JPS6156234A - Manufacture of austenite stainless fine grain steel - Google Patents
Manufacture of austenite stainless fine grain steelInfo
- Publication number
- JPS6156234A JPS6156234A JP17553984A JP17553984A JPS6156234A JP S6156234 A JPS6156234 A JP S6156234A JP 17553984 A JP17553984 A JP 17553984A JP 17553984 A JP17553984 A JP 17553984A JP S6156234 A JPS6156234 A JP S6156234A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- working
- temperature
- temp
- stainless steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 229910000831 Steel Inorganic materials 0.000 title abstract description 47
- 239000010959 steel Substances 0.000 title abstract description 47
- 229910001566 austenite Inorganic materials 0.000 title abstract description 5
- 238000001816 cooling Methods 0.000 claims abstract description 16
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 12
- 239000010935 stainless steel Substances 0.000 claims abstract description 11
- 238000005482 strain hardening Methods 0.000 claims description 13
- 238000012545 processing Methods 0.000 claims description 7
- 229910000963 austenitic stainless steel Inorganic materials 0.000 claims description 6
- 239000000243 solution Substances 0.000 abstract description 24
- 238000000034 method Methods 0.000 abstract description 19
- 239000000463 material Substances 0.000 abstract description 18
- 238000001556 precipitation Methods 0.000 abstract description 7
- 229910052799 carbon Inorganic materials 0.000 abstract description 5
- 239000006104 solid solution Substances 0.000 abstract description 5
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 238000005097 cold rolling Methods 0.000 abstract description 2
- 230000007797 corrosion Effects 0.000 description 12
- 238000005260 corrosion Methods 0.000 description 12
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229930194542 Keto Natural products 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010622 cold drawing Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000009528 severe injury Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
この発明は5ボイラー用鋼管等として使用する際に問題
となる水蒸気酸化に対して著しい抵抗性を有し、かつ高
温強度が十分に高いオーステナイト系ステンレス鋼の製
造方法に関するものである。[Detailed Description of the Invention] <Industrial Application Field> This invention is an austenite material that has remarkable resistance to steam oxidation, which is a problem when used as steel pipes for boilers, etc., and has sufficiently high high temperature strength. The present invention relates to a method for manufacturing stainless steel.
一般に、ボイラー用過熱器管には5US321HTBや
SUS 347HTB等のオーステナイト系ステンレス
鋼が使用されており、これら製品の製造にあたっては、
ASTM規格や火力技術基準を満足するように製造条件
が選択されている。Generally, austenitic stainless steels such as 5US321HTB and SUS347HTB are used for boiler superheater tubes, and when manufacturing these products,
Manufacturing conditions are selected to satisfy ASTM standards and thermal power technology standards.
〈従来の技術〉−
ところで、ボイラー用オーステナイト系ステンレス鋼管
は1通常5冷間加工によって所定の最終サイズにされる
が、その際に素材の硬化を伴うので何度かの軟化処理を
行って冷間加工を終了し、その後、溶体化処理を施して
所望の高温強度を確保するのが普通であった。<Prior art> - By the way, austenitic stainless steel pipes for boilers are usually cold-worked to a predetermined final size, but at that time the material is hardened, so it is softened several times and then cooled. It was common practice to complete the preliminary working and then perform solution treatment to ensure the desired high-temperature strength.
この場合、中間軟化温度や最終軟化温度に関する格別な
指定はなされていないが、溶体化処理温度が高くなると
高温強度も上昇することから。In this case, there is no particular specification regarding the intermediate softening temperature or the final softening temperature, but as the solution treatment temperature increases, the high temperature strength also increases.
JIS鋼管規格の指定温度よりも溶体化処理温度を高く
する傾向が目立っている。There is a noticeable tendency to increase the solution treatment temperature higher than the specified temperature in the JIS steel pipe standard.
しかし、溶体化処理温度を高くすると鋼の結晶粒が粗大
化すると言う不都合が生じゃすいことも知られていた。However, it has been known that increasing the solution treatment temperature causes the disadvantage that the crystal grains of the steel become coarser.
