JPS6157710B2 - - Google Patents
Info
- Publication number
- JPS6157710B2 JPS6157710B2 JP53090434A JP9043478A JPS6157710B2 JP S6157710 B2 JPS6157710 B2 JP S6157710B2 JP 53090434 A JP53090434 A JP 53090434A JP 9043478 A JP9043478 A JP 9043478A JP S6157710 B2 JPS6157710 B2 JP S6157710B2
- Authority
- JP
- Japan
- Prior art keywords
- mos
- switch
- control signal
- layer
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003990 capacitor Substances 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 21
- 238000009792 diffusion process Methods 0.000 description 12
- 239000005360 phosphosilicate glass Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/201—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of only components covered by H10D1/00 or H10D8/00, e.g. RLC circuits
- H10D84/204—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of only components covered by H10D1/00 or H10D8/00, e.g. RLC circuits of combinations of diodes or capacitors or resistors
- H10D84/209—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of only components covered by H10D1/00 or H10D8/00, e.g. RLC circuits of combinations of diodes or capacitors or resistors of only resistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B20/00—Read-only memory [ROM] devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
- H03M1/74—Simultaneous conversion
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Analogue/Digital Conversion (AREA)
- Electronic Switches (AREA)
- Attenuators (AREA)
Description
【発明の詳細な説明】
本発明はA/D変換器、D/A変換器の電圧分
圧器に係り、特に、MOS構造の電圧分圧器であ
つて、各分圧電圧を出力する際の各スイツチ構成
をE―MOSとD―MOSを組み合わせた電圧分圧
器に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a voltage divider for an A/D converter or a D/A converter, and particularly to a voltage divider with a MOS structure, in which each divided voltage is output. This article relates to a voltage divider that combines E-MOS and D-MOS switch configurations.
従来、MOS構造での電圧分圧器は第1図、第
2図の構成を有している。第1図において、1は
電圧分圧器の基準電圧(電源電圧)に接続される
端子、2は電圧分圧器の他の基準電圧(接地電
圧)に接続される端子、3は端子1,2間の電圧
の分圧電圧を出力する出力端子である。R1〜Ri
は端子1,2間に配置される拡散抵抗層で、R1
は一端を端子1に接続する第1の拡散抵抗層、
R2は一端を拡散抵抗層R1の他端に接続する拡散
抵抗層、R3は一端を拡散抵抗層R2の他端に接続
する拡散抵抗層である。以下順次拡散抵抗層が接
続され、Riは一端を拡散抵抗層Ri-1の他端に接
続し、他端を端子2に接続する拡散抵抗層であ
る。拡散抵抗層R1〜Riは各々固有の抵抗値r1〜
riの抵抗器を構成し端子1,2間の電圧を各抵
抗値r1〜riに応じて分圧する。S11〜Siは一段目
のスイツチ構成を示す。S11は一端を拡散抵抗層
R1,R2の接続点に接続するスイツチ、S12は一端
を拡散抵抗層R2,R3の接続点に接続し他端をス
イツチS11の他端に接続するスイツチである。以
下順次各スイツチは各拡散抵抗層の接続点に接続
され、S1i-1は一端を拡散抵抗層Ri-1,Riの接続
点に接続されるスイツチ、Siは一端を端子2に
接続し、他端をスイツチS1i-1の他端に接続する
スイツチである。S21〜S2〓は2段目のスイツチ
構成を示す。S21は一端をスイツチS11とS12の共
通接続点に接続するスイツチ、S22は一端をスイ
ツチS13とS14の共通接続点に接続し、他端をスイ
ツチS21の他端に接続するスイツチである。以下
順次各スイツチは同様の構成をし、S2〓は一端を
スイツチS1i-3とS1i-2の共通接続点に接続するス
イツチ、S2〓は一端をスイツチS1i-1とS1iの共
通接続点に接続し、他端をスイツチS2〓の他端に
接続するスイツチである。Sj1,Sj2はj段目の
スイツチ構成を示す。Sj1は一端をスイツチSj-
1,1とSj-12の共通接続点に接続するスイツチ、Sj
2は一端をスイツチSj-13とSj-14の共通接続点に
接続し、他端をスイツチSj1の他端および出力端
子3に接続するスイツチである。 Conventionally, a voltage divider with a MOS structure has the configuration shown in FIGS. 1 and 2. In Figure 1, 1 is a terminal connected to the reference voltage (power supply voltage) of the voltage divider, 2 is a terminal connected to another reference voltage (ground voltage) of the voltage divider, and 3 is between terminals 1 and 2. This is an output terminal that outputs a divided voltage of the voltage. R 1 ~ R i
is a diffused resistance layer placed between terminals 1 and 2, and R 1
is a first diffused resistance layer whose one end is connected to terminal 1;
R2 is a diffused resistance layer whose one end is connected to the other end of the diffused resistance layer R1 , and R3 is a diffused resistance layer whose one end is connected to the other end of the diffused resistance layer R2 . Thereafter, the diffused resistance layers are sequentially connected, and R i is a diffused resistance layer whose one end is connected to the other end of the diffused resistance layer R i-1 and the other end is connected to the terminal 2. Each of the diffused resistance layers R 1 to R i has a specific resistance value r 1 to
A resistor r i is configured and the voltage between terminals 1 and 2 is divided according to each resistance value r 1 to r i . S 11 to S i indicate the first stage switch configuration. S 11 has one end with a diffused resistance layer
The switch S12 connected to the connection point of R 1 and R 2 is a switch that connects one end to the connection point of the diffused resistance layers R 2 and R 3 and the other end to the other end of the switch S 11 . Each switch is successively connected to the connection point of each diffused resistance layer. This is a switch whose other end is connected to the other end of switch S1i -1 . S 21 to S 2 〓 indicate the second stage switch configuration. S 21 is a switch that connects one end to the common connection point of switches S 11 and S 12 , and S 22 connects one end to the common connection point of switches S 13 and S 14 , and the other end to the other end of switch S 21 . It is a switch to do this. The following switches have the same configuration in sequence: S 2 〓 is a switch that connects one end to the common connection point of switches S 1i-3 and S 1i-2 , and S 2 〓 is a switch that connects one end to the common connection point of switches S 1i-1 and S 1i. This is a switch that connects to the common connection point of the switch S 2 〓 and the other end of the switch S 2 〓. S j1 and S j2 indicate the j-th switch configuration. S j1 has one end switched to S j-
1 , a switch connected to the common connection point of 1 and S j-12 , S j
2 is a switch whose one end is connected to the common connection point of switches S j-13 and S j-14 , and whose other end is connected to the other end of switch S j1 and the output terminal 3.
S1,1,S2,2,〜Sj,はスイツチ
の導通、非導通を制御する制御信号でS1と1
は互いに反転した信号である。たとえば拡散抵抗
層R1とR2の接続点電圧を出力する場合、制御信
号S1,S2……Sjを導通させ、制御信号1,
2,……を非導通にさせる。 S1, 1, S2, 2, ~Sj, are control signals that control the conduction and non-conduction of the switches.
are mutually inverted signals. For example, when outputting the voltage at the connection point between the diffused resistance layers R1 and R2 , the control signals S1, S2...Sj are made conductive, and the control signals 1,
2. Make ... non-conductive.
第2図は第1図の回路の一部分のMOS構成の
パターン図を示す。 FIG. 2 shows a pattern diagram of a MOS configuration of a portion of the circuit of FIG.
