[go: up one dir, main page]

JPS6154152A - Alkaline cell - Google Patents

Alkaline cell

Info

Publication number
JPS6154152A
JPS6154152A JP59175906A JP17590684A JPS6154152A JP S6154152 A JPS6154152 A JP S6154152A JP 59175906 A JP59175906 A JP 59175906A JP 17590684 A JP17590684 A JP 17590684A JP S6154152 A JPS6154152 A JP S6154152A
Authority
JP
Japan
Prior art keywords
negative electrode
copper layer
cell
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59175906A
Other languages
Japanese (ja)
Inventor
Takao Yokoyama
孝男 横山
Tadashi Sawai
沢井 忠
Iwao Shirai
白井 巖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59175906A priority Critical patent/JPS6154152A/en
Publication of JPS6154152A publication Critical patent/JPS6154152A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/171Lids or covers characterised by the methods of assembling casings with lids using adhesives or sealing agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PURPOSE:To prevent the blistering and leakage due to gas generating by forming the negative electrode sealing plate which is consisted of a tripple layered clad plate having its copper layer surface coated with deposite of different kind metals to maintain its higher hydrogen overvoltage so as to fill its internal portion with a negative electrode active material. CONSTITUTION:The sealing plate 4 of a button type alkaline cell, etc., which is used for filling a negative electrode active material 6 placed oppositely to a positive electrode agent 2 through a separator 7, is formed by using a tripple layered clad plate consisted of nickel-stainless steel-copper layer from outside and also, its copper layer surface is formed by using a vacuum evaporation method, etc., so as to have its coated deposite of 0.05-1mg per unit area, which is consisted of metals such as In, Cd, Pb, Sn, etc., to maintain its higher hydrogen voltage. Therefore, enabling the cell to control its hydrogen gas generating from the negative electrode active material 6 nearly perfectly after enclosing the cell, the blistering and leakage of the cell can be prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ電池の負極容器に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a negative electrode container for an alkaline battery.

従来技術 正極に、酸化銀、酸化水銀、二酸化マンガン、等を用い
、負極に亜鉛、電解液にアルカリを用いるアルカリ電池
においては、電解液によって負極側の腐食が激しく、そ
れに伴う水素ガスの発生により自己放電が大きくなるこ
とがあった。又、電池のハレソなどが起こる。
Conventional technology In alkaline batteries that use silver oxide, mercury oxide, manganese dioxide, etc. for the positive electrode, zinc for the negative electrode, and alkaline for the electrolyte, the negative electrode side is severely corroded by the electrolyte, and hydrogen gas is generated as a result. Self-discharge could become large. Also, battery damage may occur.

この対策としては、水素過電圧を高く維持させることが
心安であり、従来から水銀による氷化が行なわれた。こ
の際の氷化率は、水素ガスの発生を押えるために現在の
技術では7〜15%が一般的である。
As a countermeasure against this problem, it is safe to maintain a high hydrogen overvoltage, and ice formation using mercury has traditionally been used. The freezing rate at this time is generally 7 to 15% in current technology in order to suppress the generation of hydrogen gas.

ところが、最近にな−)て水銀の汚染問題がクローズア
ップされてきた。これに対応して、亜鉛の水化にトく企
1:げるため負極亜鉛と他の金属との合金化などの検討
が進められ、その氷化率も3〜6%に下げることが可能
となったが、水銀G:を減らすことによ−で、水化亜鉛
粉末がアルカリ電解液の存在のもとで、負極容器の内面
金属である銅などに接触し銅表面が水化されるが、この
氷化速度は、負極水化量、水化亜鉛粉末および電解液と
の接触面積、負極容器内面の表面状態などによって異り
、物月目的な歪、酸化腐食、汚れ、異物の付着等を完全
に防ぐことができず、その部分は水化が進みにくく、水
化までに時間を要し、その間、水素過電圧の低い部分か
ら水素ガスの発生が見られる。
However, recently, the problem of mercury pollution has been brought into focus. In response to this, studies are being carried out on alloying negative electrode zinc with other metals to reduce the hydration of zinc, and it is possible to reduce the icing rate to 3-6%. However, by reducing the mercury G:, the zinc hydrate powder comes into contact with copper, which is the inner metal of the negative electrode container, in the presence of an alkaline electrolyte, and the copper surface becomes hydrated. However, this freezing rate varies depending on the amount of hydration in the negative electrode, the area of contact with the zinc hydrate powder and electrolyte, and the surface condition of the inner surface of the negative electrode container, and may be affected by distortion, oxidative corrosion, dirt, and foreign matter adhesion. etc. cannot be completely prevented, hydration is difficult to proceed in that area, and it takes time for hydration to occur, during which time hydrogen gas is observed to be generated from the area where the hydrogen overvoltage is low.

