JPS6156851B2 - - Google Patents
Info
- Publication number
- JPS6156851B2 JPS6156851B2 JP12378479A JP12378479A JPS6156851B2 JP S6156851 B2 JPS6156851 B2 JP S6156851B2 JP 12378479 A JP12378479 A JP 12378479A JP 12378479 A JP12378479 A JP 12378479A JP S6156851 B2 JPS6156851 B2 JP S6156851B2
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- spacer
- coil
- fixing member
- coils
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/04—Cooling
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Description
【発明の詳細な説明】
本発明は核融合装置等に使用する超電導磁石に
係り、特に超電導コイルを冷却するための流路を
構成するスペーサの取付けを改良した超電導磁石
に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a superconducting magnet used in nuclear fusion devices and the like, and more particularly to a superconducting magnet with improved attachment of a spacer that constitutes a flow path for cooling a superconducting coil.
近年、超電導現象を利用した装置は、磁気浮
上、エネルギ貯蔵、回転電機、核融合装置等広い
範囲にわたつて採用されつつある。 In recent years, devices that utilize superconductivity have been widely adopted, such as magnetic levitation, energy storage, rotating electric machines, and nuclear fusion devices.
特に、核融合装置はトーラス型核融合装置の大
型化が著しく、これに使用されるコイルは強大な
磁場を発生して高温のプラズマを閉じ込めなけれ
ばならず、さらに強大な磁場を作り出す必要のあ
る核融合装置にあつては大型の超電導コイルが不
可欠となつてくる。 In particular, torus-type fusion devices have become significantly larger, and the coils used in these devices must generate a strong magnetic field to confine high-temperature plasma; Large superconducting coils will become essential for nuclear fusion devices.
一般に、超電導状態を作り出すためにはコイル
を液体ヘリウムまたは超臨界ヘリウム等の冷媒に
よつて極低温に冷却することによる。このため、
超電導コイルは通常、真空断熱された容器の中に
収納される。 Generally, a superconducting state is created by cooling the coil to an extremely low temperature with a coolant such as liquid helium or supercritical helium. For this reason,
Superconducting coils are typically housed in a vacuum-insulated container.
超電導コイルの一例を第1図および第2図に示
す。すなわち、複数個のパンケーキ状に巻回され
た超電導コイル2とこれらを収納する極低温容器
1および複数個の超電導コイル2間に位置するス
ペーサ3ならびにコイル2と極低温容器1間に位
置する固定部材4から構成される。このスペーサ
3は、超電導コイル2を効率よく冷却するための
液体ヘリウム等の冷媒の流通路を構成するととも
に、隣接超電導コイル間の電気的絶縁を行なうも
のであり、固定部材4はコイル2とヘリウム容器
1間の固定ならびに電気的絶縁を行なうものであ
る。 An example of a superconducting coil is shown in FIGS. 1 and 2. That is, a plurality of superconducting coils 2 wound in a pancake shape, a cryogenic container 1 housing them, a spacer 3 located between the plurality of superconducting coils 2, and a spacer 3 located between the coils 2 and the cryogenic container 1. It is composed of a fixing member 4. This spacer 3 constitutes a flow path for a coolant such as liquid helium to efficiently cool the superconducting coil 2, and also provides electrical insulation between adjacent superconducting coils. This serves to secure the containers 1 and provide electrical insulation.
第3図に示すように、従来のスペーサ4は絶縁
ワニス等によつて超電導コイル2に接着される。
こうして、超電導コイル間の電気絶縁と冷媒の流
通路が形成される。また、超電導コイルと極低温
容器の内外径側の隙間に固定部材4を挿入して、
コイルを極低温容器に固定する。通常、この部材
は矩形断面形状であり、冷媒通路を閉鎖しないよ
うスペーサ3との位置・干渉を考慮して配置す
る。 As shown in FIG. 3, a conventional spacer 4 is bonded to a superconducting coil 2 using an insulating varnish or the like.
In this way, electrical insulation between the superconducting coils and a coolant flow path are formed. In addition, a fixing member 4 is inserted into the gap between the superconducting coil and the inner and outer diameter sides of the cryogenic container,
Secure the coil in a cryogenic container. Usually, this member has a rectangular cross-sectional shape, and is arranged in consideration of its position and interference with the spacer 3 so as not to close the refrigerant passage.
以上のような構成の超電導コイルにおいては、
第3図に示すように従来の比較的小さな電磁力を
発生するコイルでは、超電導コイル2間のスペー
サ3の配置に対して、固定部材4は比較的容易に
スペーサに干渉しない場所に固定部材を配置する
ことができた。 In the superconducting coil configured as above,
As shown in FIG. 3, in the conventional coil that generates a relatively small electromagnetic force, the fixing member 4 is relatively easily placed in a place where the spacer 3 is placed between the superconducting coils 2 and does not interfere with the spacer. I was able to place it.