第2図でR2,R3は拡散抵抗層で夫々l2,l
3間の抵抗値r2,r3を持つ。S1,1は制
御信号線を表わし製造プロセスの構造上Al層で
作られる。斜線で示される部分E1,E2,E3
はAlゲートのMOS構造のスイツチを構成してい
る。G1,G2,G3は制御信号線S1,S2と
各Alゲートを接続するためのAl配線である。C
1,C2,C3は制御信号線S1,S2と各Al
配線G1,G2,G3とを接続するコンタクトで
ある。たとえば、拡散抵抗層R2とR3の接続点
電圧を出力する場合、nチヤンネルでは制御信号
S1,2,……には“L”レベル、制御信号
1,S2,……Sjには“H”レベルを印加させ
スイツチングする。 In Figure 2, R 2 and R 3 are the diffused resistance layers l2 and l, respectively.
It has resistance values r2 and r3 between 3. S1,1 represents a control signal line and is made of an Al layer due to the structure of the manufacturing process. Portions E1, E2, E3 indicated by diagonal lines
constitutes a switch with an Al gate MOS structure. G1, G2, and G3 are Al wirings for connecting the control signal lines S1 and S2 to each Al gate. C
1, C2, C3 are control signal lines S1, S2 and each Al
This is a contact that connects the wirings G1, G2, and G3. For example, when outputting the voltage at the connection point between the diffused resistance layers R2 and R3, in the n channel, the control signals S1, 2, ... are at "L" level, and the control signals 1, S2, ..., Sj are at "H" level. is applied and switched.
上記のように従来のAlゲートのMOS構造電圧
分圧器は、Alの制御信号線を拡散抵抗層の領域
とは別の領域に作らなければならなかつたため、
チツプ面積が大きくなる欠点があつた。特に多数
の拡散抵抗層の接点電圧を出力する電圧分圧器を
構成する場合にはチツプ面積が非常に大きくなつ
た。またMOS構造のAlゲートとAl制御信号線と
の間をAl配線で接続しなければならないという
欠点もあつた。 As mentioned above, in the conventional Al gate MOS structure voltage divider, the Al control signal line had to be made in a region different from the region of the diffused resistance layer.
The disadvantage was that the chip area became large. In particular, when constructing a voltage divider that outputs the contact voltages of a large number of diffused resistance layers, the chip area becomes extremely large. Another drawback was that the Al gate of the MOS structure and the Al control signal line had to be connected by Al wiring.
本発明の目的は、チツプ面積の小さいMOS構
造電圧分圧器を提供するにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a MOS voltage divider with a small chip area.
本発明の特徴は、拡散抵抗またはコンデンサで
作つた電圧分圧器の分電圧引出線上に制御信号線
層を形成し、各交点部分をMOS構造のスイツチ
と成し、これらMOS構造スイツチのうち制御信
号でオンオフさせたいものはE―MOSにし、制
御信号の如何に拘らずオン状態を保たせるものは
D―MOSにしたことにある。 The feature of the present invention is that a control signal line layer is formed on the divided voltage lead line of a voltage divider made of a diffused resistor or a capacitor, each intersection part is formed as a switch of MOS structure, and the control signal line layer of these MOS structure switches is The reason is that we used E-MOS for those that we wanted to turn on and off, and used D-MOS for those that we wanted to keep on regardless of the control signal.
以下本発明の実施例を説明する。 Examples of the present invention will be described below.
第3図において、1は電圧分圧器の基準電圧
(電源電圧)に接続される端子、2は電圧分圧器
の他の基準電圧(接地電圧)に接続される端子、
3は端子1,2間の電圧の分圧電圧を出力する出
力端子である。R1〜Riは端子1,2間に配置さ
れる拡散抵抗層或はイオン打込みを施した拡散抵
抗層で、R1は一端を端子1に接続する第1の拡
散抵抗層、R2は一端を拡散抵抗層R1の他端に接
続する拡散抵抗層で、以下順次拡散抵抗層が接続
され、i番目のRiは一端を拡散抵抗層Ri-1の他
端に接続し、他端を端子2に接続する拡散抵抗層
である。拡散抵抗層R1〜Riは各々固有の抵抗値
r1〜riを有し端子1,2間の電圧を各抵抗値r1〜
riに応じて分圧する。図において、T11〜T12iは
1段目のスイツチ列を構成する。T11は一端を拡
散抵抗層R1とR2の接続点に接続するスイツチ、
T12は一端をスイツチT11の他端に接続するスイ
ツチ、T13は一端を拡散抵抗層R2とR3の接続点に
接続するスイツチ、T14は一端をスイツチT13の
他端に接続し、他端をスイツチT12の他端に接続
するスイツチ、T15は一端を拡散抵抗層R3とR4の
接続点に接続するスイツチ、T16は一端をスイツ
チT15の他端に接続するスイツチ、T17は拡散抵
抗層R4とR5の接続点に接続するスイツチT18は一
端をスイツチ17の他端に接続し、他端をスイツ
チT16の他端に接続するスイツチで、以下順次拡
散抵抗層の接続点にスイツチが接続され、T12i-3
は一端を拡散抵抗層Ri-1とRiの接続点に接続さ
れるスイツチ、Ti,2i-2は一端をスイツチTi2i-3
に接続されるスイツチ、T12i-1は一端を端子2に
接続するスイツチ、Ti2iは一端をスイツチT12i-1
の他端に接続し、他端をスイツチT12i-2に接続さ
れるスイツチである。これらのスイツチ列は
MOS構造のトランジスタで構成され、各々エン
ハンスメント形のMOSトランジスタ(E―
MOS)とデイプレツシヨン形のMOSトランジス
タ(D―MOS)の組み合わせで作られている。
すなわち、第1段目のスイツチ列で
T11,T1(i),T1(i+1) (1)
ここで、i=4t(t=1,2,3,……)
の関係を満足するスイツチ用MOSをE―MOSで
構成し、
T1(i)T1(i+1) (2)
ここで、i=2t(t=1,3,5,7,……)
の関係を満足するスイツチ用MOSをD―MOSで
構成する。 In FIG. 3, 1 is a terminal connected to the reference voltage (power supply voltage) of the voltage divider, 2 is a terminal connected to another reference voltage (ground voltage) of the voltage divider,
3 is an output terminal that outputs a divided voltage of the voltage between terminals 1 and 2. R 1 to R i are diffused resistance layers arranged between terminals 1 and 2 or ion-implanted diffused resistance layers, R 1 is the first diffused resistance layer whose one end is connected to terminal 1, and R 2 is the first diffused resistance layer whose one end is connected to terminal 1. A diffused resistance layer whose one end is connected to the other end of the diffused resistance layer R1 , and the subsequent diffused resistance layers are successively connected, and the i-th R i has one end connected to the other end of the diffused resistance layer R i-1 , and the other This is a diffused resistance layer whose end is connected to terminal 2. Each of the diffused resistance layers R 1 to R i has a specific resistance value.
r 1 to r i and the voltage between terminals 1 and 2 to each resistance value r 1 to
Partial pressure is applied according to r i . In the figure, T 11 to T 12i constitute the first stage switch row. T11 is a switch that connects one end to the connection point of the diffused resistance layers R1 and R2 ,
T 12 is a switch that connects one end to the other end of switch T 11 , T 13 is a switch that connects one end to the connection point of diffused resistance layers R 2 and R 3 , and T 14 connects one end to the other end of switch T 13 . T15 is a switch that connects one end to the connection point of diffused resistance layers R3 and R4 , and T16 connects one end to the other end of switch T15 . The switch T17 connects to the connection point between the diffusion resistance layers R4 and R5.The switch T18 connects one end to the other end of the switch 17 and the other end to the other end of the switch T16 . Switches are sequentially connected to the connection points of the diffused resistance layers, and T 12i-3
T i,2i-2 is a switch whose one end is connected to the connection point of the diffused resistance layers R i-1 and R i , and T i,2i-3 is a switch whose one end is connected to the connection point of the diffused resistance layers R i-1 and R i.
