[go: up one dir, main page]

JPS6159791A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS6159791A
JPS6159791A JP18096084A JP18096084A JPS6159791A JP S6159791 A JPS6159791 A JP S6159791A JP 18096084 A JP18096084 A JP 18096084A JP 18096084 A JP18096084 A JP 18096084A JP S6159791 A JPS6159791 A JP S6159791A
Authority
JP
Japan
Prior art keywords
laser
region
conductivity type
semiconductor
type impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18096084A
Other languages
Japanese (ja)
Inventor
Hideaki Noguchi
英明 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18096084A priority Critical patent/JPS6159791A/en
Publication of JPS6159791A publication Critical patent/JPS6159791A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide a laser light exit region in a high concentration P type region and to obtain high output, by interposing an active layer of superlattice construction between clad layers having wider forbidden bands and by bending the joint area near the laser resonating surface. CONSTITUTION:A semi-insulating N type GaAs substrate 31 is provided with an active layer 33 of superlattice construction consisting of multiple semiconduc tor layers of 100Angstrom or less, with a first clad layer 32 and with a second clad layer 34. The active layer 33 has a narrower forbidden band than those of the layers 32 and 34. The P-N junction between a low concentration P type impurity diffusion region 36 and the substrate 31 is vertical to the surfaces 40 and 40' of a laser resonator, but bent near the surfaces 40 and 40'. According ly, a laser light exit region 43 is located in the high concentration P type region 35. The absorption of laser light energy hupsilon1 can be effectively prevented by regulating the band construction of the high concentration P type region.

Description

【発明の詳細な説明】 〔1東上の利用分野〕 本発明は半導体レーザの構造に関するものであり、高出
力動作が可能なレーザ共振面近傍でのバンドギヤ、プが
レーザ晃の波長に相当するバンドギヤ、プよりも広い、
いわゆるウィンドストライプ構造で、かつ発振横モード
が制御できる半導体レーザに関するものである。
[Detailed Description of the Invention] [1. Field of Application of Togami] The present invention relates to the structure of a semiconductor laser, and relates to a band gear near the laser resonant surface capable of high-output operation, and a band gear whose prism corresponds to the wavelength of the laser beam. , wider than the
This invention relates to a semiconductor laser that has a so-called wind stripe structure and whose oscillation transverse mode can be controlled.

〔在米方法及び問題点〕[Methods of staying in the US and problems]

従来、高出力動作が可能な半導体レーザ装置として、ウ
ィンドストライプレーザが知られている。
A wind stripe laser is conventionally known as a semiconductor laser device capable of high output operation.

しかしながら、拡散の深さ、濃度コントロールが難しく
、量産性に富んでいない。またこの他の例としては、埋
め込み成長技術を活用して、埋め込み成長時にレーザ共
振面近傍を活性層よりもバンドギヤ、プの広い半導体層
で埋め込みウィンドストライプ構造を形成する方法がい
くつか提案されているが、埋め込み成長が相当難しく、
これま九量産性に欠ける欠点がある。
However, it is difficult to control the depth of diffusion and concentration, and it is not suitable for mass production. As another example, several methods have been proposed that utilize buried growth technology to form a buried windstripe structure in the vicinity of the laser resonant surface using a semiconductor layer with a wider band gear than the active layer during buried growth. However, embedded growth is quite difficult,
The drawback is that it lacks mass production.

〔発明の目的〕[Purpose of the invention]

本発明の目的は以上の様な問題点を解消でき。 An object of the present invention is to solve the above problems.

比教的簡単な製造工程で、高出力でかつ発振機モ゛−ド
が制御され、半導体レーザを量産性良く提供することに
ある。
The object of the present invention is to provide a semiconductor laser with high output and controlled oscillator mode with good mass productivity through a simple manufacturing process.

〔発明の構成〕[Structure of the invention]

さて、厚さが100A以下の半導体層の繰り返しで形成
されたいわゆる超格子構造においては。
Now, in a so-called superlattice structure formed by repeating semiconductor layers with a thickness of 100A or less.

