansion of the nugget, and therefore the inter-chip voltage increases. This is because the voltage drop decreases. This tendency is substantially the same even in the case of a method in which the welding current is increased after the start of energization or after a certain period of time, as in the method according to the present invention. Therefore, by sequentially rectifying and further accumulating the values obtained by integrating the inter-chip voltage for a half-cycle energization range over the energization range for the half-cycle, the change in the cumulative value increases. is monitored, and if the change (increase) becomes less than the preset value,
The aim is to obtain a proper nugget by cutting off the current. This also makes it possible to prevent dust.
なお、ここで第3図aの波形の根拠について説
明しておく。 Incidentally, the basis of the waveform shown in FIG. 3a will be explained here.
チツプ間電圧eは、通常上チツプと下チツプと
の間の電圧を検出プルーブを用いて検出すること
により測定されるが、この時、チツプ間電圧eは
チツプ間を溶接電流が流れることによる抵抗降下
電圧(Ri)と溶接電流により検出プルーブの閉
ループ内に誘起される誘起電圧(Kdi/dt)の和と
し
て検出される。 The inter-chip voltage e is usually measured by detecting the voltage between the upper and lower tips using a detection probe, but at this time, the inter-chip voltage e is the resistance due to the welding current flowing between the chips. It is detected as the sum of the voltage drop (Ri) and the induced voltage (Kdi/dt) induced in the closed loop of the detection probe by the welding current.
すなわち、
e=iR+Kdi/dt
(K:誘起電圧係数、i:溶接電流、R:チ
ツプ間抵抗)
これを図で示したものが第4図a,b,cであ
る。 That is, e=iR+Kdi/dt (K: induced voltage coefficient, i: welding current, R: resistance between chips) This is illustrated in figures 4a, b, and c.
次に溶接電流の設定に関して説明する。 Next, the setting of welding current will be explained.
溶接電流の設定は、通電の開始時については標
準溶接電流条件に設定する。通電が開始されて一
定期間は、ワークのナゲツト形成箇所の温度上昇
が見られ、ついに溶融点に達し、ナゲツトが成長
し始める。この間は、溶接電流は略一定に保つか
多少アツプスロープをかけるのがよいようであ
る。 The welding current is set to standard welding current conditions at the start of energization. For a certain period of time after energization is started, the temperature of the nugget forming part of the work increases, and finally reaches the melting point and the nugget begins to grow. During this time, it seems best to keep the welding current approximately constant or to slightly increase the slope.
さて、この区間を過ぎると、溶接電流を2〜20
%の範囲で1サイクル毎に順次増加させてゆく。
具体的には、定電流タイマーや入力電圧変動補償
タイマーの溶接電流設定電圧値を予め各サイクル
毎について個々にプリセツトしてプログラム化し
ておき、溶接が進行するにつれて、スイツチでそ
のプリセツト値を選択してゆくように、例えば、
第5図に示すようにプリセツト値を与える複数の
可変抵抗VR1,VR2,VR3,……VRoと、その可
変抵抗を選択するスイツチとしてアナログスイツ
チAS1,AS2,AS3,……ASoと、アナログスイ
ツチを制御するための電源周波数に同期したパル
スをクロツク入力としてもつシフトレジスタSR
とにより容易に構成できる。そして上記VR1は第
1サイクル目の溶接電流を設定するための、VR2
は第2サイクル目の溶接電流を設定するための、
VRoは第nサイクル目の溶接電流を設定するため
のそれぞれ可変抵抗である。ANDはシフトレジ
スタSRの前段のANDゲートであり、その入力側
には電源周波数パルスと通電時限信号がいずれも
タイマーより与えられる。なお、通電時限は通電
カツト信号によつて限定されるが、これがタイマ
ーにより設定される上限通電サイクル値を超えて
も出ない場合は、上限通電サイクル値によりカツ
トされる。 Now, after this section, the welding current should be increased to 2 to 20
It is increased sequentially within the range of 1 cycle.
