JPS6158404A - Controller of electric railcar - Google Patents
Controller of electric railcarInfo
- Publication number
- JPS6158404A JPS6158404A JP59182251A JP18225184A JPS6158404A JP S6158404 A JPS6158404 A JP S6158404A JP 59182251 A JP59182251 A JP 59182251A JP 18225184 A JP18225184 A JP 18225184A JP S6158404 A JPS6158404 A JP S6158404A
- Authority
- JP
- Japan
- Prior art keywords
- control device
- motor
- vibration
- frequency component
- electric vehicle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/10—Indicating wheel slip ; Correction of wheel slip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/26—Rail vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は電気車の制御装置に係り、とくに粘着性能を
最大限に発揮することができるものの構成に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a control device for an electric vehicle, and particularly to a structure that can maximize adhesive performance.
電気車輌の駆動は車輪とレールとの間の摩擦力によって
行われるため、この摩擦力を最大限に利用することが車
輌技術の基本である。第1図は車輪とレールとの間の摩
擦係数とすべり速度との関係を示す特性図で、摩擦係数
の値自体はレールの表面状態、天候、走行速度等によっ
て大巾に変動する。(車輪の引張力/軸重)が第1図P
点の摩擦係数(粘着係数と呼ばれる)を越えると大空転
が発生し、主電動機、歯車装置等の回転部分、レー/し
表面、車輪踏面に機械的損傷が発生するとともに引張力
も低下するためこれを防止し、しかもできるだけP点に
近い状態で運転を行うのが大きな課題である。一般にす
べり速度がP点以下の領域を微小空転、即ちクリープ領
域、P点以上をスリップ領域と称す、ところで、従来は
空転の発生を検知してから引張力を低減するいわゆる空
転発生後の事後処理制御システムが採用されていた。Electric vehicles are driven by the frictional force between the wheels and the rails, so making the most of this frictional force is the basis of vehicle technology. FIG. 1 is a characteristic diagram showing the relationship between the friction coefficient and sliding speed between wheels and rails, and the value of the friction coefficient itself varies widely depending on the surface condition of the rail, weather, running speed, etc. (Wheel tensile force/axle load) is shown in Figure 1 P
If the coefficient of friction at a point (called the coefficient of adhesion) is exceeded, a large slip will occur, causing mechanical damage to rotating parts such as the main motor, gears, raceway surfaces, and wheel treads, as well as reducing the tensile force. The major challenge is to prevent this and to operate the vehicle as close to point P as possible. In general, the area where the slip speed is below point P is called the micro-slip, or creep area, and the area above point P is called the slip area. By the way, in the past, the so-called post-slip process involves detecting the occurrence of slip and then reducing the tensile force. A control system was used.
第2図ないし第4図は従来の電気車の制御装置における
空転検知方式である。それぞれ電圧比較方式、電流比較
方式及び速度発電機方式を示す説明図で、各方式の検出
感度、処理、問題点の比較をしかるに、上記のような従
来の電気車の制御装置(こおいては、空転検知方式によ
ってその検出感度に若干の差異は認められるが、いずれ
も空転発生後即ちスリップ領域での検出であるため第1
図の8点近傍で空転を検知し、8点まで引張力を下げて
再粘着させる方式であり、実用粘着係数が比較的低い領
域で使用されることになり以下のような欠点があった。FIGS. 2 to 4 show a slip detection method in a conventional electric vehicle control device. These are explanatory diagrams showing the voltage comparison method, current comparison method, and speed generator method, respectively, and the detection sensitivity, processing, and problems of each method are compared. Although there are slight differences in detection sensitivity depending on the slip detection method, in both cases the detection is performed after the slip has occurred, that is, in the slip region, so the first
This method detects idling near the 8 point in the figure, lowers the tensile force to the 8 point, and re-adhes it, and is used in an area where the practical adhesive coefficient is relatively low, resulting in the following drawbacks.