熱処理を施すと構成原子の自己拡散によフその超格子構
造が乱れることが知られている。このことfGaAs−
AjAs系の超格子構造について説明する。第1図、8
2図に各々熱処理を施こす前と後の超格子構造のバンド
構造を示す、ここで11゜21は伝導帯、12.22は
禁制帯幅、13.23は価電子帯を示す。
It is known that heat treatment disturbs the superlattice structure due to self-diffusion of constituent atoms. This means fGaAs-
The AjAs-based superlattice structure will be explained. Figure 1, 8
Figure 2 shows the band structure of the superlattice structure before and after heat treatment, where 11°21 is the conduction band, 12.22 is the forbidden band width, and 13.23 is the valence band.

まず、第1図について説明すると、この様なバンド構造
においては電子及びホールは両方とも禁制帯幅の狭い半
導体層に集まるので1図中エネルLVlに対応した発光
が生じるが、一方禁制帯幅の広い半導体層中には、電子
及びホールの両方ともが集まらないので、エネルギーh
ν、に対応した発光はは七んど生じない。
First, to explain Figure 1, in such a band structure, both electrons and holes gather in a semiconductor layer with a narrow forbidden band width, so light emission corresponding to the energy LVl in Figure 1 occurs. Both electrons and holes do not collect in a wide semiconductor layer, so the energy h
The light emission corresponding to ν is almost never generated.

ところで、熱処理後のバンド構造は第2図に示す様に超
格子構造は平均化してなくな〕、その禁制帯幅のエネル
ギーhy3  は一般にhν1く−hν、くh″2  
である。
By the way, in the band structure after heat treatment, as shown in Figure 2, the superlattice structure is not averaged out], and the energy of the forbidden band width hy3 is generally hν1 - hν, h''2
It is.

さて、今11ν1<hν3であるので、第1の超格子構
造で発光したエネルギーhνl の光は、この#!2図
のバンド構造では吸収されない、このことは厚さが10
0A以下の半導体層が1層でも多層でも同様に起こる。
Now, since 11ν1<hν3, the light of energy hνl emitted from the first superlattice structure is this #! The band structure shown in Figure 2 does not absorb any absorption, which means that the band structure shown in Figure 2 has a thickness of 10
The same problem occurs whether the number of semiconductor layers of 0A or less is one layer or multiple layers.

またこの超格子構造の乱れはznヲ拡散することにより
促進されることが知られている。
Furthermore, it is known that this disorder of the superlattice structure is promoted by the diffusion of Zn.

本発明は上記の現象を利用しtものである。すなわち、
ストライプ状のレーザ発振領域の方向にレーザ共振面近
傍で禁制帯幅が広くなる様に拡散領域を形成することに
より、ウィンドストライプ構造の半導体レーザが得られ
る。
The present invention takes advantage of the above phenomenon. That is,
A semiconductor laser having a wind stripe structure can be obtained by forming a diffusion region in the direction of the striped laser oscillation region so that the forbidden band width becomes wider near the laser resonant surface.

またレーザ発振領域の屈折率tレーザ発振領域の周囲の
屈折率よ〕も大きくすれば1発振横モードを制御するこ
とができる。基板表面と垂直方向の発振横モードの制御
に関しては1通常知られている様に禁制帯幅が広い程屈
折率が小さくなるので、活性層よりも禁制帯幅が広くな
るようにクラ、ドQk形成すればよい、一方、水平横モ
ードに関しては下記現象を利用することによフ、制御可
能である。at図のL5な超格子構造の屈折率は。
Furthermore, if the refractive index of the laser oscillation region (t) is made larger than the refractive index of the surrounding area of the laser oscillation region, it is possible to control a single oscillation transverse mode. Regarding the control of the oscillation transverse mode in the direction perpendicular to the substrate surface, 1.As is generally known, the wider the forbidden band width, the smaller the refractive index. On the other hand, the horizontal transverse mode can be controlled by utilizing the following phenomenon. The refractive index of the L5 superlattice structure in the at diagram is.