Specifically, the welding current setting voltage value of the constant current timer and input voltage fluctuation compensation timer is individually preset and programmed for each cycle, and as welding progresses, the preset value is selected with a switch. For example,
As shown in Fig. 5, there are a plurality of variable resistors VR 1 , VR 2 , VR 3 , . . . VR o giving preset values, and analog switches AS 1 , AS 2 , AS 3 , . ...AS o and a shift register SR that has a clock input that is a pulse synchronized with the power supply frequency to control the analog switch.
It can be easily configured by And VR 1 above is VR 2 for setting the welding current for the first cycle.
is for setting the welding current for the second cycle,
VR o is a variable resistance for setting the welding current of the nth cycle. AND is an AND gate in the previous stage of the shift register SR, and the power supply frequency pulse and the energization time signal are both applied from the timer to its input side. The energization time limit is limited by the energization cut signal, but if it does not exceed the upper limit energization cycle value set by the timer, it is cut by the upper limit energization cycle value.
次に本発明の方法を実施するための一回路例に
ついて第6図の図面とともに説明する。図におい
て、1は溶接電極(電極チツプ)、2はワーク
(被溶接物)、3はフイルタ回路、4は交流積分回
路、5は整流回路、6はA/D変換回路、7は通
電カツト設定値回路、8はマイクロコンピユー
タ、9は入力電圧変動補償タイマー、10は第5
図の溶接電流設定回路である。 Next, an example of a circuit for carrying out the method of the present invention will be described with reference to the drawing of FIG. In the figure, 1 is a welding electrode (electrode tip), 2 is a workpiece (workpiece), 3 is a filter circuit, 4 is an AC integration circuit, 5 is a rectifier circuit, 6 is an A/D conversion circuit, and 7 is a current cut setting. value circuit, 8 is a microcomputer, 9 is an input voltage fluctuation compensation timer, 10 is a fifth
This is the welding current setting circuit shown in the figure.
そしてチツプ間電圧は、フイルタ回路3を介し
て交流積分回路4に入力されて積分処理され、整
流回路5に入力される。A/D変換は、各半サイ
クル毎の溶接電流が流れ終つた時点で変換開始パ
ルスをつくり変換を行う。次に、A/D変換終了
信号で、この積分回路4をリセツトする。このよ
うにして各半サイクル毎のチツプ間電圧をマイク
ロコンピユータ8のメモリ内に記憶し累積する。
回路7はデイジタルスイツチで構成され、マイク
ロコンピユータ8内にとり込まれた通電開始から
のチツプ間電圧の累積値の増加分と設定値回路7
の値とがそれぞれ比較される。 The inter-chip voltage is then input to an AC integrating circuit 4 via a filter circuit 3, subjected to integration processing, and then input to a rectifier circuit 5. A/D conversion is performed by creating a conversion start pulse at the time when the welding current for each half cycle has finished flowing. Next, this integrating circuit 4 is reset by the A/D conversion end signal. In this way, the inter-chip voltage for each half cycle is stored and accumulated in the memory of the microcomputer 8.
The circuit 7 is composed of a digital switch, and the increase in the cumulative value of the inter-chip voltage from the start of energization, which is taken into the microcomputer 8, and the set value circuit 7 are configured.
are compared with the respective values.
ここでもし、マイクロコンピユータ8内に累積
されたチツプ間電圧の累積値の増加分が設定値回
路7の設定値より小さい場合には、マイクロコン
ピユータ8からタイマー9に対し、通電をカツト
するための信号を出力する。タイマー9はこの信
号を受ければ直ちに通電をカツトする。またタイ
マー9の溶接電流設定に関しては、溶接電流設定
回路10を利用して行われる。 Here, if the increase in the cumulative value of the inter-chip voltage accumulated in the microcomputer 8 is smaller than the set value of the set value circuit 7, the microcomputer 8 sends a signal to the timer 9 to cut off the current. Output a signal. When the timer 9 receives this signal, it immediately cuts off the current. Further, the welding current setting of the timer 9 is performed using a welding current setting circuit 10.