鋼の結晶粒度は、水蒸気による腐食(°′水蒸気酸化″
と呼ばれる)と密接な関係があり、粗粒鋼はどこの腐食
が大きくなるものである。そして、水蒸気酸化により引
き起される問題点として材料の減肉並びに腐食生成物(
酸化スケール)の剥離があげられるが、ボイラー用鋼管
としては特に後者が重大な問題となりがちである。The grain size of steel is affected by water vapor corrosion (°′steam oxidation”).
There is a close relationship between coarse-grained steel and where corrosion is greater. The problems caused by steam oxidation include material thinning and corrosion products (
The latter tends to be a particularly serious problem for boiler steel pipes.
即ち、スケールの剥離が生じると、剥離スケールは水蒸
気によって例えばタービン部に運ばれ、タービンブレー
ドの二ローション損傷を引き起したり、チューブ内に堆
積して水蒸気流を閉塞したりして、甚だしい場合にはチ
ューブの破裂事故を招きかねないものであった。That is, when scale flakes occur, the flaked scales may be carried by water vapor to, for example, the turbine section, causing damage to the turbine blades, or may accumulate in tubes and block the water vapor flow, causing severe damage. This could lead to tube rupture.
以上のように、ボイラー用鋼管は高温強度と耐食性とを
兼ね備える必要があるので、溶体化処理だけで調質する
場合には、所望とするクリープ破断強度から溶体化処理
の最低温度が、そして良好な耐食性を示す微細結晶粒(
GSAが7よりも細かいと十分な耐水蒸気酸化性を示す
とされている)を得ると言う観点から溶体化処理の最高
温度がそれぞれ決められることとなる。As mentioned above, steel pipes for boilers need to have both high-temperature strength and corrosion resistance, so when refining them only by solution treatment, the minimum temperature of solution treatment should be adjusted from the desired creep rupture strength to the desired temperature. Fine crystal grains (
The maximum temperature of the solution treatment is determined from the viewpoint of obtaining sufficient steam oxidation resistance (GSA finer than 7).
しかしながら、クリープ強度から決まる最低温度が結晶
粒度から決まる最高温度よりも高い場合には、耐食性を
犠牲にし、満足できる強度が確保できるように溶体化温
度を選択した上で5表明処理等の1面倒でしかも安定性
に欠ける処理手段にて耐食性の改善を図るしか方法がな
かつだのである。However, if the minimum temperature determined by the creep strength is higher than the maximum temperature determined by the grain size, the solution temperature must be selected to ensure satisfactory strength at the expense of corrosion resistance, and then tedious treatment such as 5-surface treatment is necessary. Moreover, the only way to improve corrosion resistance is to use treatment means that lack stability.
そこで5本発明者等は、このような問題点を解消すべく
5
rTjcやNbC等の炭化物が析出するタイプのオース
テナイト系ステンレス鋼を使用し、これに特 “定条
件の熱処理と加工とを施すことから成る、高温の溶体化
処理を施すにもかかわらず微細結晶粒がそのまま維持さ
れて、高温強度並びに耐食性が共に優れた鋼材が実現さ
れる方法」
を、特開昭58−16’7’i’26号として先に提案
した。Therefore, in order to solve these problems, the present inventors used austenitic stainless steel of the type in which carbides such as rTjc and NbC precipitate, and subjected it to heat treatment and processing under specific conditions. ``A method for achieving a steel material with excellent high-temperature strength and corrosion resistance by maintaining fine grains as they are despite being subjected to high-temperature solution treatment,'' was published in JP-A-58-16'7''. It was proposed earlier as issue i'26.
第2図は、上記提案に係るオーステナイト系ステンレス
細粒鋼の製造方法を模式化して示したものである。FIG. 2 schematically shows the method for producing austenitic fine-grained stainless steel according to the above proposal.