しかし、核融合装置のような強大な電磁力を発
生する大型超電導コイルにおいては、強大な電磁
力を発生する分だけ、コイル自体に作用するフー
プ力および隣接コイル間に作用する吸引力も強大
なものとなり、コイルを極低温容器に固定する場
合、固定部材あるいはコイル間に配置されるスペ
ーサにも強大な力が作用するためこれらは十分な
強度を持つていなければならない。固定部材ある
いはスペーサはコイルに直接接触するものである
から、絶縁性の良好な材質のものでもなければな
らない。一般にFRP等にしても絶縁物は強度的
には構造用金属材料にくらべて比較的弱いもので
あるから、固定部材あるいはスペーサとして配置
する場合、冷媒の流通を邪魔せぬ程度に多く配置
して強度的に耐えうるようにする必要がある。こ
のため、従来のように、固定部材とスペーサの干
渉がないように配置することが困難になつてき
た。すなわち、第4図に示すように、スペーサ3
と固定部材4の配置数量が増えて、スペーサ3と
固定部材4の配置位置が一部もしくは全部重なつ
てしまうことになる。 However, in large superconducting coils that generate strong electromagnetic force, such as in nuclear fusion devices, the hoop force that acts on the coil itself and the attraction force that acts between adjacent coils are also strong. Therefore, when a coil is fixed in a cryogenic container, a strong force is applied to the fixing member or the spacer placed between the coils, so these must have sufficient strength. Since the fixing member or spacer comes into direct contact with the coil, it must also be made of a material with good insulation properties. In general, insulators such as FRP are relatively weak in strength compared to structural metal materials, so when placing them as fixing members or spacers, it is necessary to place as many as possible without interfering with the flow of refrigerant. It needs to be strong and durable. For this reason, it has become difficult to arrange the fixing member and the spacer without interference, as in the past. That is, as shown in FIG.
As a result, the number of fixed members 4 to be arranged increases, and the spacers 3 and fixed members 4 are arranged partially or completely overlapping each other.
したがつて、第5図に示すようにスペーサ3と
固定部材4が干渉し、これらがコイル2と容器1
間の冷媒通路に三角形状の袋小路である気泡溜ま
り5を作り、ここに上方に逃げようとする冷媒中
の気泡がたまり、局部的に冷却低下を期す。最悪
の場合にはこれが原因となつて、超電導状態を維
持できなくなる可能性がある。 Therefore, as shown in FIG. 5, the spacer 3 and the fixing member 4 interfere, causing the coil 2 and the container 1 to
A bubble reservoir 5, which is a triangular dead end, is created in the refrigerant passage between the two, and the bubbles in the refrigerant that are trying to escape upward are accumulated here, and cooling is expected to be locally reduced. In the worst case, this may cause the superconducting state to not be maintained.
本発明の目的は、隣接超電導コイル間のスペー
サおよびコイルと容器間の固定部材の配置又は形
状を適切に考慮することにより、良好な冷却特性
を有する超電導コイルを提供するにある。 An object of the present invention is to provide a superconducting coil having good cooling characteristics by appropriately considering the arrangement or shape of the spacer between adjacent superconducting coils and the fixing member between the coil and the container.
本発明は、スペーサと固定部材の取付部が袋小
路にならぬように、配置又は固定部材にテーパ溝
を設けるようにしたものである。 According to the present invention, a tapered groove is provided in the arrangement or the fixing member so that the attachment portion between the spacer and the fixing member does not become a dead end.
本発明の一実施例を第6図にしたがつて説明す
る。 An embodiment of the present invention will be described with reference to FIG.
すなわち、冷媒の流通路出口Cに当るスペーサ
3の冷媒案内面3Gの端に固定部材4の冷媒案内
面Dを合わせて配置する。こうすることにより流
通路出口C部は水平面となるので、冷媒が熱交換
時に発生する気泡がこの部分に停留することな
く、矢印で示すように上方に流れてゆく。したが
つて、気泡によるコイル2の冷却低下が防止さ
れ、安全な運転を続けることができる。 That is, the refrigerant guide surface D of the fixing member 4 is arranged so as to match the end of the refrigerant guide surface 3G of the spacer 3, which corresponds to the outlet C of the refrigerant flow path. By doing this, the outlet C of the flow passage becomes a horizontal surface, so that the bubbles generated during heat exchange of the refrigerant do not stay in this part and flow upward as shown by the arrow. Therefore, deterioration in cooling of the coil 2 due to air bubbles is prevented, and safe operation can be continued.
また、第7図及び第8図は本発明の他の実施例
を示すもので、第6図と異なるのは、スペーサ3
の延長上の固定部材4にスペーサ3の傾斜と同じ
で冷媒案内面となるテーパー溝Eを設けて気泡の
停留部をなくし、冷媒を矢印で示すように流通さ
せることによりコイル2の冷却低下を防止するよ
うにしたものである。 7 and 8 show other embodiments of the present invention, and the difference from FIG. 6 is that the spacer 3
A tapered groove E, which is the same as the slope of the spacer 3 and serves as a refrigerant guide surface, is provided in the fixing member 4 on the extension of the spacer 3 to eliminate the stagnant part of air bubbles, and the cooling of the coil 2 is reduced by circulating the refrigerant as shown by the arrow. It is designed to prevent this.