超格子の各半導体層の厚さははるかに薄いので、hνl
 の禁制帯幅を有する半導体層とhν:の禁制帯fr′
xを有する半導体層の屈折率の平均値と同じになる。し
たがってキャリア浸度に変化がない場合には、第1図と
第2図の半導体におけるエネルギhy1の光に対する屈
折率はほとんど一致する。ところで、キャリア濃度を上
げると屈折率が数チ低下することが知られている。従っ
てレーザ発振領域のキャリア濃度をレーザ発振領域の周
辺部よυも低くすることにエフ、水平横モードの制御が
可能となる。
Since the thickness of each semiconductor layer in the superlattice is much thinner, hνl
A semiconductor layer having a forbidden band width of hν: and a forbidden band fr′ of hν:
It is the same as the average value of the refractive index of the semiconductor layer having x. Therefore, if there is no change in carrier immersion, the refractive indexes of the semiconductors in FIGS. 1 and 2 for light with energy hy1 are almost the same. By the way, it is known that when the carrier concentration is increased, the refractive index decreases by several orders of magnitude. Therefore, it is possible to control the horizontal transverse mode by making the carrier concentration in the laser oscillation region lower by υ than the peripheral portion of the laser oscillation region.

上記現象を組み合せて利用することによりウィンドスト
ライプ構造で発振横モードが制御された半導体レーザが
可能である。しかも、従来のウィンドストライプ構造の
半導体レーザが禁制帯同の不純物準位を利用して実効的
に禁制帯幅のちがいを実現しているのに対し、本発明の
半導体レーザでは禁制帯幅そのものを変えることができ
るのでエフ大きな禁制帯幅のちがいを実現できる。した
がりて本発明の半導体レーザは、従来の構造のウィンド
ストライプレーザよυも大きなウィンド効果が期待でき
る。
By utilizing the above phenomena in combination, it is possible to create a semiconductor laser with a windstripe structure in which the oscillation transverse mode is controlled. Moreover, whereas conventional semiconductor lasers with a wind stripe structure effectively realize differences in the forbidden band width by using impurity levels that are the same in the forbidden band, in the semiconductor laser of the present invention, the forbidden band width itself is changed. This makes it possible to realize a large difference in forbidden band width. Therefore, the semiconductor laser of the present invention can be expected to have a greater wind effect than a wind stripe laser having a conventional structure.

〔実施例〕〔Example〕

以下図面を参照して本発明の一実施例全詳細に説明する
。第3図に本発明の半導体レーザの構造を示す、MI図
において31は半絶縁性N形GaAs基板、32はG 
a 1−x A J xA a (0<x< 13  
層からなる第1のクラッド層、33は100A以下の多
層半導体層で形成された超格子構造の活性層で、本実施
例においてはN形GaニーyAJ、As−N形Ga  
 AJ人 (Oくy<z<x<1)  層の繰り返し1
−ZZS で形成されておCyは発振波長に合せて調整しである。
An embodiment of the present invention will be described in full detail below with reference to the drawings. FIG. 3 shows the structure of the semiconductor laser of the present invention. In the MI diagram, 31 is a semi-insulating N-type GaAs substrate, 32 is a G
a 1-x A J xA a (0<x<13
The first cladding layer 33 is an active layer with a superlattice structure formed of multilayer semiconductor layers of 100A or less, and in this example, N-type Ga nyAJ, As-N-type Ga
AJ person (Okuy<z<x<1) Layer repetition 1
-ZZS and Cy is adjusted according to the oscillation wavelength.

34は同様にG a 1− zlAJ X/ As (
Q ’−y−<z(x’ (1)層からなる第2のクラ
ッド層であり、活性Nj33の禁制帯@は舅l、第2の
クラッド層32.3;の禁制帯幅よりも狭くなっている
34 is similarly Ga 1- zlAJ X/ As (
A second cladding layer consisting of a layer Q'-y-<z(x' (1), and the forbidden band of the active Nj33 is narrower than the forbidden band width of the second cladding layer 32.3; It has become.

また、35はzn拡散によって形成した高濃度P形不純
物拡散領域(以下高濃度P領域と称す)。
Further, 35 is a high concentration P type impurity diffusion region (hereinafter referred to as high concentration P region) formed by Zn diffusion.

36はzn拡散によって形成した低濃度不純物拡散領域
(以下低濃度P領域と称す)、37はN領域、38及び
39はPお工びN電極、40.40’は一対のレーザ共
振器面、41はこのレーザ共振器面に垂直なPn接合面
、42.42’はレーザ共振器面40.40’近傍の屈
曲したPn接合面であって、屈曲部の幅Wは約5μへ突
出長さXは約15μmであり、43はレーザ共振器面4
0でのレーザー光出射領域である。
36 is a low concentration impurity diffusion region (hereinafter referred to as low concentration P region) formed by Zn diffusion, 37 is an N region, 38 and 39 are P-formed N electrodes, 40.40' is a pair of laser resonator surfaces, 41 is a Pn junction surface perpendicular to this laser resonator surface, 42.42' is a bent Pn junction surface near the laser resonator surface 40.40', and the width W of the bent portion is approximately 5μ and the protrusion length is X is approximately 15 μm, and 43 is the laser cavity surface 4.
This is the laser beam emission area at 0.