T 12i-1 is a switch that connects one end to terminal 2, T i2i is a switch that connects one end to terminal 2, and T 12i-1 is a switch that connects one end to terminal 2.
This is a switch connected to the other end, and the other end is connected to switch T12i -2 . These switch rows are
Consists of transistors with MOS structure, each of which is an enhancement type MOS transistor (E-
MOS) and a depletion type MOS transistor (D-MOS).
That is, in the first row of switches, T 11 , T 1(i) , T 1(i+1) (1) Here, the relationship i=4t (t=1, 2, 3,...) A satisfying switch MOS is constructed from E-MOS, and the following relationship is established: T 1(i) T 1(i+1) (2) where, i=2t (t=1, 3, 5, 7,...) A switch MOS that satisfies the following is configured with D-MOS.
T21〜T2iは2段目のスイツチ列を構成する。
T21は一端をスイツチT12の他端に接続するスイ
ツチ、T22は一端をスイツチT21の他端に接続す
るスイツチ、T23は一端をスイツチT16の他端に
接続するスイツチ、T24は一端をスイツチT23の
他端に接続し、他端をスイツチT22の他端に接続
するスイツチ、以下順次スイツチが接続され、T
2i-3は一端をスイツチT12i-6の他端に接続するス
イツチ、T2i-2は一端をスイツチT2i-3の他端に接
続するスイツチ、T2i-1は一端をスイツチT12i-2
に接続するスイツチ、T2iは一端をスイツチT2i-
1に接続し、他端をスイツチT2i-2の他端に接続す
るスイツチである。これらのスイツチ列もE―
MOSとD―MOSの組み合わせで作られ
T21,T2(i),T2(i+1) (3)
ここでi=4t(t=1,2,3,4,…)
の関係を満足するスイツチはE―MOSで構成さ
れ、
T2(i),T2(i+1) (4)
ここでi=2t(t=1,3,5,7,…)
の関係を満足するスイツチはD―MOSで構成さ
れる。 T 21 to T 2i constitute the second stage switch row.
T 21 is a switch that connects one end to the other end of switch T 12 , T 22 is a switch that connects one end to the other end of switch T 21 , T 23 is a switch that connects one end to the other end of switch T 16 , T 24 is a switch whose one end is connected to the other end of switch T 23 and the other end is connected to the other end of switch T 22 .
2i-3 is a switch that connects one end to the other end of switch T 12i-6 , T 2i-2 is a switch that connects one end to the other end of switch T 2i-3 , and T 2i-1 is a switch that connects one end to the other end of switch T 12i- 2
The switch T 2i connects one end to the switch T 2i-
1 and the other end is connected to the other end of switch T 2i-2 . These switch rows are also E-
T 21 , T 2(i) , T 2(i+1) (3) Here, the relationship i=4t (t=1, 2, 3, 4,...) is A satisfying switch is composed of E-MOS and satisfies the relationship T 2(i) , T 2(i+1) (4) where i=2t (t=1, 3, 5, 7,...) The switch consists of D-MOS.
Tj1〜Tj4はj段目のスイツチ列を構成する。
Tj1は一端をTj-1,2の他端に接続するスイツチ、
Tj2は一端をスイツチTj1の他端に接続し、他端
を出力端子3に接続するスイツチ、Tj3は一端を
スイツチTj-16の他端に接続するスイツチ、Tj4
は一端をスイツチTj3の他端に接続し、他端を出
力端子3に接続するスイツチである。 T j1 to T j4 constitute a j-th switch row.
T j1 is a switch connecting one end to the other end of T j- 1,2 ;
T j2 is a switch that connects one end to the other end of switch T j1 and the other end to output terminal 3, T j3 is a switch that connects one end to the other end of switch T j-16 , and T j4
is a switch whose one end is connected to the other end of the switch T j3 and the other end is connected to the output terminal 3.
これらのスイツチ列もE―MOSとD―MOSの
組み合わせで作られ、たとえばTj1,Tj4はE―
MOS,Tj2,Tj3はD―MOSで構成される。 These switch rows are also made of a combination of E-MOS and D-MOS; for example, T j1 and T j4 are E-MOS and D-MOS.
MOS, T j2 and T j3 are composed of D-MOS.
S1,1,S2,2,…,Sj,は各々の
スイツチ列を導通、非導通にするための制御信号
でS1,S2,…Sjと1,2,…はそれぞ
れ反転した信号を入力する。たとえば、拡散抵抗
層R2とR3の接続点電圧を出力する場合にはS
1,2,…には“Low”レベルを印加し、
1,S2,…Sjに“High”レベルを印加する。 S1, 1, S2, 2, . . . , Sj are control signals for making each switch row conductive or non-conductive, and S1, S2, . For example, when outputting the voltage at the connection point between the diffused resistance layers R 2 and R 3 , S
Apply "Low" level to 1, 2,...,
A "High" level is applied to 1, S2, . . . Sj.
ここで、D―MOSで構成されるスイツチは制
御信号にかかわらず常に導通状態である。 Here, the switch composed of D-MOS is always in a conductive state regardless of the control signal.
第4図a,bは第3図の回路の一部分のMOS
構造パターン図と断面構造を示す。 Figures 4a and b are MOS parts of the circuit in Figure 3.
A structural pattern diagram and cross-sectional structure are shown.
第4図aでR2,R3,R4は拡散抵抗層で夫々l2,
l3,l4間の抵抗値r2,r3,r4を表わし、S1,1
は互いに反転した制御信号を与える信号線パター
ンである。S1,1信号線と拡散層の交叉する
部分(図中斜線で示す)がスイツチとなるがS
1,1信号線とスイツチ用MOSのゲート層を
同じ材料、すなわち多結晶シリコンにし、たとえ
ば拡散抵抗層R1とR2の接続点から伸びる拡散層
と信号線S1,1の交叉によつてできるMOS
トランジスタをそれぞれE―MOS(あるいはD
―MOS)E11,D―MOS(あるいはE―
MOS)D11構造とする。拡散抵抗層R2とR3の
接続点から伸びる拡散層と信号線S1,1の交
叉によつてできるMOSトランジスタをそれぞれ
D―MOS(あるいはE―MOS)D12,E―
MOS(あるいはD―MOS)E12構造とする。
同様に、拡散抵抗層R3とR4,R4とR5の接続点か
ら伸びる拡散層と信号線S1,1の交叉によつ
てできるMOSトランジスタはそれぞれE―MOS
(あるいはD―MOS)E13,D―MOS(あるい
はE―MOS)D13,D―MOS(あるいはE―
MOS)D14,E―MOS(あるいはD―MOS)
E14となる。 In Fig. 4a, R 2 , R 3 , and R 4 are diffused resistance layers, respectively.