発明が解決すべき問題点 そのため、電池の密封後、水素ガスの発生が続き、電池
のふくれや漏液の原因となる。特に小型ボタン電池のよ
うに電池内の自由体積が小さいものでは、前記の問題は
大きい。
Problems to be Solved by the Invention As a result, hydrogen gas continues to be generated after the battery is sealed, causing swelling and leakage of the battery. The above problem is especially serious in batteries such as small button batteries in which the free volume within the battery is small.

更に、最近の傾向としてより小型のボタン電池が開発さ
れており、この場合、負極内面積当りの水銀量が少なく
なり、電池のフクレや漏液がより一層加速されることに
なる。
Furthermore, as a recent trend, smaller button batteries have been developed, and in this case, the amount of mercury per negative electrode internal area is reduced, which further accelerates battery blistering and leakage.

本発明は前記の諸問題を解決し、安定した電池を提供す
ることにある。
The object of the present invention is to solve the above-mentioned problems and provide a stable battery.

問題点を解決するための手段 本発明は、負極容器内面に水素過電圧を高く維持させる
だめの異種金属を塗着した負極容器を用いたアルカリ電
池である。
Means for Solving the Problems The present invention is an alkaline battery using a negative electrode container having a different metal coated on the inner surface of the negative electrode container to maintain a high hydrogen overvoltage.

作用 このようにすることで負極部からの水素ガス発生全抑制
することができる。
Effect: By doing so, hydrogen gas generation from the negative electrode portion can be completely suppressed.

実施例 以下本発明の実施例をアルカリボタン電池(LRaaタ
イプ、直径11.6門、高さ6.4朋)を例に説明する
。図は、前記ボタン電池の断面図であり、図中1は正極
ケース、2は二酸化マンガンと黒鉛との混合物を加圧成
型した正極合剤であり、正極リング3と共にケース1に
加圧密着させたものである。4は本発明の%像とする負
極封口板で、外側よりニッケルーステンレス鋼−銅層よ
りなる三層クラット板で、更に銅層の表面には水素過電
圧を高く維持させるだめの金属、例えばIn、Cd、P
b、Sn、T/、Ag、Ca、Ag、Biなどの少なく
とも一種を塗着している。
EXAMPLES Below, examples of the present invention will be explained using an alkaline button battery (LRaa type, diameter 11.6 gates, height 6.4 mm) as an example. The figure is a cross-sectional view of the button battery. In the figure, 1 is a positive electrode case, 2 is a positive electrode mixture formed by press-molding a mixture of manganese dioxide and graphite, and the positive electrode ring 3 is tightly attached to the case 1 under pressure. It is something that 4 is a negative electrode sealing plate according to the present invention, which is a three-layer clad plate consisting of nickel-stainless steel-copper layers from the outside, and a metal such as In to maintain a high hydrogen overvoltage on the surface of the copper layer. , Cd, P
At least one of b, Sn, T/, Ag, Ca, Ag, Bi, etc. is applied.

その塗X′1方法としてはメッキ、蒸着などが用いられ
る。これらの方法により一層ち密に、かつ均一に塗着で
きるという長所がある。ここでは蒸着法を月1いlこ。
As the coating method X'1, plating, vapor deposition, etc. are used. These methods have the advantage that they can be applied more densely and uniformly. Here, we use the vapor deposition method once a month.

又、その塗着量としては、単位面積当り0.06〜18
9が望ましい。塗着量が0.06ダ/ crt?以下の
場合、水素ガスの発生全完全に抑制できない。又、1m
g以上になると水素ガス発生は完全に抑制できるものの
、電池を構成した時にこれらの物質が亜鉛の反応を押え
る作用をするために、負極利用率の低下をきたし、逆効
果となる。従って0.06〜1 mgが最も好ましく、
本実施例ではo、tsmf/alとした。なお2g!以
上併用の場合は合せて0.05〜1グ/dを塗着する。
In addition, the coating amount is 0.06 to 18 per unit area.
9 is desirable. The amount of coating is 0.06 da/crt? In the following cases, hydrogen gas generation cannot be completely suppressed. Also, 1m
Although hydrogen gas generation can be completely suppressed when the amount exceeds 100 g, these substances act to suppress the reaction of zinc when the battery is constructed, resulting in a decrease in the negative electrode utilization rate, which has the opposite effect. Therefore, 0.06 to 1 mg is most preferable;
In this example, o and tsmf/al were used. In addition, 2g! If the above are used in combination, apply a total of 0.05 to 1 g/d.