さて、具体的に実施した一例を示すと、次のよ
うである。 Now, an example of a concrete implementation is as follows.
ワーク:軟鋼板(厚さ1mm)
溶接機:35KVA単相スポツト溶接機
制御装置:第6図に示す装置
溶接条件:初期溶接電流 8100A
上限通電サイクル値 15サイクル
電流増加開始サイクル 5サイクル
電流増加値 300A/1サイクル
通電カツトのチツプ間電圧累積値 4.5V
チリ検出チツプ間電圧値 0.25V
以上について、加圧力を170〜260Kg、チツプ
(CFチツプ)の径を5.8〜7.0mmまで変化させて溶
接を行つた。その結果、通電時限は7〜15サイク
ルの内に収まり、溶接結果(強度)もきわめて良
好であつた。Workpiece: Mild steel plate (thickness 1mm) Welding machine: 35KVA single-phase spot welding machine Control device: The device shown in Figure 6 Welding conditions: Initial welding current 8100A Upper limit current cycle value 15 cycles Current increase start cycle 5 cycles Current increase value 300A /1 cycle energized cut Accumulated voltage value between chips 4.5V Chip detection voltage value between chips 0.25V or more, welding is performed by changing the pressure force from 170 to 260 kg and the diameter of the chip (CF chip) from 5.8 to 7.0 mm. Ivy. As a result, the current application time was within 7 to 15 cycles, and the welding results (strength) were also very good.
以上のように本発明の抵抗溶接制御方法によれ
ば、通電開始から一定時限を経た後で、溶接電流
をそれまでの値に比べ2〜20%の範囲内で順次増
加させる制御と、チツプ間電圧の半サイクル毎の
積分値の累積値の増加分の監視による溶接ナゲツ
トの成長を保証する制御との効果的な結合によ
り、チツプの変形や加圧力変動、電流変動、ワー
クの表面状況や当り具合等の溶接条件変動があつ
た場合でも常に良好で均一な溶接品質を保証する
ことができるものであり、その産業性は大なるも
のである。 As described above, according to the resistance welding control method of the present invention, after a certain period of time has elapsed from the start of energization, the welding current is gradually increased within the range of 2 to 20% compared to the previous value, and the Effective combination with control that guarantees the growth of weld nuggets by monitoring the increase in the cumulative value of the integral value every half cycle of the voltage, prevents chip deformation, pressure fluctuations, current fluctuations, workpiece surface conditions, and contact. Even when welding conditions vary, it is possible to always guarantee good and uniform welding quality, and its industrial potential is great.
第1図はチツプ間電圧の代表的な波形図、第2
図はチツプ間電圧による通電時限制御の一例を示
す図、第3図a,bはチツプ間電圧を半サイクル
毎に積分した一例の波形図、第4図a,b,cは
チツプ間電圧波形を説明するための図、第5図は
溶接電流を順次切り換えてゆく溶接電流設定回路
の回路図、第6図は本発明の方法を実施するため
の装置のブロツク図である。
1……溶接電極、2……被溶接物、3……フイ
ルタ回路、4……交流積分回路、5……整流回
路、6……A/D変換回路、7……通電カツト設
定値回路、8……マイクロコンピユータ、9……
入力電圧変動補償タイマー、10……溶接電流設
定回路。
Figure 1 is a typical waveform diagram of inter-chip voltage, Figure 2
The figure shows an example of energization time control using inter-chip voltage, Figure 3 a and b are waveform diagrams of an example of integrating the inter-chip voltage every half cycle, and Figure 4 a, b and c are inter-chip voltage waveforms. FIG. 5 is a circuit diagram of a welding current setting circuit for sequentially switching the welding current, and FIG. 6 is a block diagram of an apparatus for carrying out the method of the present invention. DESCRIPTION OF SYMBOLS 1... Welding electrode, 2... Workpiece to be welded, 3... Filter circuit, 4... AC integration circuit, 5... Rectifier circuit, 6... A/D conversion circuit, 7... Current cut setting value circuit, 8...Microcomputer, 9...