〈発明が解決しようとする問題点〉
前記特開昭58−16’7726号として提案された方
法は、確かに1表面処理等の格別な後処理工程を必要と
することなく良好な耐食性と高温強度特性を兼備した鋼
材を安定して製造し得る有用な技術的手段ではあったが
、それでも、第2図からも明らかなように5作業能率上
並びに経済上好ましくないパ高温軟化処理″を必須とす
ることに加えて、該高温軟化処理にて軟化した素材の結
晶粒度が著しく粗粒化することから5所望の細粒銅製品
を安定確実に得るためにはその後の冷間加工の加工率を
出来れば30%以上と言う高い値に設定する必要のある
ことが、その後も続けられた本発明者等の検討によって
明らかとなったのである。<Problems to be Solved by the Invention> The method proposed in JP-A-58-16'7726 certainly achieves good corrosion resistance and high temperature without requiring special post-treatment steps such as surface treatment. Although this was a useful technical means for stably manufacturing steel materials with good strength properties, it still required high-temperature softening treatment, which is undesirable from the standpoint of work efficiency and economy, as is clear from Figure 2. In addition to this, the grain size of the material softened by the high-temperature softening treatment becomes extremely coarse. Subsequent studies by the present inventors have revealed that it is necessary to set the ratio to a high value of 30% or more if possible.
そして、前記冷間加工の加工率を30%以上としなけれ
ばならないと言うことは、例えば製造しようとする鋼管
等の寸法によっては該方法が適用できないことを意味す
るものでもあった。Furthermore, the fact that the working ratio of the cold working must be 30% or more also means that the method cannot be applied depending on the dimensions of the steel pipe, etc. to be manufactured, for example.
〈問題点を解決するだめの手段〉
本発明者等は、上述のような観点から、製品品質、作業
能率、経済性等に悪影響を及ぼすところの前記°′高高
温軟化処理管を要することなく、ボイラー用鋼管等とし
て好適な高温強度の高いオーステナイト系ステンレス細
粒鋼を安定・確実に製造すべく更に研究を続けた結果、
「特定量のNb及びT1の1種以上とCとを含むオース
テナイト系ステンレス鋼の熱間加工温度を十分に高める
とともに、熱間加工後の冷却を急速冷却とすれば、熱間
加工後の素材の結晶粒度はGS篇で3〜4(先に提案し
た方法での高温軟化処理後は、()SAO〜2程度)と
細かくなる上、十分に大きなTiやNbの固溶量を確保
することができ。<Means to Solve the Problem> From the above-mentioned viewpoint, the present inventors have developed a method that eliminates the need for the high-temperature softening tube that adversely affects product quality, work efficiency, economic efficiency, etc. As a result of further research aimed at stably and reliably producing austenitic fine-grained stainless steel with high high-temperature strength and suitable for boiler steel pipes, etc., we found that ``austenite containing a specific amount of Nb, one or more of T1, and C.'' If the hot working temperature of stainless steel is sufficiently raised and the cooling after hot working is rapid cooling, the grain size of the material after hot working will be 3 to 4 in the GS version (with the method proposed earlier). After the high-temperature softening treatment, the material becomes fine (about SAO ~ 2), and a sufficiently large amount of Ti and Nb in solid solution can be secured.
高温軟化処理や格別に高い加工率の冷間加工を施すこと
なく、溶体化処理にてクリープ強度の高い細粒鋼が得ら
れる」
との知見を得るに至ったのである。They came to the conclusion that fine-grained steel with high creep strength can be obtained through solution treatment without high-temperature softening treatment or cold working at extremely high working rates.''
この発明は、上記知見に基づいてなされたものであり。This invention was made based on the above findings.
Nb:0.1%以上(以下、成分割合は重量基準で示す
こととする)、
Ti:0.1チ以上
を単独又は複合で含有し、かつ、
C:0.04%以上
をも含むオーステナイト系ステンレス鋼に加工終了温度
:1200℃以上の熱間加工を施した後、冷却速度:5
00℃/ hr以上にて急冷し、続いて加工率:20係
以上の冷間加工を施してから、熱間加工終了温度よりも
30℃以上低い温度で溶体化処理することにより、高温
強度及び耐食性(耐水蒸気酸化性)の優れだオーステナ
イト系ステンレス細粒鋼を簡単かつ安定して製造する点
。Austenite containing Nb: 0.1% or more (hereinafter, component proportions are indicated on a weight basis), Ti: 0.1% or more, singly or in combination, and also containing C: 0.04% or more After hot working on stainless steel at a processing end temperature of 1200°C or higher, cooling rate: 5
By rapidly cooling at 00℃/hr or more, followed by cold working at a working rate of 20 or more, and then solution treatment at a temperature 30℃ or more lower than the hot working end temperature, high-temperature strength and Easy and stable production of fine-grain austenitic stainless steel with excellent corrosion resistance (steam oxidation resistance).