6は、ナイロンよりなる封口リングで4とカップリング
して負極容器を構成している。この容器内に0.5〜6
%水化された負極活物質である亜鉛6とアルカリ電解液
を収納する。従来の銅層のみの場合は水素ガス発生を押
えるために水化率は少なくとも5%以上を必要としてい
た。しかし、本発明の封口板を使用することによって、
06%の氷化率で完全に水素発生を抑制することが可能
となった。負極容器内面に汚れがち1ても、又少ない水
銀量であっても水素ガス発生は認められない。
6 is a sealing ring made of nylon and is coupled to 4 to form a negative electrode container. 0.5 to 6 in this container
It houses zinc 6, which is a hydrated negative electrode active material, and an alkaline electrolyte. In the case of a conventional copper layer only, a hydration rate of at least 5% was required to suppress hydrogen gas generation. However, by using the sealing plate of the present invention,
It became possible to completely suppress hydrogen generation at a freezing rate of 0.6%. Even if the inner surface of the negative electrode container is prone to dirt, no hydrogen gas generation is observed even if the amount of mercury is small.

これは、水素ガス発生を氷化によって抑えるのではなく
、塗着した金属によって抑制させるためである。水化を
0にすると逆に塗着金層の効果はなくなる。その理由は
明らかでないが、何らかの相乗効果が生τ[れたものと
思われる。ここでは氷化率1.6%の亜鉛を用いた。
This is because hydrogen gas generation is suppressed not by freezing but by the coated metal. Conversely, when the hydration is set to 0, the effect of the coated gold layer disappears. The reason for this is not clear, but it seems that some kind of synergistic effect was produced. Here, zinc with a freezing rate of 1.6% was used.

け)シ1.セパレータ、8は含液材である。ke) 1. The separator 8 is a liquid-containing material.

なお、電解液には10MのKOHにZnOを溶解したも
のを用いた。
Note that the electrolytic solution used was one in which ZnO was dissolved in 10M KOH.

次に本発明の構成(A)と、従来の構成CB)  につ
いて評価した。
Next, the configuration (A) of the present invention and the conventional configuration CB) were evaluated.

使用した水銀量は、CB)を1とすると(A)は0.1
5で約+に低下させた。
The amount of mercury used is 0.1 for (A) when CB) is 1.
5, it decreased to about +.

次に60°Cで保存した時の電池のふくれ数を調べた。Next, the number of bulges in the battery when stored at 60°C was examined.

n = 50 その結果、本発明の構成は、水銀量が少ないにもかかわ
らず、全く問題はなか1だ。一方、従来の構成では、初
期からフクレが確認された。この原因としては、封口板
銅層の汚れ、キズなどが考えられ、分解して調べると、
その銅層の1部に黒変色があり、その部分が十分氷化さ
れなかったものである。
n = 50 As a result, the configuration of the present invention has no problems at all despite the small amount of mercury. On the other hand, with the conventional configuration, blisters were observed from the beginning. The cause of this may be dirt or scratches on the copper layer of the sealing plate, and when it is disassembled and examined,
There was a black discoloration in part of the copper layer, indicating that that part was not sufficiently frozen.

又、漏液試験においても次の結果が得られた。In addition, the following results were obtained in the liquid leakage test.

条件T45℃、RH90% n=20 本発明(A)では2000時間の経過でも全く漏液は認
められなかった。一方従来構成〔B〕では500時間後
で20コ中2コの漏液が確認された。
Conditions T45°C, RH90% n=20 In the present invention (A), no liquid leakage was observed even after 2000 hours. On the other hand, in the conventional configuration [B], leakage was confirmed in 2 out of 20 units after 500 hours.

これを分解して調べると、分解時に内圧の上昇があり、
電解液がふき出してきて明らかにガス発生があった。更
に、負極容器中の亜鉛を取り除いて封口板内面を調べる
と前述と同じ様に黒変色が認めらシシlζ。これは、封
口板銅層で汚れ、キズなどの原因によって水化が十分に
進まなく水素ガスの発生があったと思われる。
When this was disassembled and investigated, it was found that the internal pressure increased during disassembly.
The electrolyte was bubbling out and there was clearly gas generation. Furthermore, when the zinc in the negative electrode container was removed and the inner surface of the sealing plate was examined, black discoloration was observed as described above. This is thought to be due to dirt and scratches on the copper layer of the sealing plate, which prevented hydration from progressing sufficiently and hydrogen gas was generated.

本発明では銅層表面に金属を塗着することによって前述
のフクレや漏液は全く見られなか、た。
In the present invention, by applying metal to the surface of the copper layer, the above-mentioned blistering and leakage were not observed at all.

本究明では、更に小さな電池や封口板内面積に対して絶
対水銀量の少ない電池ではより効果が大きい。
In this investigation, the effect is greater in smaller batteries and batteries with a smaller absolute amount of mercury relative to the inner area of the sealing plate.