Represents the resistance values r 2 , r 3 , r 4 between l 3 and l 4 , and S1, 1
are signal line patterns that provide mutually inverted control signals. The part where the S1,1 signal line and the diffusion layer intersect (indicated by diagonal lines in the figure) is the switch, but the S
The 1,1 signal line and the gate layer of the switch MOS are made of the same material, that is, polycrystalline silicon, and the diffusion layer extending from the connection point of the diffused resistance layers R1 and R2 intersects with the signal line S1,1. M.O.S.
Each transistor is E-MOS (or D
-MOS) E11, D-MOS (or E-
MOS) D11 structure. The MOS transistors formed by the intersection of the diffusion layer extending from the connection point of the diffusion resistance layers R 2 and R 3 and the signal lines S1, 1 are called D-MOS (or E-MOS) D12, E-, respectively.
It has a MOS (or D-MOS) E12 structure.
Similarly, the MOS transistors formed by the intersection of the signal lines S1 and S1 with the diffusion layers extending from the connection points of the diffusion resistance layers R 3 and R 4 and R 4 and R 5 are E-MOS transistors, respectively.
(or D-MOS) E13, D-MOS (or E-MOS) D13, D-MOS (or E-MOS)
MOS) D14, E-MOS (or D-MOS)
It becomes E14.
したがつて、いま制御信号線S1に“High”
レベル、1に“Low”レベルが印加されるとP
1端子,P2端子にはそれぞれ、拡散抵抗層R1
とR2の接点電圧、拡散抵抗層R3とR4の接点電圧
が出力される。 Therefore, “High” is now applied to the control signal line S1.
When “Low” level is applied to level 1, P
1 terminal and P2 terminal each have a diffused resistance layer R 1
The contact voltage of R 2 and the contact voltage of the diffused resistance layers R 3 and R 4 are output.
このようにE―MOSとD―MOSを組合せ、且
つ制御信号線の層とスイツチ用MOSのゲート層
を同じ材料にすることにより、制御信号線を拡散
層の上に重ねることができ、制御信号線とゲート
層のコンタクトを無くし、制御信号線及びコンタ
クトの面積並びにコンタクトと各層間に設計上
(製造上)必要な距離が少なくなるので、電圧分
圧器のチツプ面積が少なくなる。 By combining E-MOS and D-MOS in this way and using the same material for the control signal line layer and the switch MOS gate layer, the control signal line can be overlapped on the diffusion layer, and the control signal line can be overlaid on the diffusion layer. Since contact between the line and the gate layer is eliminated, the area of the control signal line and the contact, and the required design (manufacturing) distance between the contact and each layer are reduced, so the chip area of the voltage divider is reduced.
第4図bは第4図aのパターン構成の断面構造
を示したもので、10は基板、11は拡散抵抗層
とスイツチ用E―MOS(あるいはD―MOS)の
ドレイン端(あるいはソース端)を構成する拡散
層、12はE―MOS(あるいはD―MOS)のソ
ース端(あるいはドレイン端)とD―MOS(あ
るいはE―MOS)のドレイン端(あるいはソー
ス端)を構成する拡散層、13はD―MOS(あ
るいはE―MOS)のソース端(あるいはドレイ
ン端)および配線層となる拡散層、14はスイツ
チ用MOSのゲート酸化膜、15,16はスイツ
チ用MOSの多結晶シリコンゲート層、19,2
0はそれぞれスイツチ用MOSのチヤネルであ
る。 FIG. 4b shows a cross-sectional structure of the pattern configuration shown in FIG. 4a, where 10 is the substrate, 11 is the diffused resistance layer, and the drain end (or source end) of the switch E-MOS (or D-MOS). 12 is a diffusion layer that constitutes the source end (or drain end) of E-MOS (or D-MOS) and the drain end (or source end) of D-MOS (or E-MOS), 13 14 is the gate oxide film of the switch MOS, 15 and 16 are the polycrystalline silicon gate layers of the switch MOS, 19,2
0 is the channel of the switch MOS.
ここで、ゲート層15,16の下に作られるチ
ヤネル19,20はそれぞれE―MOS(あるい
はD―MOS)D―MOS(あるいはE―MOS)の
構造になつている。 Here, the channels 19 and 20 formed under the gate layers 15 and 16 have an E-MOS (or D-MOS) and a D-MOS (or E-MOS) structure, respectively.
一般に、MOSトランジスタでドレイン端(あ
るいはソース端)の電位を正確にソース端(ある
いはドレイン端)に伝えるためには
VGS−Vth=(VG−VRi)−Vth>0 (5)
が成立しなければならない。ここでVGSはMOS
トランジスタのゲート・ソース間電圧、Vthはし
きい値電圧、VRiはi番目とi+1番目の拡散抵
抗層の接点電圧、VGはゲート電圧を表わす。し
たがつて、制御信号の電圧レベルによつてはD―
MOSのしきい値電圧を下げる。 Generally, in order to accurately transmit the potential at the drain end (or source end) to the source end (or drain end) of a MOS transistor, V GS - V th = (V G - V Ri ) - V th > 0 (5) must be established. Here V GS is MOS
The gate-source voltage of the transistor, V th is the threshold voltage, V Ri is the contact voltage of the i-th and i+1-th diffused resistance layers, and V G is the gate voltage. Therefore, depending on the voltage level of the control signal, D-
Lower the threshold voltage of MOS.
VGSに対するD―MOS,E―MOSのドレイン
電流は第5図の形で表わされる。第5図でVth
E,VthD,VthD1はそれぞれE―MOS,D―
MOS,しきい値をさらに下げたD―MOSのしき
い値電圧を表わす。 The drain currents of D-MOS and E-MOS with respect to V GS are expressed in the form shown in FIG. In Figure 5, V th
E , V thD and V thD1 are E-MOS and D-, respectively.
It represents the threshold voltage of MOS and D-MOS, which has a lower threshold value.
また、同様にE―MOSにおいても正確な接点
電圧を出力するには(5)式を満足しなければならな
いがE―MOSの場合は制御信号の電圧レベルを
上げなければならない。 Similarly, in order to output an accurate contact voltage in E-MOS, equation (5) must be satisfied, but in the case of E-MOS, the voltage level of the control signal must be increased.
第6図aは従来のMOSスイツチ構造の断面を
示し、E―MOSあるいはD―MOS構造の上に絶
縁層としてのPSG(リンシリケートガラス)17
がありその上に更にAl配線層G1〜G3がある
ため、電圧分圧器上に他の配線層を設けることは
できない。これに対し、上記実施例では、多結晶
シリコンの制御信号線層の一部がゲート層となつ
ており、この制御信号線層及びゲート層15,1
6を覆うPSG17の上にはAl層等が存在しない
ので、第6図bに示すようにPSG17の上に全面
Al層18を設けてアースに落せばノイズ防止の
効果がある。また全面Al層の代わりに他の配線
層を設けることもできるので電圧分圧器のチツプ
上の配置に自由度が増える。 Figure 6a shows a cross section of a conventional MOS switch structure, with PSG (phosphosilicate glass) 17 as an insulating layer on top of the E-MOS or D-MOS structure.
Since there are Al wiring layers G1 to G3 on top of the Al wiring layers G1 to G3, it is not possible to provide any other wiring layer on the voltage divider. On the other hand, in the above embodiment, a part of the polycrystalline silicon control signal line layer is a gate layer, and this control signal line layer and gate layers 15, 1
Since there is no Al layer etc. on the PSG 17 that covers the PSG 17, as shown in Figure 6b,
If the Al layer 18 is provided and grounded, it will have the effect of preventing noise. Furthermore, since another wiring layer can be provided instead of the entire Al layer, the degree of freedom in arranging the voltage divider on the chip increases.