即ち、電気機関車においては、動軸を増す必要から製作
コストが高くなり、また動輪数を一定とするとけん側荷
重が小さくなる。That is, in an electric locomotive, the production cost increases due to the need to increase the number of moving axles, and if the number of moving wheels is kept constant, the toe side load becomes smaller.
そして、電車においては一編成中の(電動車/付随車)
即ち電動車比率が大きくなり製作コスト及び保守コスト
が高くなる。And, in the case of trains, one train (electric vehicle/accompanying vehicle)
In other words, the proportion of electric vehicles increases, resulting in higher production and maintenance costs.
この発明はこのような従来のものの欠点を解消するため
になされたもので、大空転が発生する前の前駆現象にお
ける輪軸の自励振動における固有振動周波数成分を検出
し、この固有振動周波数成分をその車輌速度に比例した
許容最大振巾基準と比較し上記固有振動周波数成分が一
定になるように電動機の引張力を制御することにより、
微小空転を許容しながら粘着性能を最大限に発揮するこ
とができる電気車の制御装置を提供することを目的とす
るものである。This invention was made in order to eliminate the drawbacks of the conventional ones, and it detects the natural vibration frequency component of the self-excited vibration of the wheel set during the precursor phenomenon before the occurrence of a large slip, and calculates this natural vibration frequency component. By controlling the tensile force of the electric motor so that the above-mentioned natural vibration frequency component becomes constant by comparing it with the allowable maximum amplitude standard proportional to the vehicle speed,
The object of the present invention is to provide a control device for an electric vehicle that can maximize adhesive performance while allowing slight slippage.
以下、この発明の実施例を図面(こついて説明する。 Embodiments of the present invention will be described below with reference to the drawings.
第5図はこの発明を適用した一実施例における電気車の
制御装置の制御ブロック図である。図において、(’P
an)はパンタグラフ、((H)は/〈ンタグラフ(、
Pan )からの直流入力を制御して台車(BG)内に
組み込まれた主電動機(TM)に直流電流を供給するチ
ョッパ回路、(TS)は台車(BG)の輪軸の自励振動
を検出するトルクセンサ、(TG)は台車(BG)内に
組み込まれた速度発電機で車輌の速度に比例した信号を
出力する。(DF)はトルクセンサ(’I’S)で検出
した自励振動のうち空転前駆現象としての固有振動周波
数成分のみを取り出すディジタルフィルタ回路である。FIG. 5 is a control block diagram of a control device for an electric vehicle in an embodiment to which the present invention is applied. In the figure, ('P
an) is a pantograph, ((H) is /〈ntagraph (,
The chopper circuit controls the DC input from the trolley (BG) and supplies the DC current to the main motor (TM) built into the bogie (BG), and the (TS) detects the self-excited vibration of the wheel shaft of the bogie (BG). The torque sensor (TG) is a speed generator built into the bogie (BG) and outputs a signal proportional to the speed of the vehicle. (DF) is a digital filter circuit that extracts only the natural vibration frequency component as a slip precursor phenomenon from the self-excited vibration detected by the torque sensor ('I'S).