発明の効果 以上の様に、負極封口板内面銅層に、水素過電圧を高く
維持させる金属を塗着することによって、ガス発生によ
るフクレや漏液を防止することができ、安定した特性の
電池が可能となる。
As described above, by coating the inner copper layer of the negative electrode sealing plate with a metal that maintains a high hydrogen overvoltage, it is possible to prevent blistering and leakage due to gas generation, and a battery with stable characteristics can be obtained. It becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明のボタン型アルカリ電池の断面図である。 1・・・・・・正極ケース、2・・・・・・正極合剤、
3・・・・・・正極リング、4・・・・・・封口板、6
・・・・・・封口リング、6・・・・・・負極活物質、
7・・・・・・セパレータ、8・・・・・・含液材O
The figure is a sectional view of the button-type alkaline battery of the present invention. 1... Positive electrode case, 2... Positive electrode mixture,
3...Positive electrode ring, 4...Sealing plate, 6
... Sealing ring, 6 ... Negative electrode active material,
7...Separator, 8...Liquid-containing material O

Claims (2)

【特許請求の範囲】[Claims] (1)負極容器内面が銅層よりなる封口板を備え、前記
銅層表面に、水素過電圧を高く維持させる金属を少なく
とも1種類を塗着し、その負極容器中に負極活物質であ
る亜鉛と電解液を充填してなるアルカリ電池。
(1) The inner surface of the negative electrode container is equipped with a sealing plate made of a copper layer, the surface of the copper layer is coated with at least one metal that maintains a high hydrogen overvoltage, and the negative electrode active material, zinc, is coated on the surface of the copper layer. An alkaline battery filled with electrolyte.
(2)銅層表面に、In、Cd、Pb、Sn、Tl、A
l、Ca、Ag、Biからなる群の少なくとも1種類を
塗着した特許請求の範囲第1項記載のアルカリ電池。
(2) In, Cd, Pb, Sn, Tl, A on the surface of the copper layer
2. The alkaline battery according to claim 1, wherein the alkaline battery is coated with at least one member selected from the group consisting of L, Ca, Ag, and Bi.
JP59175906A 1984-08-24 1984-08-24 Alkaline cell Pending JPS6154152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59175906A JPS6154152A (en) 1984-08-24 1984-08-24 Alkaline cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59175906A JPS6154152A (en) 1984-08-24 1984-08-24 Alkaline cell

Publications (1)

Publication Number Publication Date
JPS6154152A true JPS6154152A (en) 1986-03-18

Family

ID=16004301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59175906A Pending JPS6154152A (en) 1984-08-24 1984-08-24 Alkaline cell

Country Status (1)

Country Link
JP (1) JPS6154152A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4762986A (en) * 1986-03-10 1988-08-09 Canon Kabushiki Kaisha Automatic focussing system including in-focus position prediction means
JPH0757717A (en) * 1993-08-06 1995-03-03 Katayama Tokushu Kogyo Kk Metallic material plate, negative terminal plate made of the metallic material plate, and manufacture of the terminal plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4762986A (en) * 1986-03-10 1988-08-09 Canon Kabushiki Kaisha Automatic focussing system including in-focus position prediction means
JPH0757717A (en) * 1993-08-06 1995-03-03 Katayama Tokushu Kogyo Kk Metallic material plate, negative terminal plate made of the metallic material plate, and manufacture of the terminal plate

Similar Documents

Publication Publication Date Title
JPS60175368A (en) Zinc-alkaline primary cell
JP3522303B2 (en) Button type alkaline battery
JPS6154152A (en) Alkaline cell
JPS6161364A (en) Alkaline battery
JPH0315156A (en) Zinc electrode plate for secondary battery
JP4717222B2 (en) Alkaline battery
JPH0421310B2 (en)
JPH0371738B2 (en)
JPH01307161A (en) Alkaline battery
JPH08222194A (en) Button type alkaline battery
JPS6158163A (en) Alkaline zinc battery
JPS61208748A (en) Lithium organic secondary battery
JPS636749A (en) Zinc alkaline battery
JPS6122564A (en) Sealed battery
JPH0665747A (en) Negative electrode container for alkaline battery
JPS636747A (en) Zince alkaline battery
JPS63124358A (en) Battery
JP2737233B2 (en) Zinc alkaline battery
JP2737232B2 (en) Zinc alkaline battery
JPH0760685B2 (en) Zinc alkaline battery
JPS60221950A (en) Lead storage battery
JPH0622119B2 (en) Zinc alkaline battery
JPH06325754A (en) Manufacture of negative electrode for button-shaped alkaline cell and button-shaped alkaline cell
JPS5566863A (en) Alkali cell
JPS60165052A (en) Zinc alkaline primary battery