しかしこの発明に係わる半導体レーザの特徴としては、
前記実施例から明らかな様に、活性層33が100Aの
半導体層の繰り返しでなる超格子構造を有しており、か
つ、レーザ光の出射されるレーザ共振器面40.40’
近傍のp@合面42゜42′が屈曲されており、この屈
曲によって共振器面におけるレーザー光出射領域43が
、高濃度P領域となっていることである。
However, the characteristics of the semiconductor laser according to this invention are as follows.
As is clear from the above embodiment, the active layer 33 has a superlattice structure consisting of 100A repeating semiconductor layers, and the laser cavity surface 40.40' from which laser light is emitted is
The nearby p@joining surface 42°42' is bent, and this bending causes the laser light emitting region 43 on the cavity surface to become a high concentration P region.

まず最初に1以上の様に形成した半導体レーザではウィ
ンドストライプ構造が実現されていることを示す。前述
した様に超格子構造の乱れはzn拡散によって促進され
るので、P形不純物としてznを利用することにより、
高濃度P領域は第2図の様なハンド構造に、また低濃度
P領域は第1図の様なバンド構造にすることができる。
First, it will be shown that a wind stripe structure is realized in semiconductor lasers formed in one or more ways. As mentioned above, disorder of the superlattice structure is promoted by Zn diffusion, so by using Zn as a P-type impurity,
The high concentration P region can have a hand structure as shown in FIG. 2, and the low concentration P region can have a band structure as shown in FIG.

すなわち、レーザ共振器面40.40’におけるレーザ
ー光出射領域部43は高濃度P領域となっている九め、
レーザ発振し九光のエネルギー hν1ではレーザ共振
器面40.40’近傍での吸収が起こらない。いいかえ
れば、高出力動作が可能なウィンドストライプ構造が実
現されている。
That is, the laser beam emitting region 43 on the laser resonator surface 40, 40' is a high concentration P region.
When the laser oscillates and the energy of the nine beams is hv1, no absorption occurs near the laser resonator surface 40,40'. In other words, a wind stripe structure capable of high output operation has been realized.

次に以上の様に形成した本発明の半導体レーザでは発振
横モードが制御されていることを示す。
Next, it will be shown that in the semiconductor laser of the present invention formed as described above, the oscillation transverse mode is controlled.

第1及び第2のクラッド層32.34よりも活性層33
の方が禁制帯幅が狭いので、第1.gzのクラッド層3
2.34よりも活性層33の方が屈折率が高い、このこ
とは垂直横モードの制御できることを示してhる。また
GaAJ人$の屈折率はキャリア濃度が大きくなるに従
って小さくなる。
the active layer 33 than the first and second cladding layers 32,34;
Since the forbidden band width is narrower in 1. gz cladding layer 3
The active layer 33 has a higher refractive index than 2.34, which indicates that the vertical transverse mode can be controlled. Furthermore, the refractive index of GaAJ decreases as the carrier concentration increases.

ここのことを利用して水平横モードの制御が可能である
。第4図人は本発明の半導体レーザの活性層におけるP
n接合41を横切る方向の拡散プロファイルによって決
まるキャリア濃度を示し、第4図Bは上記キャリア濃度
に対応し次屈折率分布を示す、この様にPn接合面で屈
折率が高くなっていることがわかる。ちなみに高濃度P
領域のキャリア濃度は2 X 1019/c rn 3
  以上低濃度P領域のキャリア濃度は2X10 7c
m以下にすることが望ましい0次にレーザ発振領域への
電流狭搾が可能な度を示す。第1.第2のクラッド層内
におけるP 接合のビルトインポテンシャルφ1.φ鵞
と活性層内におけるP 接合のビルトインボテンシャシ
φ を比較すると、禁制帯幅の大小により。
Taking advantage of this fact, it is possible to control the horizontal and transverse modes. Figure 4 shows P in the active layer of the semiconductor laser of the present invention.
The carrier concentration determined by the diffusion profile in the direction across the n-junction 41 is shown, and FIG. Recognize. By the way, high concentration P
The carrier concentration in the region is 2 x 1019/c rn 3
The carrier concentration in the low concentration P region is 2×10 7c
This indicates the degree to which the current can be narrowed to the zero-order laser oscillation region, which is preferably less than m. 1st. Built-in potential φ1 of the P junction in the second cladding layer. Comparing the built-in potentiometer φ of the P junction in the active layer and the built-in potentiometer φ of the P junction in the active layer, it is found that the difference is due to the size of the forbidden band width.