デイジタルフイルり回路(DF )はその入力部に増巾
器(図示せず)を設は所定の範囲の周波数帯を通過せし
め、その中から固有振動周波数をマイクロプロセッサを
使ってディジタル的に処理して抽出するもので、信号処
理時間は1ms程度と極めて早い信号処理を行うことが
できる。セしてトルクセンサ(TS)とディジタルフィ
ルタ回路(DF)とにより振動検出装置(VS)を構成
する。(C!PR)は上記固有振動周波数成分の許容最
大振巾基準(As)と速度発電機(T G 、)が検出
した速度信号とを加算した車輌速度に比例した許容最大
振巾M準(REF)と、ディジタルフィルタ回路(DF
)からの出力とを比較する比較器、(SC)は比較器(
OPR)からの出力を受けてクリープ量を制御する制御
信号を出力するクリープ制御器、(AMIl)はクリー
プ制御器(SC)からの制御信号と加速電流指令(IP
)と直流変成器(DCOT)により検出した主電動機電
流(IM)とを入力してチョッパ回路(OH)にゲート
信号を出力する増巾器である。そして、チョッパ回路(
OH) 、車輌速度に比例した許容最大振巾基準(RE
F)、比較器(CPR)、クリープ制御器(SC)及び
増巾器(AMP)により電動機制御装置としてチョッパ
制御装置(TMC)を構成する。A digital filter circuit (DF) has an amplifier (not shown) installed at its input to pass a frequency band within a predetermined range, and the natural oscillation frequency is digitally processed using a microprocessor. The signal processing time is approximately 1 ms, which enables extremely fast signal processing. A vibration detection device (VS) is configured by a torque sensor (TS) and a digital filter circuit (DF). (C!PR) is the maximum allowable amplitude standard (As) that is proportional to the vehicle speed, which is the sum of the maximum allowable amplitude standard (As) of the natural vibration frequency component and the speed signal detected by the speed generator (TG,). REF) and digital filter circuit (DF
), (SC) is a comparator that compares the output from the comparator (
The creep controller (AMIl) receives the output from the creep controller (SC) and outputs a control signal to control the amount of creep.
) and the main motor current (IM) detected by a DC transformer (DCOT), and outputs a gate signal to the chopper circuit (OH). And the chopper circuit (
OH), permissible maximum amplitude standard (RE) proportional to vehicle speed.
F), a comparator (CPR), a creep controller (SC), and an amplifier (AMP) constitute a chopper control device (TMC) as a motor control device.
なお、上記の輪軸の自励振動における固有振動周波数は
駆動系のねじりバネ、車軸のねじりバネ系のねじりバネ
剛性の定数によって決まり第6図はこの一例を示す。即
ち、第6図(a)はすべり速度Xのときのシミュレーシ
ョン結果:こ基づく自励振動の振巾の周波数特性を示し
、この例では固有振動周波数はF、E[zとなっている
。そしてクリープ領域においてすべり速度がXからyに
増大すると同図(blに示すように、上記振巾はすべり
速度の大きさに比例して大きくなっていることが判る。The natural vibration frequency of the above-mentioned self-excited vibration of the wheel axle is determined by the torsion spring stiffness constant of the torsion spring of the drive system and the torsion spring system of the axle, and FIG. 6 shows an example of this. That is, FIG. 6(a) shows the frequency characteristics of the amplitude of self-excited vibration based on the simulation result when the sliding speed is X, and in this example, the natural vibration frequencies are F, E[z. As the sliding speed increases from X to y in the creep region, it can be seen that the amplitude increases in proportion to the sliding speed, as shown in the figure (bl).
なお、上記振巾は車輌速度に比例することが明らか(こ
なっている。It is clear that the above swing width is proportional to the vehicle speed.
次に、上記のように構成されたこの発明の一実施例とし
ての電気車の制御装置の動作を説明する。Next, the operation of the control device for an electric vehicle as an embodiment of the present invention configured as described above will be explained.