第7図は本発明の電圧分圧器における配線およ
び配置上の利点について説明する図で、第7図a
で100は集積回路のチツプを示しx1,y1はそれ
ぞれ寸法をあらわす。200は集積回路内で用い
る論理回路およびそれに関連のある回路、300
は電圧分圧器を示す。第7図aが、制御信号線を
Al層とした従来のチツプ構成とすると電圧分圧
器300の構成は第7図bのようになる。ここ
で、301は電圧分圧器の拡散抵抗層、スイツチ
列、制御信号層を含む部分、302は電圧分圧器
の拡散抵抗層、スイツチ列、制御信号層を含む部
分301へ制御信号を供給する配線層部分で、配
線層部分302の為の面積を必要とする。 FIG. 7 is a diagram explaining the wiring and arrangement advantages of the voltage divider of the present invention, and FIG.
where 100 represents an integrated circuit chip, and x 1 and y 1 represent dimensions, respectively. 200 is a logic circuit used in the integrated circuit and related circuits, 300
indicates a voltage divider. Figure 7a shows the control signal line.
In the case of a conventional chip structure including an Al layer, the voltage divider 300 has a structure as shown in FIG. 7b. Here, 301 is a portion including the diffused resistance layer, switch row, and control signal layer of the voltage voltage divider, and 302 is a wiring that supplies control signals to the portion 301 including the diffused resistance layer, switch row, and control signal layer of the voltage voltage divider. In the layer portion, an area for the wiring layer portion 302 is required.
第7図cは本発明の実施例による電圧分圧器構
成の場合の配置を示す図であるが、拡散抵抗層、
スイツチ列、制御信号層以外に電圧分圧器用の配
線層部分を必要としない第7図bの配線層部分3
02の部分に他の機能を向上させるための回路を
入れることができる。また、第7図bの配線層部
分302の部分に入れる回路がない場合にはチツ
プ寸法を小さくすることができる。第7図dは配
線層部分302に対応する面積を削除してチツプ
寸法を小さくし、しかも論理回路およびそれに関
連のある回路部分が201,202と2つに分か
れその間に本発明の実施例電圧分圧器301が配
置される場合の構成を示しているが、このような
場合でも回路201と202を接続する信号線を
電圧分圧器のPSG上に配置することができる。 FIG. 7c is a diagram showing the arrangement of a voltage divider configuration according to an embodiment of the present invention, in which a diffused resistance layer,
Wiring layer section 3 in Figure 7b that does not require a wiring layer section for a voltage divider other than the switch row and control signal layer.
A circuit for improving other functions can be inserted into the section 02. Furthermore, if there is no circuit to be inserted into the wiring layer portion 302 of FIG. 7b, the chip size can be reduced. In FIG. 7d, the area corresponding to the wiring layer portion 302 is removed to reduce the chip size, and the logic circuit and related circuit portions are divided into two parts 201 and 202, and between them, the voltage according to the embodiment of the present invention is Although the configuration is shown in which a voltage divider 301 is arranged, even in such a case, the signal line connecting the circuits 201 and 202 can be placed on the PSG of the voltage divider.
一般に、MOSトランジスタのオン抵抗Rpoは
次式であらわされる。 Generally, the on-resistance Rpo of a MOS transistor is expressed by the following equation.
Rpo=1/β・W/L・(VGS−Vth) (6)
ここで、βはチヤンネルコンダクタンス定数、
LはMOSトランジスタのチヤネル長、WはMOS
トランジスタのチヤネル幅、VGSはMOSトラン
ジスタのゲート・ソース間電圧、VthはMOSトラ
ンジスタのしきい値電圧である。 R po =1/β・W/L・(V GS −V th ) (6) Here, β is the channel conductance constant,
L is the channel length of the MOS transistor, W is the MOS
The channel width of the transistor, V GS is the gate-source voltage of the MOS transistor, and V th is the threshold voltage of the MOS transistor.
(5)式から明らかなようにMOSトランジスタの
オン抵抗は(チヤネル幅/チヤネル長)に反比例
して小さくなる。 As is clear from equation (5), the on-resistance of a MOS transistor decreases in inverse proportion to (channel width/channel length).
第8図は前記W/Lに対するE―MOSのオン
抵抗特性とD―MOSのオン抵抗特性を示す。上
記実施例のスイツチ構成では一段当りのスイツチ
の抵抗がE―MOSのオン抵抗とD―MOSのオン
抵抗の和となる。たとえば第1段目のスイツチ列
のMOS寸法を第8図aの一段目のW/Lに選ぶ
と1段目の単位スイツチのオン抵抗は(rE1+r
D1)となる。したがつて、j段までのスイツチ列
をすべて一段目のW/Lの寸法で構成すると抵抗
はJ(rE1+rD1)となり拡散抵抗層の各接続点
から出力端子までの抵抗が大きくなる。 FIG. 8 shows the on-resistance characteristics of the E-MOS and the on-resistance characteristics of the D-MOS with respect to the W/L. In the switch configuration of the above embodiment, the resistance of the switch per stage is the sum of the on-resistance of the E-MOS and the on-resistance of the D-MOS. For example, if the MOS dimensions of the first stage switch row are selected as the W/L of the first stage in Figure 8a, the on-resistance of the first stage unit switch is (r E1 + r
D1 ). Therefore, if all of the switch rows up to j stages are configured with the W/L dimensions of the first stage, the resistance will be J(r E1 +r D1 ), and the resistance from each connection point of the diffused resistance layer to the output terminal will become large.
上記実施例による電圧分圧器はスイツチ列の段
数が増加するとスイツチの数が1段当り1/2ずつ
に減少するのでスイツチ部分の面積に余裕が生じ
スイツチ用MOS寸法を増加させることができ
る。そこで、各段のスイツチ用MOSのW/Lを
第8図bの如く段数の増加とともに増加させると
各段ごとにスイツチ用MOSのオン抵抗が減少す
る。 In the voltage divider according to the above embodiment, as the number of stages in the switch array increases, the number of switches decreases by 1/2 per stage, so the area of the switch portion becomes available, and the size of the MOS for the switch can be increased. Therefore, if the W/L of the switch MOS in each stage is increased as the number of stages increases as shown in FIG. 8b, the on-resistance of the switch MOS decreases for each stage.
この場合の拡散抵抗層から各段のスイツチ用
MOSまでの全オン抵抗の特性は第8図bのよう
になり、すべてのスイツチ用MOSの寸法を一段
目のW/Lにした場合に比べ全オン抵抗ΣRpoは
だけ減少する。 In this case, for each stage of switches from the diffused resistance layer.
The characteristics of the total on-resistance up to the MOS are as shown in Figure 8b, and the total on-resistance ΣRpo is only decreases.