に特徴を有するものである。It has the following characteristics.
なお5第1図は、この発明のオーステナイト系ステンレ
ス細粒鋼の製造方法を模式化して示したものであり、第
2図と比較することでこの発明の特徴が一層明瞭に浮か
び上るはずである。5. Figure 1 schematically shows the manufacturing method of the austenitic fine-grained stainless steel of the present invention, and by comparing it with Figure 2, the features of the present invention should become clearer. .
次に、この発明の方法において、 Nb、 Ti及びC
の含有量、熱間加工終了温度、冷却速度、冷間加工の加
工率、及び溶体化処理温度を、それぞれ前述の如くに数
値限定した理由を説明する。Next, in the method of this invention, Nb, Ti and C
The reason why the content, hot working end temperature, cooling rate, cold working rate, and solution treatment temperature are each numerically limited as described above will be explained.
(a) Nb、 Tj、及びC含有量
Nb、 T:i及びC成分は、溶体化処理中にNbCや
TiC等として析出し鋼材の組織を細粒化する作用を有
しているが、Nb及びT1の含有量がそれぞれ0.1係
未満であったり、或いはC含有量が0.04 %未満で
あったりすると、NbCやTiC等の析出量が不足して
鋼組織の所望の細粒化が達成できずに耐食性劣化を来た
すことから、鋼中に01係以−ヒのNb又は0.1 %
以上のTjを単独又は複合で含有させることとし、かつ
C量もo、 04 %以上と定めた。(a) Nb, Tj, and C content Nb, T:i and C components precipitate as NbC, TiC, etc. during solution treatment and have the effect of refining the structure of the steel material, but Nb If the content of T1 and T1 is less than 0.1%, or if the C content is less than 0.04%, the amount of precipitation of NbC, TiC, etc. will be insufficient, and the desired grain refinement of the steel structure will not be achieved. Nb of 01 or 0.1% is added to the steel because it is not possible to achieve this and causes deterioration of corrosion resistance.
It was decided to contain the above Tj alone or in combination, and the amount of C was also set to be 0.04% or more.
なお、Nb又はTjの含有量が3%を越えると、加
□工性の劣化や、鋼材使用中にσ相の析出が顕著と
なって脆化を来たす恐れが生じ、またC含有量が03係
を越えると結晶粒界の炭化物(M2.、C6)析出が甚
だしくなって耐食性を損なう恐れがでてくることから、
NbやT1の含有量はそれぞれ3係以下に、C含有量
は03係以下に抑えることが好ましい。In addition, if the content of Nb or Tj exceeds 3%, addition
□ There is a risk of deterioration of workability and embrittlement due to significant precipitation of the σ phase during use of the steel, and if the C content exceeds 03, carbides (M2., C6) will precipitate at the grain boundaries. There is a risk that the corrosion resistance will become severe and the corrosion resistance will be impaired.
It is preferable to suppress the Nb and T1 contents to 3 parts or less, and the C content to 03 parts or less.
(b) 熱間加工終了温度
熱間加工終了温度が120C)C未満になると十分なN
b又はT1の固溶量を確保できなくなり、溶体化処理を
通して微細結晶粒を実現し難くなることから、熱間加工
終了温度を1200℃以上と定めた。(b) Hot working end temperature When the hot working end temperature is less than 120C)
Since it becomes impossible to secure a solid solution amount of b or T1 and it becomes difficult to realize fine crystal grains through solution treatment, the hot working end temperature was set at 1200° C. or higher.
(C)熱間加工終了後の冷却速度
熱間加工終了後の冷却速度が、500 ℃/hrを下回
るとNbCやTjCの析出が起って、やはりNb又はT
jの十分な固溶量を確保できなくなることがら、上記冷
却速度は500℃/hr以上と定めた。(C) Cooling rate after completion of hot working If the cooling rate after completion of hot working is less than 500 °C/hr, precipitation of NbC and TjC will occur, and Nb or TjC will precipitate.