台車(BC)の輪軸装置に組み込まれた主電動機(TM
)によって車軸が駆動されるが、車輪に微小空転が発生
すると車軸にねじりの自励振動が発生する。そして、こ
の自励振動の固有振動周波数成分は第6図に示すように
すべり速度の上昇ととも(こ増加する。また、上記自励
振動の固有振動周波数成分は、第7図に示すように、車
輌速度にほぼ比例して増加する。従って、トルクセンサ
(TS)により上記自励振動を検出し、これからデイジ
タルフイルり回路(D F 、)によりその固有振動周
波数成分のみを取り出し、第1図のQ点)こ対応する振
動成分の車輌速度Iこ比例した許容最大振巾基準(RE
F )と比較器(CPR)により比較しその結果がクリ
ープ制御器(SC)を介して増巾器(Ba)に入力され
る。そして、加速電流指令(IP)を受けた増巾器(A
MP)はチョッパ回路(C!H)のゲート制御回路を制
御し、上記振動成分が第1図のQ点近傍(こ対応する値
を維持するように主電動機電流指令(IP)を制御して
主電動機(TM)の引張力を制御する。The main electric motor (TM) built into the wheel axle device of the bogie (BC)
) drives the axle, but when a slight slip occurs in the wheel, torsional self-excited vibration occurs in the axle. The natural vibration frequency component of this self-excited vibration increases as the sliding speed increases as shown in Figure 6.The natural vibration frequency component of the self-excited vibration increases as shown in Figure 7. , increases almost in proportion to the vehicle speed. Therefore, the torque sensor (TS) detects the above self-excited vibration, and from this, the digital filter circuit (D F ) extracts only its natural vibration frequency component. The allowable maximum amplitude standard (RE) which is proportional to the vehicle speed I of the corresponding vibration component
F) is compared by a comparator (CPR) and the result is input to the amplifier (Ba) via the creep controller (SC). Then, the amplifier (A) receives the acceleration current command (IP).
MP) controls the gate control circuit of the chopper circuit (C!H), and controls the traction motor current command (IP) so that the vibration component is maintained near the Q point in Figure 1 (the corresponding value). Controls the pulling force of the traction motor (TM).
上記のように、この発明の一実施例においては、上記制
御によって電気車は第1図のQ点(こおけるすべり速度
vSで運転することになり、し〒ルの表面状態や天候等
の条件に関係なく、車輪とレールとの間の最大摩擦係数
にほぼ近い値を利用できるので、電気機関車の場合にあ
っては動軸数を減少させることができ(例えば6動軸か
ら4動軸に減少可能)電気機関車の製作コストの大巾な
低減、省資源が図られ、また主電動機等の単機容量の増
大によって効率向上による省エネルギー化を図ることが
できる。更に、電車の場合には粘着係数の改善によって
一編成列車1こおける電動車比率を低減することができ
、初期投資の大巾な節減と省資源、また列車重量の低減
による省エネルギー化と保守費の低減を図ることができ
る〇
第8図はこの発明を適用した他の実施例における電気車
の制御装置の制御ブロック図で、第5図のチョッパ回路
(CEP)に代わり主変圧器(M’l’几)とその2次
側に接続されたサイリスタブリッジ回路(THE)が採
用されており、車輌速度に比例した許容最大振巾基準(
几EF) 、比較器(CPR) 、クリープ制御器(8
0)及び増巾器(AMP)を含めて電動機制御装置とし
てのサイリスタ位相制御装置(TMC’)を構成してい
る。この場合、交流電気車として、上記一実施例の場合
と同様の効果を達成することができる。As described above, in one embodiment of the present invention, the electric vehicle is operated at the sliding speed vS at point Q in FIG. Regardless of the coefficient of friction between the wheels and the rail, it is possible to use a value that is close to the maximum friction coefficient between the wheels and the rails, so in the case of electric locomotives, it is possible to reduce the number of moving axles (for example, from 6 moving axles to 4 moving axles). It is possible to significantly reduce the production cost of electric locomotives (can be reduced to 100%) and save resources, and by increasing the capacity of single machines such as the main motor, it is possible to save energy by improving efficiency.Furthermore, in the case of electric trains, By improving the adhesion coefficient, it is possible to reduce the proportion of electric vehicles in each train, resulting in significant initial investment and resource savings, as well as energy savings and maintenance cost reductions by reducing train weight. 〇Figure 8 is a control block diagram of a control device for an electric vehicle in another embodiment to which the present invention is applied, in which the chopper circuit (CEP) in Figure 5 is replaced by a main transformer (M'l') and its 2nd embodiment. A thyristor bridge circuit (THE) connected to the next side is adopted, and the maximum allowable amplitude standard (THE) is proportional to the vehicle speed.