第9図は各段のスイツチ用MOS寸法を変化さ
せた場合の電圧分圧器の構成パターン図を示す。
1は電圧分圧器の基準電圧(電源電圧)に接続さ
れる端子、2は電圧分圧器の他の基準電圧(接地
電圧)に接続される端子、3は電圧分圧器の出力
端子である。R1〜Riは拡散抵抗層で各々長さl1〜
liに対応して固有の抵抗値を有する。E11〜E1
i,D11〜D1iは第1段目のスイツチ列を構成す
るE―MOSとD―MOSで各々のMOS寸法は
W1/L1である。E21〜E2〓,D21〜D2〓は第2段
目のスイツチ列を構成するE―MOS,D―MOS
で各々のMOS寸法はW2/L2である。以下順次ス
イツチ列の段数が増加し、第j段目のスイツチ列
のE―MOS,D―MOSの寸法は各々Wj/Ljで
ある。ここで、各段のMOS寸法は拡散抵抗層と
出力端子間に入るすべてのスイツチ用MOSの全
オン抵抗を小さくするため
W1/L1<W2/L2<……<Wj/Lj (8)
の関係を満足させる。 FIG. 9 shows a configuration pattern diagram of a voltage divider when the switch MOS dimensions of each stage are changed.
1 is a terminal connected to a reference voltage (power supply voltage) of the voltage divider, 2 is a terminal connected to another reference voltage (ground voltage) of the voltage divider, and 3 is an output terminal of the voltage divider. R 1 to R i are diffused resistance layers each having a length l 1 to
It has a specific resistance value corresponding to l i . E 11 ~ E 1
i , D 11 to D 1i are E-MOS and D-MOS that constitute the first stage switch row, and the dimensions of each MOS are as follows.
W 1 /L 1 . E 21 to E 2 〓, D 21 to D 2 〓 are E-MOS and D-MOS that constitute the second stage switch row.
The dimensions of each MOS are W 2 /L 2 . Thereafter, the number of stages of the switch row increases sequentially, and the dimensions of the E-MOS and D-MOS of the j-th switch row are each W j /L j . Here, the MOS dimensions of each stage are W 1 /L 1 <W 2 /L 2 <...<W j /L in order to reduce the total on-resistance of all switch MOSs inserted between the diffused resistance layer and the output terminal. j (8) is satisfied.
上記実施例によれば、複数段の切り換え構成か
らなる電圧分圧器のスイツチ用MOSを各段ごと
に変化させることにより、拡散抵抗層と電圧分圧
器の出力端子間のインピーダンスが下げられる。 According to the above embodiment, the impedance between the diffused resistance layer and the output terminal of the voltage voltage divider is lowered by changing the switching MOS for each stage of the voltage voltage divider having a multi-stage switching configuration.
上記実施例による電圧分圧器で用いたE―
MOSとD―MOSを組み合わせた単位スイツチは
拡散抵抗層と出力端子の間に直列に入つたが、E
―MOSとD―MOSの組み合わせによるスイツチ
が並列に入る場合も考えられる。第10図は並列
に入る場合の実施例を示す。 E- used in the voltage divider according to the above embodiment
A unit switch that combines MOS and D-MOS is connected in series between the diffused resistance layer and the output terminal, but the E
- It is also possible that switches using a combination of MOS and D-MOS are connected in parallel. FIG. 10 shows an embodiment in which the circuits are connected in parallel.
同図において、M1は一端を拡散抵抗層R1とR2
の接続点に接続され、他端を出力端子3に接続す
るスイツチ、M2は一端を拡散抵抗層R2とR3の接
続点に接続され、他端を出力端子3に接続するス
イツチ、以下順次各スイツチは拡散抵抗層と出力
端子に接続され、Mi-1は一端を拡散抵抗層Ri-1
とRiの接続点に接続され、他端を出力端子3に
接続するスイツチ、Miは一端を端子2に接続
し、他端を出力端子3に接続するスイツチであ
る。I1〜IiはそれぞれスイツチM1〜Miを導通、
非導通させるための制御信号である。 In the same figure, M 1 connects one end to the diffused resistance layers R 1 and R 2
M 2 is a switch connected to the connection point of the diffusion resistance layers R 2 and R 3 and the other end is connected to the output terminal 3, and the other end is connected to the output terminal 3. Each switch is sequentially connected to the diffused resistance layer and the output terminal, and M i-1 connects one end to the diffused resistance layer R i-1
M i is a switch that connects one end to the terminal 2 and the other end to the output terminal 3. I 1 to I i respectively conduct the switches M 1 to M i ;
This is a control signal for making it non-conductive.
第10図のスイツチ構成をMOS構造で構成
し、制御信号の配線層をゲート層と同じ層で配線
する場合、各制御信号層は各拡散抵抗層の接続点
から伸びる層と交叉する。たとえば、制御信号I1
はi−1本の層と交叉する(第10図で×印をつ
けた箇所)。よつて、第10図の×印をD―MOS
構造とし、スイツチM1〜MiをE―MOS構造とし
拡散抵抗層と出力端子に対して並列にE―MOS
とD―MOSを組み合わせたスイツチ列となる。 When the switch configuration of FIG. 10 is constructed with a MOS structure and the control signal wiring layer is wired in the same layer as the gate layer, each control signal layer intersects with a layer extending from the connection point of each diffused resistance layer. For example, control signal I 1
intersects with i-1 layers (points marked with x in Figure 10). Therefore, the x mark in Figure 10 is D-MOS.
The switches M 1 to M i have an E-MOS structure, and the E-MOS is connected in parallel to the diffused resistance layer and the output terminal.
This is a switch row that combines D-MOS and D-MOS.
第11図は第10図の一部分のMOS構造パタ
ーン図でR2,R3,R4は拡散抵抗を表わし、M1,
M2,M3はE―MOS構造とし、その他のスイツチ
はすべてD―MOS(図のD1,D2,D3)構
造のスイツチとする。 FIG. 11 is a partial MOS structure pattern diagram of FIG. 10, where R 2 , R 3 , and R 4 represent diffused resistances, and M 1 ,
M 2 and M 3 are of E-MOS structure, and all other switches are of D-MOS (D1, D2, and D3 in the figure) structure.
上記各実施例は、拡散抵抗による抵抗分圧器を
例にして説明したが、ゲート酸化膜等で作つたコ
ンデンサからなる容量分圧器についても同様に実
施できるものである。 Although each of the above embodiments has been described using a resistive voltage divider using a diffused resistor as an example, a capacitive voltage divider comprising a capacitor made of a gate oxide film or the like can be similarly implemented.
以上のように本発明は、制御信号線層とMOS
のゲート層を同じ材料にし、且つE―MOSとD
―MOSを組合せたことによつて、制御信号線層
の一部をそのままゲート層として使用することが
可能であり、制御信号線層のための専用スペース
が不要となつて電圧分圧器のチツプ面積を小さく
できる。 As described above, the present invention combines the control signal line layer and the MOS
The gate layers of E-MOS and D are made of the same material, and the E-MOS and D
- By combining MOS, it is possible to use a part of the control signal line layer as it is as a gate layer, eliminating the need for dedicated space for the control signal line layer and reducing the chip area of the voltage divider. can be made smaller.