Since a sufficient amount of solid solution of j could not be secured, the cooling rate was set at 500° C./hr or more.
第3図は、SUS 321H鋼、5US34’7H鋼に
おけるNbC又u T i C析出と熱間加工終了後の
冷却速度との関係を示した線図であるが、熱間加工終了
後の鋼を冷却したときの12oO〜950℃間の冷却速
度が500℃/ hrの場合に炭素量の80%がNb、
C又はTj、Cとして析出するノーズに交叉している。Figure 3 is a diagram showing the relationship between NbC or uTiC precipitation and the cooling rate after hot working in SUS 321H steel and 5US34'7H steel. When the cooling rate between 12oO and 950℃ is 500℃/hr, 80% of the carbon content is Nb,
C or Tj, which intersects the nose that precipitates as C.
このように、第3図からも、熱間加工終了後の冷却速度
を500℃/1〕rより速くする必要のあることが明ら
かである。As described above, it is clear from FIG. 3 that the cooling rate after hot working must be faster than 500° C./1]r.
(d) 冷間加工の加工率
熱間加工後の冷間加工は、溶体化処理時に生成する再結
晶粒を所望の細粒とするために欠かせないものであるが
、該冷間加工の加工率が20係未満では所望の微細組織
(GS扁が7以上の結晶粒度)を実現できないことから
、冷間加工の加工率を20係以−ヒと定めた。(d) Reduction rate of cold working Cold working after hot working is essential for making the recrystallized grains produced during solution treatment into the desired fine grains. Since the desired microstructure (grain size with a GS diameter of 7 or more) cannot be achieved when the working rate is less than 20 times, the cold working rate was set at 20 times or higher.
なお、これまでの説明からも明らかなように、細粒鋼を
得るためには上記加工率は高いほど好ましく、この意味
からは加工率に上限は存在しない。Note that, as is clear from the above description, in order to obtain fine-grained steel, the higher the working rate is, the better, and from this point of view, there is no upper limit to the working rate.
(e)溶体化処理温度
熱間加工終了温度と溶体化処理温度との差が30℃未満
では1両処理時の溶解度差が小さいので熱間加工工程で
固溶したNb−jTiが溶体化処理時にNbCやTiC
等となって析出する量が少なく、所望の細粒組織を達成
できないことから、溶体化処理温度を「熱間加工終了温
度よりも30℃以上低い温度」と定めた。(e) Solution treatment temperature If the difference between the hot working end temperature and the solution treatment temperature is less than 30°C, the difference in solubility during single treatment is small, so Nb-jTi dissolved in the hot working process is dissolved in the solution treatment. Sometimes NbC or TiC
Since the amount of precipitation is small and the desired fine grain structure cannot be achieved, the solution treatment temperature was determined to be ``a temperature 30° C. or more lower than the hot working end temperature''.
なお、溶体化処理温度が1100℃未満になると高温材
料として必要なりリープ破断強度を確保でき々い恐れが
あり、また1300℃を越えた場合にはNbCやTiC
等の固溶量が多くなって結晶粒の和犬化を招く傾向があ
ることから5溶体化処理温度ば1100−1300℃に
調整することが好ましい。Note that if the solution treatment temperature is less than 1100°C, it may be difficult to secure the leap rupture strength required as a high-temperature material, and if it exceeds 1300°C, NbC or TiC
It is preferable to adjust the temperature of the 5-solution treatment to 1,100 to 1,300°C because the amount of solid solution increases, leading to the formation of grains.
壕だ、言うまでもないことであるが、この発明の方法で
対象とする鋼は、SUS 321H鋼や5US347H
鋼のみに限られるものではなく、Nb及びT]を単独又
は複合で含有し、かつ所定量のCを含有するオーステナ
イト系ステンレス鋼であればいずれでも良いことはもち
ろんのことである次いで、この発明を実施例により比較
例と対比しながら説明する。Needless to say, the steel targeted by the method of this invention is SUS 321H steel and 5US347H steel.