EF), comparator (CPR), creep controller (8
0) and an amplifier (AMP) constitute a thyristor phase control device (TMC') as a motor control device. In this case, as an AC electric vehicle, the same effects as in the above embodiment can be achieved.
第9図は第5図のディジタルフィルタ回路(DF)をア
ナログフィルタ回路(AF)と検波回路(1)ET )
とで構成した実施例でトルクセンサ(’I’s)による
輪軸の自励振動のうち固有振動周波数成分を検出する方
式である。Figure 9 shows the digital filter circuit (DF) in Figure 5 combined with an analog filter circuit (AF) and a detection circuit (1) ET).
In this embodiment, the torque sensor ('I's) detects the natural vibration frequency component of the self-excited vibration of the wheel set.
第10図は第8図のディジタ/I/フィルタ回路(DF
)をアナログフィルタ回路(AF)と検波回路(DET
)とで構成した実施例で、トルクセンサ(TS)によ
る輪軸の自励振動のうち、固有振動周波数成分を検出す
る方式である。Figure 10 shows the digital/I/filter circuit (DF
) to the analog filter circuit (AF) and detection circuit (DET
), which detects the natural vibration frequency component of the self-excited vibration of the wheel set using a torque sensor (TS).
第9図および第10図に示す実施例においても1上記固
有振動周波数成分の振巾をその車輌速度に比例した許容
最大振巾基準(REF)と比較し上記固有振動周波数成
分が一定になるよう主電動機(TM)の引張力を制御す
ることにより、微小空転を許容しながら粘着性能を最大
限に発揮することができる電気車の制御装置を提供する
。In the embodiments shown in FIGS. 9 and 10 as well, 1 the amplitude of the natural vibration frequency component is compared with the permissible maximum amplitude reference (REF) proportional to the speed of the vehicle so that the natural vibration frequency component becomes constant. To provide a control device for an electric vehicle that can maximize adhesive performance while allowing slight slippage by controlling the tensile force of a main electric motor (TM).
第11図は電動機制御装置として可変電圧可変周波数制
御回路(VVVF)を使用したサイリスタ可変電圧可変
周波数制御装置(TMO)を適用した場合のこの発明の
他の実施例を示し、この場合主電動機(TM)として8
相かご形誘導電動機を使用する電気車の制御装置を提供
する。FIG. 11 shows another embodiment of the present invention in which a thyristor variable voltage variable frequency control device (TMO) using a variable voltage variable frequency control circuit (VVVF) is applied as a motor control device. TM) as 8
A control device for an electric vehicle using a phase squirrel cage induction motor is provided.
この発明は以上説明したように、大空転が発生する前の
前駆現象における輪軸の自励振動の固有振動周波数取分
を検出し1この固有振動周波数取分をその車輌速度に比
例した許容最大振巾基準と比較し上記固有振動周波数成
分が一定となるよう蚤ζ電動機の引張力を制御する構成
としたので、車仲とレールとの最大摩擦係数にほぼ近い
摩擦係数を利用することができ粘着性能を最大限に発揮
することができるという効果がある。As explained above, this invention detects the natural vibration frequency fraction of the self-excited vibration of the wheel set during the propulsive phenomenon before a large slip occurs, and converts this natural vibration frequency fraction into the allowable maximum vibration proportional to the vehicle speed. The tensile force of the Flea ζ motor is controlled so that the above-mentioned natural vibration frequency component is constant compared to the width standard, so it is possible to utilize a coefficient of friction that is almost close to the maximum coefficient of friction between the train and the rail. This has the effect of maximizing performance.