φ、〉φa、φ2〉φ8 である。したがって層方向に
電流を流した時には活性層のPn接合面を横切って電流
が流れる。すなわち、電子とホールが活性層の低濃度P
領域に注入され、再結合によシ発光が起こる1以上のこ
とから、活性層の低濃度P領域、で屈折率差による光の
閉じ込めと、電子、ホールの注入による発光、再結合が
起こっておシ、レーザ発振ならびに発振横モードの制御
ができる。
φ, 〉φa, φ2〉φ8. Therefore, when a current is passed in the layer direction, the current flows across the Pn junction surface of the active layer. In other words, electrons and holes are at low concentration P in the active layer.
Light is injected into the active layer, and light emission occurs due to recombination.For the above reasons, in the low concentration P region of the active layer, light is confined due to the difference in refractive index, and light emission and recombination occur due to the injection of electrons and holes. It is possible to control laser oscillation and oscillation transverse mode.

以上説明したごとく本発明によれば、2 の拡散という
通常用いられている方法を用いて、容易に横モードが制
御された高出力レーザの実現が可能である。
As described above, according to the present invention, it is possible to easily realize a high-output laser with a controlled transverse mode using the commonly used method of 2 diffusion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は各々熱処理を施こす前と熱処m後の超
格子構造のバンド構造を示す図、第3図は本発明の半導
体レーザの構造を示す図、第4図人はその活性層におけ
るPn接合を横切る方向の拡散プロファイルによってき
まるキャリア密度分布を示す図、第4図Bは上記キャリ
ア密度に対応した屈折率分布を示す図である。 11,12.13は各々熱処理前の超格子構造のバンド
構造における伝導帯、禁制帯1価電子帯を示す、21,
22.23は各々熱処理後の超格子構造のバンド構造に
おける伝導帯、禁制帯、価電子帯を示す。 31・・・・・・半絶縁性N形G a A s基板、3
2・・・・・・第1のクラッド層(Ga、−xAJxA
sNl)、33・・−=−超格子構造を有する活性層(
Ga、−、AJ、As−Ga1−2AIAa層)、34
・・・・・・第2のクラッド層(G!11−x!AJx
lAs層)、35・・・・・・高濃度P形不純物拡散領
域、36・・・・・・低濃度P形不純物拡散領域、37
・・・・・・N影領域、38.39・・・・・・P、N
電極、40゜40’・・・・・・レーザ共振器面、41
・・・・・・レーザ共振器面に垂直なPn接合、42.
42’・・・・・・レーザ共擾器面近傍の屈曲したP 
接合面、43・・・・・・し一ザ光出射領域。 A、−11 □21 □23 第2図 第3図 第4図
FIGS. 1 and 2 are diagrams showing the band structure of the superlattice structure before and after heat treatment, respectively. FIG. 3 is a diagram showing the structure of the semiconductor laser of the present invention. FIG. 4B is a diagram showing the carrier density distribution determined by the diffusion profile in the direction across the Pn junction in the active layer, and FIG. 4B is a diagram showing the refractive index distribution corresponding to the carrier density. 11, 12.13 respectively indicate the conduction band, forbidden band and single valence band in the band structure of the superlattice structure before heat treatment, 21,
22 and 23 respectively indicate the conduction band, forbidden band, and valence band in the band structure of the superlattice structure after heat treatment. 31... Semi-insulating N-type GaAs substrate, 3
2...First cladding layer (Ga, -xAJxA
sNl), 33...-=-active layer having a superlattice structure (
Ga, -, AJ, As-Ga1-2AIAa layer), 34
...Second cladding layer (G!11-x!AJx
lAs layer), 35...High concentration P type impurity diffusion region, 36...Low concentration P type impurity diffusion region, 37
......N shadow area, 38.39...P, N
Electrode, 40°40'... Laser cavity surface, 41
...Pn junction perpendicular to the laser cavity surface, 42.
42'...Bent P near the laser co-agulator surface
Junction surface, 43...and one light output area. A, -11 □21 □23 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 第1導電形の第1、第2、第3の半導体層を有し、第2
の半導体層は100Å以下の厚さの層の繰り返しで形成
された多層超格子構造で形成され、且つ該超格子構造の
半導体層の禁制帯幅が第1、第3の半導体層の禁制帯幅
よりも狭い半導体基体に、第2の導電形の不純物を拡散
して前記第1、第2、第3の半導体層に高濃度第2導電
形不純物拡散領域、および低濃度第2導電形不純物拡散
領域をそれぞれに形成した構造の半導体レーザにおいて
、前記低濃度第2導電形不純物拡散領域と第1導電形領