It is needless to say that the present invention is not limited to steel, and may be any austenitic stainless steel containing Nb and T] singly or in combination, and containing a predetermined amount of C. will be explained using examples and comparing with comparative examples.
実施例
丑ず、第1表に示すよ“うな化学成分組成の鋼A〜Qを
用意した。In Examples, steels A to Q having chemical compositions as shown in Table 1 were prepared.
次に、これらの鋼に第1図の如き工程で、鍛造・熱間圧
延(熱間加工)、冷間圧延(冷間加工)、及び溶体化処
理を施し、冷延板を製造した。Next, these steels were subjected to forging, hot rolling (hot working), cold rolling (cold working), and solution treatment in the steps shown in FIG. 1 to produce cold rolled sheets.
これらの処理条件、並びに得られた冷延板の結晶粒度(
A、STMGSA)、クリープ破断強度を、第2表に示
しだ。These processing conditions as well as the grain size of the obtained cold-rolled sheet (
A, STMGSA) and creep rupture strength are shown in Table 2.
なお、第2表に1は、参考のため、同一成分組成鋼につ
いて先に提案した特開昭58−16’i”i’26号の
方法(第2図で示される方法)を適用して得られた冷延
板の結晶粒度とクリープ破断強度も併せて示した。1 in Table 2 is for reference, the method of JP-A-58-16'i"i'26 (method shown in Fig. 2) previously proposed for steel with the same composition was applied. The grain size and creep rupture strength of the obtained cold-rolled sheets are also shown.
第2表に示された結果からも5次の事項が明らかである
。即ち5
(7)本発明の条件通りの方法によれば、クリープ強度
が高く、かつGSAが7以上の細粒鋼を安定して製造す
ることができること。The following five points are clear from the results shown in Table 2. That is, 5. (7) According to the method according to the conditions of the present invention, fine grain steel having high creep strength and a GSA of 7 or more can be stably produced.
(イ)高温熱間加工を行ったとしても、その後の冷却速
度が遅いと、得られる鋼材の結晶粒度が粗大となること
(試験番号3及び7)。(a) Even if high-temperature hot working is performed, if the subsequent cooling rate is slow, the crystal grain size of the resulting steel becomes coarse (Test Nos. 3 and 7).
(つ)熱間加工終了温度と溶体化処理温度との差が30
℃未満では鋼材の細粒化が困難であること(試験番号9
及び12)。(1) The difference between the hot working end temperature and the solution treatment temperature is 30
It is difficult to refine the steel material below ℃ (Test No. 9
and 12).
に)冷間加工率が20%未満では、得られる鋼材はやや
粗粒材となること(試験番号11)。b) If the cold working rate is less than 20%, the steel material obtained becomes a slightly coarse-grained material (Test No. 11).
(2)Nb含有量或いはT1含有量が01%未満の鋼を
使用しても、所望の細粒鋼が得られないこと(試験番号
24及び25)。(2) Even if steel with Nb content or T1 content of less than 0.1% is used, the desired fine-grained steel cannot be obtained (Test Nos. 24 and 25).
(A C含有量が0,04%未満の鋼材を使用したので
は、Ti及びNb含有量が十分に高くても所望の細粒鋼
を実現できないこと(試験番号26)。(If a steel material with an AC content of less than 0.04% is used, the desired fine-grained steel cannot be achieved even if the Ti and Nb contents are sufficiently high (Test No. 26).
また、第4図は、冷間加工の加工率の観点からの本発明
方法により製造し得る鋼管寸法(鋼管の製造様式:熱間
押出後冷間抽伸仕上法)を、先に提案した特開昭58−
167726号の方法で可能な寸法範囲と比較した図面
であるが、第4図からも1本発明方法によって鋼管製造
可能寸法範囲が拡大していることは明白である。In addition, Figure 4 shows the dimensions of steel pipes that can be manufactured by the method of the present invention from the perspective of the processing rate of cold working (manufacturing method of steel pipes: hot extrusion followed by cold drawing finishing method). Showa 58-
This drawing is a comparison with the dimensional range possible by the method of No. 167726, and it is clear from FIG. 4 that the dimensional range that can be manufactured by the method of the present invention is expanded.