第1図は従来の電圧分圧器の回路を一部省略し
て示す図、第2図は第1図の回路を実現するチツ
プパターンを示す部分図、第3図は本発明の実施
例に係る電圧分圧器の回路を一部省略して示す
図、第4図aは第3図実施例の回路を実現するチ
ツプパターンを示す部分図、第4図bは第4図の
チツプの一部断面図、第5図はMOSトランジス
タのVGS−ID特性を示す図、第6図aは第2図
のチツプの一部断面図、第6図bチツプ表面を全
面アルミ層で覆つた本発明の実施例のチツプの一
部断面図、第7図は集積回路チツプ上に占める電
圧分圧器の面積割合を示す図で、夫々aは回路全
体に対する従来の電圧分圧器の割合を示す一例
図、bは従来の電圧分圧器の配線層の割合を示す
一例図、cは本発明の実施例における電圧分圧器
の割合を示す図、dは配線層が不要になつた分だ
け集積回路チツプを小さくした本発明の実施例を
示す図、第8図a,bはチヤンネル寸法に対する
MOSトランジスタのオン抵抗を説明する図、第
9図はMOSスイツチのチヤンネル寸法を順に異
ならせた本発明の実施例のチツプパターンを示す
図、第10図は本発明の他の実施例に係る電圧分
圧器の回路を一部省略して示す図、第11図は第
10図の回路を実現するチツプパターンを示す図
である。
R1〜Ri……拡散抵抗層、S11〜Sj2,T11〜Tj
4,M1〜Mi……スイツチ、1,2……基準電源
端子、3……出力端子、10……基板、11,1
2,13……拡散層、14……ゲート酸化膜、1
5,16……ゲート層、17……PSG層、G1〜
G3……Al配線層、18……全面Al層、S1〜
Sj,1〜……制御信号(線)、I1〜Ii……制
御信号(線)、E1〜E3,E11〜E14,E11〜E1i,
E21〜E2〓,Ej1〜Ej2……E―MOS、D11〜
D14、D11〜D1i,D21〜D2〓,Dj1〜Dj2,D1〜D3
……D―MOS。
FIG. 1 is a partially omitted diagram showing a conventional voltage divider circuit, FIG. 2 is a partial diagram showing a chip pattern for realizing the circuit of FIG. 1, and FIG. 3 is a diagram showing an embodiment of the present invention. 4a is a partial diagram showing a chip pattern for implementing the circuit of the embodiment in FIG. 3; FIG. 4b is a partial cross-section of the chip in FIG. 4. Figure 5 shows the VGS -I D characteristics of a MOS transistor, Figure 6a is a partial cross-sectional view of the chip in Figure 2, Figure 6b shows the present invention in which the entire surface of the chip is covered with an aluminum layer. FIG. 7 is a diagram showing the area ratio of the voltage divider on the integrated circuit chip, and a is an example diagram showing the ratio of the conventional voltage voltage divider to the entire circuit, b is an example diagram showing the ratio of wiring layers in a conventional voltage voltage divider, c is a diagram showing the ratio of a voltage voltage divider in an embodiment of the present invention, and d is a diagram showing how the integrated circuit chip is made smaller by the unnecessary wiring layer. FIGS. 8a and 8b are diagrams showing an embodiment of the present invention in which the channel dimensions are
A diagram explaining the on-resistance of a MOS transistor, FIG. 9 is a diagram showing chip patterns of embodiments of the present invention in which the channel dimensions of the MOS switch are sequentially changed, and FIG. 10 is a diagram illustrating the voltage according to another embodiment of the present invention. 11 is a diagram showing a voltage divider circuit partially omitted, and FIG. 11 is a diagram showing a chip pattern for realizing the circuit of FIG. 10. R 1 to R i ...diffused resistance layer, S 11 to S j2 , T 11 to T j
4 , M 1 to M i ... switch, 1, 2 ... reference power supply terminal, 3 ... output terminal, 10 ... board, 11, 1
2, 13...Diffusion layer, 14...Gate oxide film, 1
5, 16...gate layer, 17...PSG layer, G1~
G3...Al wiring layer, 18...Full surface Al layer, S1~
Sj, 1~...Control signal (line), I1 ~ Ii ...Control signal (line), E1 ~ E3 , E11 ~ E14 , E11 ~ E1i ,
E 21 ~E 2 〓, E j1 ~ E j2 ...E-MOS, D 11 ~
D14 , D11 ~ D1i , D21 ~ D2〓 , Dj1 ~ Dj2 , D1 ~ D3
...D-MOS.
Claims (1)
ト酸化膜等からなる複数のコンデンサで作つたコ
ンデンサ列の両端に基準電圧を印加し、制御信号
によりオンオフするスイツチを介して抵抗列ある
いはコンデンサ列の各分電圧を出力するようにし
た電圧分圧器において、各分電圧を取出すための
各引出線層上にこれらと交差する制御信号線層を
形成し、各交点に制御信号線層の交点部分をゲー
ト層に利用したMOS構造スイツチを構成し、こ
れらMOS構造スイツチのうち制御信号でオンオ
フさせるものはE―MOSに、制御信号の如何に
拘らずオン状態を保たせるものはD―MOSにし
たことを特徴とする電圧分圧器。 2 特許請求の範囲第1項記載の電圧分圧器にお
いて、各分電圧を取出すための各接続点から電圧
分圧器の出力端子までの間に複数個設けられた
MOS構造スイツチのMOS寸法を出力端子へ行く
に従つて順に大きくし、各MOS構造スイツチの
オン抵抗を順に下げるようにした電圧分圧器。 3 特許請求の範囲第1項記載の電圧分圧器にお
いて、各分電圧を夫々E―MOSスイツチとD―
MOSスイツチの直列回路を介して引出し、各引
出端部を隣接する2個毎に共通接続し、更に各共
通接続端を夫々E―MOSスイツチとD―MOSス
イツチの直列回路を介して引出し、該引出端部を
隣接する2個毎に共通接続し、以下同様に接続し
て最終出力を得るようにした電圧分圧器。 4 特許請求の範囲第1項記載の電圧分圧器にお
いて、各分電圧を引出すための引出線層を互に平
行に形成し、各引出線層の他端を共通に接続して
出力端子とし、各引出線層上にこれらと交差する
複数の制御信号線層を形成し、これら制御信号線
層のうち第1の制御信号線層は全ての引出線層と
交差し、第2の制御信号線層は第1の引出線層を
除く他の引出線層と交差し、第3の制御信号線層
は第1及び第2の引出線層を除く他の引出線層と
交差し、以下同様に制御信号線層が引出線層と交
差する数を順次減少させた電圧分圧器。 5 複数の拡散抵抗で作つた抵抗列あるいはゲー
ト酸化膜等からなる複数のコンデンサで作つたコ
ンデンサ列の両端に基準電圧を印加し、制御信号
によりオンオフするスイツチを介して抵抗列ある
いはコンデンサ列の各分電圧を出力するようにし
た電圧分圧器において、各分電圧を取出すための
各引出線層上にこれらと交差する制御信号線層を
形成し、各交点に制御信号線層の交点部分をゲー
ト層に利用したMOS構造スイツチを構成し、こ
れらMOS構造スイツチのうち制御信号でオンオ
フさせるものはE―MOSに、制御信号の有無に
拘らずオン状態を保たせるものはD―MOSにす
ると共に、これら制御信号線層を含む電圧分圧器
表面を絶縁層で覆い、更に該絶縁層上に全面にわ
たつて金属層を形成したことを特徴とする電圧分
圧器。[Claims] 1. A reference voltage is applied to both ends of a resistor array made of a plurality of diffused resistors or a capacitor array made of a plurality of capacitors made of gate oxide film, etc., and the resistor is connected via a switch that is turned on and off by a control signal. In a voltage divider that outputs each divided voltage of a column or a capacitor column, a control signal line layer is formed on each leader line layer for taking out each divided voltage, and a control signal line layer is formed at each intersection point. A MOS structure switch is constructed using the intersection of layers as a gate layer. Among these MOS structure switches, those that are turned on and off by a control signal are called E-MOS, and those that remain on regardless of the control signal are called D. - A voltage divider that is characterized by being MOS. 2. In the voltage divider according to claim 1, a plurality of voltage dividers are provided between each connection point for extracting each divided voltage and the output terminal of the voltage divider.