第1図は超電導磁石の外観側面図、第2図は第
1図のA−A線断面図、第3図及び第4図は従来
の超電導磁石を示す横断平面図、第5図は第4図
のB部詳細説明図、第6図及び第7図は本発明に
よる超電導磁石の要部を示す横断平面図、第8図
は第7図の固定部材側より中心部を見た側面図で
ある。
1……極低温容器、2……超電導コイル、3…
…スペーサ、4……固定部材、E……テーパー
溝。
Fig. 1 is an external side view of a superconducting magnet, Fig. 2 is a sectional view taken along the line A-A in Fig. 1, Figs. 3 and 4 are transverse plan views showing conventional superconducting magnets, and Fig. 5 is a 6 and 7 are cross-sectional plan views showing the main parts of the superconducting magnet according to the present invention, and FIG. 8 is a side view of the central part viewed from the fixing member side of FIG. 7. be. 1...Cryogenic container, 2...Superconducting coil, 3...
...Spacer, 4...Fixing member, E...Tapered groove.
Claims (1)
ルを冷却する冷媒を収容する極低温容器を備え、
前記超電導コイルの隣接間に位置しほぼ超電導コ
イルの半径方向に沿つて配置されたスペーサと、
前記極低温容器と超電導コイルとの隙間に配置さ
れ前記スペーサと当接された固定部材とを有する
超電導磁石において、前記固定部材の前記スペー
サの冷媒案内面と連接する冷媒案内面が水平方向
以上となるように構成したことを特徴とする超電
導磁石。1. Equipped with a cryogenic container that houses a superconducting coil and a refrigerant that cools the superconducting coil,
a spacer located between adjacent superconducting coils and arranged substantially along the radial direction of the superconducting coils;
In a superconducting magnet having a fixing member disposed in a gap between the cryogenic container and the superconducting coil and in contact with the spacer, a refrigerant guide surface of the fixing member that is connected to a refrigerant guide surface of the spacer is in a horizontal direction or more. A superconducting magnet characterized in that it is configured so that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12378479A JPS5648110A (en) | 1979-09-28 | 1979-09-28 | Superconductive aparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12378479A JPS5648110A (en) | 1979-09-28 | 1979-09-28 | Superconductive aparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5648110A JPS5648110A (en) | 1981-05-01 |
JPS6156851B2 true JPS6156851B2 (en) | 1986-12-04 |
Family
ID=14869203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12378479A Granted JPS5648110A (en) | 1979-09-28 | 1979-09-28 | Superconductive aparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5648110A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5917827U (en) * | 1982-07-24 | 1984-02-03 | 株式会社石田衡器製作所 | Separation chute |
JPS6172916U (en) * | 1984-10-19 | 1986-05-17 | ||
JP4821675B2 (en) * | 2007-03-28 | 2011-11-24 | 住友電気工業株式会社 | Superconducting coil and superconducting equipment provided with the superconducting coil |
-
1979
- 1979-09-28 JP JP12378479A patent/JPS5648110A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5648110A (en) | 1981-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101091199B1 (en) | coil bobbin for superconducting magnetic energy storage | |
EP0118807A2 (en) | Superconducting magnet having a support structure for ring-shaped superconductive coils | |
JPH071739B2 (en) | Superconducting transformer | |
US20200258670A1 (en) | Reactor, motor driver, power conditioner and machine | |
US5404122A (en) | Superconducting coil apparatus with a quenching prevention means | |
JPS6156851B2 (en) | ||
JPS61229306A (en) | Superconducting coil | |
JPS6119090B2 (en) | ||
KR20230116859A (en) | Superconducting electromagnet device and cooling method of the superconducting electromagnet device | |
Jo et al. | High temperature superconducting synchronous motor | |
JPS6119089B2 (en) | ||
JPS6119091B2 (en) | ||
KR101618977B1 (en) | Superconductive electromagnet | |
JP6517112B2 (en) | Superconducting lead structure | |
JPS59208811A (en) | Superconductive coil | |
JPH04134808A (en) | Superconducting magnet | |
WO2022224761A1 (en) | Magnetic field generating device | |
JPS62283604A (en) | Superconducting magnet | |
JP3122493B2 (en) | Superconducting coil device | |
JPS6218005Y2 (en) | ||
JP3217531B2 (en) | Superconducting rotor | |
JPS603555Y2 (en) | superconducting coil | |
JPH0137841B2 (en) | ||
JPH0786643A (en) | Conduction cooling superconducting magnet device | |
JPS60217610A (en) | superconducting device |