〈総括的な効果〉
以上説明したように、この発明によれば、■ 高温軟化
処理工程の省略により、オーステナイト系ステンレス細
粒鋼の製造を簡単かつ経済的に行えるようになる、
■ 冷間加工前の素材の結晶粒度が従来工程材に比べて
小さいため、冷間加工率をより低くすることができ、広
範な寸法範囲での鋼管等の製造が可能となる、
■ 得られるオーステナイト系ステンレス鋼材は、細粒
鋼であるため、ボイラ用鋼管等で問題になる耐水蒸気酸
化抵抗が良好である。<Overall Effects> As explained above, according to the present invention, ■ it becomes possible to manufacture austenitic fine-grained stainless steel easily and economically by omitting the high-temperature softening process; ■ cold working; Since the grain size of the previous material is smaller than that of conventionally processed materials, the cold working rate can be lowered, making it possible to manufacture steel pipes, etc. in a wide range of dimensions. ■ The resulting austenitic stainless steel material Since it is a fine-grained steel, it has good steam oxidation resistance, which is a problem in steel pipes for boilers.
等、産業上極めて有用な効果がもたらされるのである。etc., extremely useful industrial effects are brought about.
第1図は1本発明の細粒鋼製造方法を示す概略模式図、
第2図は、従来の細粒鋼製造方法を示す概略模式図、
第3図は、オーステナイト系ステンレス鋼におけるNb
C又はTiC析出に及ぼす温度と冷却時間の関係を示す
線図、
第4図は1本発明方法により製造し得る鋼管寸法と従来
法で可能な該寸法とを比較した図面である。
出願人 住友金属工業株式会社
代理人 富 1) 和 夫 ほか1名cつ。)
希?け
トFig. 1 is a schematic diagram showing the method for producing fine grain steel of the present invention; Fig. 2 is a schematic diagram showing the conventional method for producing fine grain steel; Fig. 3 is a schematic diagram showing the method for producing fine grain steel of the present invention;
FIG. 4 is a diagram showing the relationship between temperature and cooling time on C or TiC precipitation. FIG. 4 is a drawing comparing the dimensions of a steel pipe that can be produced by the method of the present invention and the dimensions that can be produced by the conventional method. Applicant Sumitomo Metal Industries Co., Ltd. Agent Tomi 1) Kazuo and one other person. )
Nozomi? Keto
Claims (1)
:1200℃以上の熱間加工を施した後、冷却速度:5
00℃/hr以上にて急冷し、続いて加工率:20%以
上の冷間加工を施してから、熱間加工終了温度よりも3
0℃以上低い温度で溶体化処理することを特徴とする、
高温用オーステナイト系ステンレス細粒鋼の製造法。[Claims] An austenitic stainless steel containing Nb: 0.1% or more, Ti: 0.1% or more singly or in combination, and also containing C: 0.04% or more, in terms of weight percentage. Processing end temperature: After hot processing at 1200℃ or higher, cooling rate: 5
Rapid cooling at 00°C/hr or more, followed by cold working at a processing rate of 20% or more, and then
characterized by solution treatment at a temperature lower than 0°C,
Manufacturing method for high-temperature austenitic fine-grain stainless steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17553984A JPS6156234A (en) | 1984-08-23 | 1984-08-23 | Manufacture of austenite stainless fine grain steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17553984A JPS6156234A (en) | 1984-08-23 | 1984-08-23 | Manufacture of austenite stainless fine grain steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6156234A true JPS6156234A (en) | 1986-03-20 |
JPH0129854B2 JPH0129854B2 (en) | 1989-06-14 |
Family
ID=15997842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17553984A Granted JPS6156234A (en) | 1984-08-23 | 1984-08-23 | Manufacture of austenite stainless fine grain steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6156234A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1342807A3 (en) * | 2002-03-08 | 2004-01-28 | Sumitomo Metal Industries, Ltd. | Austenitic stainless steel tube and manufacturing method thereof |
JP2012255198A (en) * | 2011-06-10 | 2012-12-27 | Nippon Steel & Sumitomo Metal Corp | Method for producing austenitic stainless steel pipe, and austenitic stainless steel pipe |