A voltage divider in which the MOS dimensions of the MOS structure switches are increased in order toward the output terminal, and the on-resistance of each MOS structure switch is successively lowered. 3. In the voltage divider according to claim 1, each divided voltage is connected to an E-MOS switch and a D-MOS switch, respectively.
The terminals are drawn out through a series circuit of MOS switches, each two adjacent terminals are connected in common, and each common connection end is drawn out through a series circuit of an E-MOS switch and a D-MOS switch. A voltage divider in which the lead ends are connected in common to every two adjacent ones, and the following connections are made in the same way to obtain the final output. 4. In the voltage divider according to claim 1, the leader wire layers for drawing out each divided voltage are formed in parallel with each other, and the other ends of each leader wire layer are connected in common to serve as an output terminal, A plurality of control signal line layers are formed on each leader line layer to intersect therewith, and among these control signal line layers, a first control signal line layer intersects with all the leader line layers, and a second control signal line layer intersects with all the leader line layers. The layer intersects other leader layers except the first leader layer, the third control signal layer intersects other leader layers except the first and second leader layers, and so on. A voltage divider in which the number of intersections between the control signal line layer and the leader line layer is gradually reduced. 5 A reference voltage is applied to both ends of a resistor string made of multiple diffused resistors or a capacitor string made of multiple capacitors made of gate oxide films, etc., and each resistor string or capacitor string is connected via a switch that is turned on and off by a control signal. In a voltage divider designed to output divided voltages, a control signal line layer is formed on each leader line layer for extracting each divided voltage to intersect with these, and the intersection portion of the control signal line layer is gated at each intersection point. Of these MOS structure switches, those that are turned on and off by control signals are E-MOS, and those that remain on regardless of the presence or absence of control signals are D-MOS. A voltage voltage divider characterized in that the surface of the voltage voltage divider including these control signal line layers is covered with an insulating layer, and further a metal layer is formed over the entire surface of the insulating layer.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9043478A JPS5518016A (en) | 1978-07-26 | 1978-07-26 | Voltage divider |
GB7921789A GB2029658A (en) | 1978-07-26 | 1979-06-22 | Digital-to-analog converter |
FR7916394A FR2432241A1 (en) | 1978-07-26 | 1979-06-26 | VOLTAGE DIVIDER |
DE19792930375 DE2930375A1 (en) | 1978-07-26 | 1979-07-26 | VOLTAGE DIVIDER |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9043478A JPS5518016A (en) | 1978-07-26 | 1978-07-26 | Voltage divider |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5518016A JPS5518016A (en) | 1980-02-07 |
JPS6157710B2 true JPS6157710B2 (en) | 1986-12-08 |
Family
ID=13998493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9043478A Granted JPS5518016A (en) | 1978-07-26 | 1978-07-26 | Voltage divider |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPS5518016A (en) |
DE (1) | DE2930375A1 (en) |
FR (1) | FR2432241A1 (en) |
GB (1) | GB2029658A (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4354175A (en) * | 1980-05-01 | 1982-10-12 | Mostek Corporation | Analog/digital converter utilizing a single column of analog switches |
DE3026361A1 (en) * | 1980-07-11 | 1982-02-04 | Siemens AG, 1000 Berlin und 8000 München | ELECTRICAL RESISTANCE FOR INTEGRATED SEMICONDUCTOR CIRCUITS MADE OF AT LEAST TWO MONOLITICALLY SUMMARY MIS FIELD EFFECT TRANSISTORS |
DE3173051D1 (en) * | 1981-05-16 | 1986-01-09 | Itt Ind Gmbh Deutsche | Integrated voltage divider with selection circuit in igfet technique, a modification thereof and its use in a da converter |
JPS58117726A (en) * | 1982-01-05 | 1983-07-13 | Matsushita Electric Ind Co Ltd | Signal switching circuit |
JPS5980010A (en) * | 1982-10-27 | 1984-05-09 | テクトロニツクス・インコ−ポレイテツド | Programmable attenuator |
JP2931440B2 (en) * | 1991-06-05 | 1999-08-09 | 旭化成マイクロシステム株式会社 | Multi-channel D / A converter |
JP3922261B2 (en) | 2004-03-08 | 2007-05-30 | セイコーエプソン株式会社 | Data driver and display device |
JP2005072609A (en) * | 2004-09-27 | 2005-03-17 | Fujitsu Ltd | Semiconductor device |
US8669781B2 (en) | 2011-05-31 | 2014-03-11 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
WO2016034988A1 (en) | 2014-09-05 | 2016-03-10 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, electronic component, and electronic device |
US9780779B2 (en) | 2015-08-07 | 2017-10-03 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, electronic component, and electronic device |
JP6882861B2 (en) * | 2016-07-14 | 2021-06-02 | キヤノン株式会社 | Semiconductor devices, liquid discharge heads, liquid discharge head cartridges and recording devices |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5228851A (en) * | 1975-08-29 | 1977-03-04 | Nat Semiconductor Corp | Converter circuit |
-
1978
- 1978-07-26 JP JP9043478A patent/JPS5518016A/en active Granted
-
1979
- 1979-06-22 GB GB7921789A patent/GB2029658A/en not_active Withdrawn
- 1979-06-26 FR FR7916394A patent/FR2432241A1/en not_active Withdrawn
- 1979-07-26 DE DE19792930375 patent/DE2930375A1/en not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
JPS5518016A (en) | 1980-02-07 |
DE2930375A1 (en) | 1980-02-07 |
GB2029658A (en) | 1980-03-19 |
FR2432241A1 (en) | 1980-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6157710B2 (en) | ||
KR890003147B1 (en) | Gate array | |
US4764798A (en) | Master slice IC having n and p channel transistors | |
JPH05198775A (en) | Semiconductor read-only memory | |
US5378941A (en) | Bipolar transistor MOS transistor hybrid semiconductor integrated circuit device | |
US4613771A (en) | Integrated circuit having three power bases and proportioned parasitic resistive and capacitive coupling to reduce output noise | |
JPS5994849A (en) | Semiconductor integrated circuit device | |
KR100302529B1 (en) | Thin Film Semiconductor Integrated Circuits | |
US4862241A (en) | Semiconductor integrated circuit device | |
JPS61290767A (en) | MOS field effect transistor | |
JP2819787B2 (en) | Constant current source circuit | |
US3753005A (en) | Integrated circuit comprising strip-like conductors | |
US4705968A (en) | Semiconductor integrated circuit device with high breakdown voltage level | |
JPS61248551A (en) | CMOS configuration cell | |
US5977610A (en) | Integrated circuit having resistor formed over multiple tubs of semiconductor material | |
JPS58119648A (en) | Semiconductor integrated circuit device | |
JP3338386B2 (en) | Field effect type semiconductor device | |
JPH07307463A (en) | Power MOS field effect transistor | |
JP2778060B2 (en) | Semiconductor integrated circuit device | |
US7049698B1 (en) | Semiconductor integrated circuit having transistor with reduced resistance | |
JPH0357314A (en) | Semiconductor device | |
JP2652948B2 (en) | Semiconductor integrated circuit | |
JP2811740B2 (en) | Integrated circuit | |
JP3369353B2 (en) | Semiconductor device protection circuit | |
JPS6342532Y2 (en) |