Input voltage fluctuation compensation timer, 10...Welding current setting circuit.
Claims (1)
に溶接電流を予め設定した割合で順次増加させ、
溶接中に溶接電極間電圧を監視して半サイクル分
の通電に対する溶接電極間電圧を前記半サイクル
分の通電範囲にわたつて積分した積分値の累積値
の増加値が予め設定した値以下になつた時点に通
電をカツトすることを特徴とする抵抗溶接制御方
法。1 After a preset time period from the start of resistance welding, the welding current is sequentially increased at a preset rate,
The voltage between the welding electrodes is monitored during welding, and the increase in the cumulative value of the integrated value obtained by integrating the voltage between the welding electrodes for half a cycle of energization over the energization range for the half cycle becomes less than or equal to a preset value. A resistance welding control method characterized by cutting off energization at a point in time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21864282A JPS58112673A (en) | 1982-12-13 | 1982-12-13 | Resistance welding control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21864282A JPS58112673A (en) | 1982-12-13 | 1982-12-13 | Resistance welding control method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3120280A Division JPS5831271B2 (en) | 1980-03-11 | 1980-03-11 | Resistance welding control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58112673A JPS58112673A (en) | 1983-07-05 |
JPS6159835B2 true JPS6159835B2 (en) | 1986-12-18 |
Family
ID=16723143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21864282A Granted JPS58112673A (en) | 1982-12-13 | 1982-12-13 | Resistance welding control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58112673A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4676369B2 (en) * | 2006-03-31 | 2011-04-27 | ニチコン株式会社 | Voltage fluctuation compensation device |
JP5330677B2 (en) * | 2006-11-17 | 2013-10-30 | 積水化学工業株式会社 | Resistance welding monitoring method and resistance welding control method |
CN108290242B (en) * | 2015-11-09 | 2020-06-26 | 弗罗纽斯国际有限公司 | Method for data transmission with a resistance welding current source and resistance welding current source for carrying out the method |
-
1982
- 1982-12-13 JP JP21864282A patent/JPS58112673A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58112673A (en) | 1983-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5225660A (en) | Consumable-electrode ac gas shield arc welding method and apparatus therefor | |
US6933466B2 (en) | Method and apparatus for arc welding with wire heat control | |
US4553018A (en) | Short circuiting transfer arc welding machine | |
RU2009113035A (en) | METHOD FOR CARRYING OUT THE WELDING PROCESS | |
EP0507560B1 (en) | Electric discharge machines | |
US4745255A (en) | Method and apparatus for welding current regulation for a resistance welding machine | |
JP2973714B2 (en) | Pulse arc welding equipment | |
JPS6159835B2 (en) | ||
JPH0140717B2 (en) | ||
US5589088A (en) | Method of regulating DC current in resistance welders | |
JPH0140718B2 (en) | ||
US6933457B2 (en) | Method and apparatus for electrical discharge machining of a workpiece | |
EP0474031A2 (en) | Inverter type power control unit for stud welding | |
JPS5831271B2 (en) | Resistance welding control method | |
JPS6016875B2 (en) | Resistance welding control method | |
JPS6044074B2 (en) | Resistance welding control method | |
JPH04300078A (en) | Method and device for controlling inverter type resistance welding | |
JPS6325876B2 (en) | ||
JPS6044073B2 (en) | Resistance welding control method | |
JP2732154B2 (en) | Inverter type resistance welding control method | |
JPH06198453A (en) | Resistance welding control method | |
JPS622914B2 (en) | ||
JP3781815B2 (en) | Electric discharge machining method and apparatus | |
JPH0679785B2 (en) | Resistance welding control device | |
EP0142582A1 (en) | Adaptive schedule selective weld control |