第1図は車輪とレールとの間の摩擦係数とすべり速度と
の関係を示す特性図、第2図ないし第4図は従来の電気
車の制御装置における全幅検知方式であるそれぞれ電圧
比較方式、電流比較方式及び速度発電機方式を示す説明
図、第6図はこの発明の一実施例におけろ電気車の制御
装置の制御ブロック図、第6図は自励振動の振巾の周波
数特性を示す特性図、第7図は車輌速度と固有振動周波
数成分の振巾との関係を示す特性図、第8図ないし第1
1図はこの発明のそれぞれ異なる他の実施例における電
気車の制御装置の制御ブロック図である。
図において、(TM)は電動機としての主電動機、(V
S)は振動検出装置、(REF)は車輌速度に比例した
許容最大振巾基準、(TMC)は電動機制御装置である
。
なお図中同一符号は同−又は和尚部分を示す。Fig. 1 is a characteristic diagram showing the relationship between the friction coefficient and sliding speed between the wheels and the rail, and Figs. 2 to 4 are the voltage comparison method, which is the full width detection method in the conventional electric vehicle control device, respectively. An explanatory diagram showing a current comparison method and a speed generator method, FIG. 6 is a control block diagram of a control device for an electric vehicle in an embodiment of the present invention, and FIG. 6 shows a frequency characteristic of the amplitude of self-excited vibration. The characteristic diagram shown in Figure 7 is a characteristic diagram showing the relationship between the vehicle speed and the amplitude of the natural vibration frequency component, and Figures 8 to 1 are
FIG. 1 is a control block diagram of a control device for an electric vehicle in other different embodiments of the present invention. In the figure, (TM) is the traction motor, (V
S) is a vibration detection device, (REF) is a permissible maximum amplitude reference proportional to vehicle speed, and (TMC) is a motor control device. Note that the same reference numerals in the drawings indicate the same or similar parts.
Claims (7)
る固有振動周波数成分を検出して振動検出信号を出力す
る振動検出装置、上記振動検出信号と上記固有振動周波
数成分の車輌速度に比例した許容最大振巾基準とを比較
し上記固有振動周波数成分が一定になるように上記電動
機の引張力を制御する電動機制御装置を備えたことを特
徴とする電気車の制御装置。(1) A vibration detection device that detects the natural vibration frequency component of the self-excited vibration of a wheel axle driven by an electric motor and outputs a vibration detection signal, and a permissible maximum of the vibration detection signal and the natural vibration frequency component proportional to the vehicle speed. A control device for an electric vehicle, comprising a motor control device that controls the tensile force of the electric motor so that the natural vibration frequency component becomes constant by comparing it with a swing width reference.
励振動を検出して検出信号を出力するトルクセンサと上
記検出信号を入力して上記自励振動の固有振動周波数成
分を取り出し振動検出信号を出力するフィルタ回路とか
ら構成されたことを特徴とする特許請求の範囲第1項記
載の電気車の制御装置。(2) The vibration detection device includes a torque sensor that is attached to the wheel axle and detects the self-excited vibration of the wheel axle and outputs a detection signal, and a vibration detection device that inputs the detection signal and extracts the natural vibration frequency component of the self-excited vibration. 2. The control device for an electric vehicle according to claim 1, further comprising a filter circuit that outputs a filter circuit.
とを特徴とする特許請求の範囲第2項記載の電気車の制
御装置。(3) The control device for an electric vehicle according to claim 2, wherein the filter circuit is a digital filter circuit.
とから構成されたことを特徴とする特許請求の範囲第2
項記載の電気車の制御装置。(4) Claim 2, characterized in that the filter circuit is composed of an analog filter circuit and a detection circuit.
A control device for an electric vehicle as described in Section 1.
の電流を制御することにより上記電動機の引張力を制御
するチョッパ制御装置であることを特徴とする特許請求
の範囲第1項ないし第4項のいずれかに記載の電気車の
制御装置。(5) Claims 1 to 4, characterized in that the motor control device is a chopper control device that controls the tensile force of the motor by controlling the current of the motor using a chopper circuit. A control device for an electric vehicle according to any one of the above.