域との接合面を、レーザ共振面近傍でレーザの導波路か
ら離れた側に屈曲させると共に、前記導波路の延長部と
レーザ共振面とが接する領域を、高濃度第2導電形不純
物拡散領域とし且つ、第2導電形不純物としてZ_nを
使用したことを特徴とする半導体レーザ装置。
comprising first, second, and third semiconductor layers of a first conductivity type;
The semiconductor layer is formed of a multilayer superlattice structure formed by repeating layers with a thickness of 100 Å or less, and the forbidden band width of the semiconductor layer of the superlattice structure is equal to the bandgap width of the first and third semiconductor layers. A second conductivity type impurity is diffused into a narrower semiconductor substrate to form a high concentration second conductivity type impurity diffusion region and a low concentration second conductivity type impurity diffusion region in the first, second, and third semiconductor layers. In a semiconductor laser having a structure in which regions are respectively formed, a junction surface between the low concentration second conductivity type impurity diffusion region and the first conductivity type region is bent toward a side away from a laser waveguide in the vicinity of a laser resonance surface. In addition, a semiconductor laser device characterized in that a region where the extension of the waveguide and the laser resonant surface are in contact is a highly concentrated second conductivity type impurity diffusion region, and Z_n is used as the second conductivity type impurity.
JP18096084A 1984-08-30 1984-08-30 Semiconductor laser Pending JPS6159791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18096084A JPS6159791A (en) 1984-08-30 1984-08-30 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18096084A JPS6159791A (en) 1984-08-30 1984-08-30 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6159791A true JPS6159791A (en) 1986-03-27

Family

ID=16092287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18096084A Pending JPS6159791A (en) 1984-08-30 1984-08-30 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6159791A (en)

Similar Documents

Publication Publication Date Title
US4309670A (en) Transverse light emitting electroluminescent devices
CA1152623A (en) Semiconductor laser device
JPS59144193A (en) Semiconductor laser
JPS63318188A (en) Semiconductor laser array device
JPS5940592A (en) Semiconductor laser element
JP2622143B2 (en) Distributed feedback semiconductor laser and method of manufacturing distributed feedback semiconductor laser
JPS60145687A (en) Semiconductor laser
JP2532449B2 (en) Semiconductor laser device
CN1027117C (en) Semiconductor diode laser and method for manufacturing the same
JPS6159791A (en) Semiconductor laser
JPH073908B2 (en) Method for manufacturing semiconductor light emitting device
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPS58225681A (en) Semiconductor laser element
EP0144205B1 (en) Semiconductor laser
JPS61160990A (en) Semiconductor laser device
JP3648357B2 (en) Manufacturing method of semiconductor laser device
JPH0414277A (en) Semiconductor laser and its manufacture
JPS6140077A (en) Method for manufacturing GaAs/GaAlAs embedded surface emitting laser oscillation device
JPH0410705Y2 (en)
JPS5834988A (en) Manufacture of semiconductor laser
JPS60163483A (en) Semiconductor laser
JPS62281384A (en) Semiconduvctor laser element and manufacture thereof
JPH01162397A (en) Semiconductor laser element
JPS60134489A (en) Semiconductor laser device
JPS609187A (en) semiconductor light emitting device