CN104451074A (en) * | 2014-12-15 | 2015-03-25 | 广东电网有限责任公司电力科学研究院 | Method for lowering intercrystalline corrosion susceptibility of Super304H heat-resistant steel |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5558329A (en) * | 1978-10-21 | 1980-05-01 | Nippon Kokan Kk <Nkk> | Production of iron base alloy pipe of superior oxidation resistance to high temperature steam |
-
1984
- 1984-08-23 JP JP17553984A patent/JPS6156234A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5558329A (en) * | 1978-10-21 | 1980-05-01 | Nippon Kokan Kk <Nkk> | Production of iron base alloy pipe of superior oxidation resistance to high temperature steam |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1342807A3 (en) * | 2002-03-08 | 2004-01-28 | Sumitomo Metal Industries, Ltd. | Austenitic stainless steel tube and manufacturing method thereof |
US7014720B2 (en) | 2002-03-08 | 2006-03-21 | Sumitomo Metal Industries, Ltd. | Austenitic stainless steel tube excellent in steam oxidation resistance and a manufacturing method thereof |
JP2012255198A (en) * | 2011-06-10 | 2012-12-27 | Nippon Steel & Sumitomo Metal Corp | Method for producing austenitic stainless steel pipe, and austenitic stainless steel pipe |
CN104451074A (en) * | 2014-12-15 | 2015-03-25 | 广东电网有限责任公司电力科学研究院 | Method for lowering intercrystalline corrosion susceptibility of Super304H heat-resistant steel |
Also Published As
Publication number | Publication date |
---|---|
JPH0129854B2 (en) | 1989-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101648211B (en) | Rolling method of dual-phase stainless steel hot continuous rolled coil | |
CN113564462B (en) | High-carbon austenitic stainless steel plate with uniform intergranular corrosion resistant structure and manufacturing method thereof | |
JPH0734184A (en) | Polyphase trace alloy steel | |
CN111321354B (en) | X70M hot-rolled steel strip and manufacturing method thereof | |
CN113667903B (en) | Stepped structure austenitic stainless steel, seamless pipe and preparation method and application thereof | |
JPS6053726B2 (en) | Method for manufacturing austenitic stainless steel sheets and steel strips | |
JP2001192730A (en) | High Cr ferritic heat resistant steel and heat treatment method thereof | |
JPS5967315A (en) | Manufacture of weldable particle large pipe steel sheet | |
JPS6156234A (en) | Manufacture of austenite stainless fine grain steel | |
JPWO2019132195A5 (en) | ||
JPH0681036A (en) | Production of ferritic stainless steel sheet excellent in ridging characteristic and workability | |
JPH0569885B2 (en) | ||
JPS6156235A (en) | Manufacture of high toughness nontemper steel | |
JPH07150244A (en) | Method for producing ferritic stainless steel for cold working | |
JPS589925A (en) | Production of api standard class x80 steel pipe of superior low temperature toughness | |
JP3326783B2 (en) | Manufacturing method of low alloy seamless steel pipe with excellent high temperature strength | |
JPH0615692B2 (en) | Method for manufacturing austenitic stainless steel plate | |
JP3214351B2 (en) | Method for producing Cr-Mo based seamless steel pipe excellent in high temperature strength | |
JPH0547603B2 (en) | ||
JP5228994B2 (en) | Manufacturing method of ferritic stainless steel material and manufacturing method of ferritic stainless steel pipe | |
JPS5896851A (en) | Ferritic stainless steel for formed steel plate with improved ridging resistance | |
JPH05214499A (en) | Method for producing high Ni alloy clad steel sheet excellent in sour resistance and low temperature toughness | |
JPH0610041A (en) | Method for producing high Cr ferritic steel excellent in creep rupture strength and ductility | |
CN118064789A (en) | Low-nickel high-nitrogen duplex stainless steel tube blank and preparation method and application thereof | |
JPS6075524A (en) | Manufacture of two-phase stainless steel plate |