して電動機の電流を制御することにより上記電動機の引
張力を制御するサイリスタ位相制御装置であることを特
徴とする特許請求の範囲第1項ないし第4項のいずれか
に記載の電気車の制御装置。(6) The motor control device is a thyristor phase control device that controls the tensile force of the motor by controlling the current of the motor using a thyristor bridge circuit. The control device for an electric vehicle according to any one of Item 4.
を制御するサイリスタ可変電圧可変周波数制御装置であ
ることを特徴とする特許請求の範囲第1項ないし第4項
のいずれかに記載の電気車の制御装置。(7) The motor control device is a thyristor variable voltage variable frequency control device that controls the tensile force of an 8-phase squirrel cage induction motor, according to any one of claims 1 to 4. electric car control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59182251A JPS6158404A (en) | 1984-08-29 | 1984-08-29 | Controller of electric railcar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59182251A JPS6158404A (en) | 1984-08-29 | 1984-08-29 | Controller of electric railcar |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6158404A true JPS6158404A (en) | 1986-03-25 |
Family
ID=16114985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59182251A Pending JPS6158404A (en) | 1984-08-29 | 1984-08-29 | Controller of electric railcar |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6158404A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS563721A (en) * | 1979-06-20 | 1981-01-16 | Kunimoto Shokai:Kk | Strip footing constructing method |
JPS573502A (en) * | 1980-06-04 | 1982-01-09 | Hitachi Ltd | Slip detecting device |
JPS5813382A (en) * | 1981-07-16 | 1983-01-25 | Tax Adm Agency | Saccharifying fermentation of non-steamed grain |
-
1984
- 1984-08-29 JP JP59182251A patent/JPS6158404A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS563721A (en) * | 1979-06-20 | 1981-01-16 | Kunimoto Shokai:Kk | Strip footing constructing method |
JPS573502A (en) * | 1980-06-04 | 1982-01-09 | Hitachi Ltd | Slip detecting device |
JPS5813382A (en) * | 1981-07-16 | 1983-01-25 | Tax Adm Agency | Saccharifying fermentation of non-steamed grain |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4701682A (en) | Control system for maintaining traction of rolling stock | |
US5661378A (en) | Tractive effort control method and system for recovery from a wheel slip condition in a diesel-electric traction vehicle | |
US6012011A (en) | Traction control system and a method for remedying wheel-slippage | |
US6163121A (en) | Torque maximization and vibration control for AC locomotives | |
JPH0880082A (en) | Controller of electric rolling stock | |
US4463289A (en) | Wheel slip control using differential signal | |
US4588932A (en) | Slip-limiting control for rail vehicles | |
JP2674999B2 (en) | Train drive system | |
JPH04248301A (en) | Controller for electric vehicle | |
JPS6158404A (en) | Controller of electric railcar | |
JPS61116903A (en) | Controller of electric railcar | |
JPS6098804A (en) | Controller of electric railcar | |
JPS6216003A (en) | Controller for electric rolling stock | |
JPS61132006A (en) | Controller of electric railcar | |
JPH0755004B2 (en) | Electric vehicle control device | |
JPS61285006A (en) | Controller of electric railcar | |
Yasuoka et al. | Consideration of wheel slip and readhesion control for induction traction motor electric locomotives with individual traction control | |
JPS60139104A (en) | Controller of electric railcar | |
JP2824696B2 (en) | Electric car control device | |
JPS627307A (en) | Controller of electric railcar | |
JPS643791B2 (en) | ||
JPS6091805A (en) | Controller for railway train | |
JPH04121004A (en) | Controller for electric motor vehicle | |
JPS6260402A (en) | Control method of re-adhesion of electric rolling stock | |
SU956326A1 (en) | Device for regulating electrified rolling stock traction motors rotational speed |