[go: up one dir, main page]

JPS6154086B2 - - Google Patents

Info

Publication number
JPS6154086B2
JPS6154086B2 JP10659479A JP10659479A JPS6154086B2 JP S6154086 B2 JPS6154086 B2 JP S6154086B2 JP 10659479 A JP10659479 A JP 10659479A JP 10659479 A JP10659479 A JP 10659479A JP S6154086 B2 JPS6154086 B2 JP S6154086B2
Authority
JP
Japan
Prior art keywords
rolling
slab
hot
width
sec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10659479A
Other languages
Japanese (ja)
Other versions
JPS5633103A (en
Inventor
Toshio Yanai
Shigenori Tanaka
Kazuaki Ezaka
Shigeru Hayano
Masahiro Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10659479A priority Critical patent/JPS5633103A/en
Publication of JPS5633103A publication Critical patent/JPS5633103A/en
Publication of JPS6154086B2 publication Critical patent/JPS6154086B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/466Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a non-continuous process, i.e. the cast being cut before rolling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は鋳片スラブを熱間圧延工程に供給する
方法、特に連続鋳造後の鋳片をそのまま圧延する
直送圧延または鋳片を保温してから熱間圧延を行
なうホツトチヤージ圧延プロセスにおいて、該圧
延の際に鋳片を所定の巾寸法でかつ表面および内
部に割れがない状態で連続鋳造工程から熱間圧延
工程に供給する方法に関するものである。 直送圧延またはホツトチヤージ圧延において
は、連続鋳造時の保有熱を維持して熱間圧延工程
へ移行させるため、通常採用されている連続鋳造
−冷間手入れ−加熱−熱間圧延というプロセスに
比し、手入れ工程および加熱工程を省略すること
ができる。したがつて、直送圧延またはホツトチ
ヤージ圧延は製造工程の省略による生産性の向上
と熱エネルギー原単位の低減による省エネルギー
との面で工業的にきわめて優れたプロセスである
と言える。 しかして、上記の直送圧延またはホツトチヤー
ジ圧延を実施するに当つて問題となるのは、連続
鋳造工程と熱間圧延工程の整合性と、鋳片スラブ
の品質(特に割れ)である。 すなわち、整合性については、通常の熱間圧延
工程においては所望の成品を歩留りよく作り出す
のに最も適した素材の巾サイズが決められてお
り、しかも成品の巾サイズは多様であるため供給
する素材の巾サイズもこれに対応した多様のもの
とならざるを得ないが、連続鋳造用鋳型は生産性
と作業性の点から、一定の巾サイズとなつている
ことが好ましく、前記熱間圧延工程の要請に応じ
きれないことが多い。従来、このような不整合を
解決するため、鋳片サイズを変更可能にした寸法
可変の鋳型を用いる鋳造方法が提案されている
が、鋳型構造が複雑となつて作業性、整備性の悪
化が避けられないことから、この方法は必ずしも
有利とは言えない。 このため鋳片スラブを一定巾で製造し、これを
所望巾にサイジングする熱間圧延工程を経て通常
の熱間圧延工程に鋳片スラブを供給する方法を採
用することが有利とされ種々検討されている。し
かしこの熱間圧延工程においては如何に早く、正
確に巾圧延を完了するかが重要で、これは素材の
温度降下を防ぐと共にその種々の条件の改善によ
り割れの発生を完全に防止し、継続する熱間圧延
の作業性、生産性を高度に維持し効率よく整合性
を確保することが必要とされる。 従つて、本発明における熱間圧延工程は、鋳片
スラブの側縁片側当り50mm/パス以上の巾圧下量
とすることが必須でかつ3/sec以下の歪速度で
この巾圧延を行うことを必須とするもので、実際
には上下つば付の竪ロールによつて鋳片を巾方向
に50mm/パス・片側以上の大圧下してドツグボー
ン形状に変形せしめ、次いで水平ロールによつて
ドツグボーンを解消させ、これらを必要に応じて
可逆圧延して複数パス行つて所望の巾サイズの鋼
片を最小パス回数で得るようにしている。このた
め巾大圧下時には鋳片応力分布が不均一となつ
て、鋳片の巾および長手方向に沿つて圧縮又は引
張応力が複雑に分布する。特にドツグボーン付近
の歪は大となり、鋳片エツジ疵は拡大され(圧延
方向と直角方向の疵が顕著となる)、これが鋳片
エツジ部の欠陥として現われる。また、巾圧下時
には鋳片巾方向中央部の内部には大きい引張応力
が作用し、これが鋳片の内部割れを拡大し、後の
圧延工程によつても圧着し難く材質劣化を招くの
で、本発明では巾圧下時の歪速度を3/sec以下
として上記各種割れの発生を防止するのである。 以下本発明の内容について詳述する。 第1図には連続鋳造した鋳片あるいは造塊した
鋼塊の直送圧延(第1図1)、ならびにホツトチ
ヤージ圧延(第1図2)における鋼片の受ける温
度履歴ならびに加工履歴を模式図的に示した。直
送圧延ならびにホツトチヤージ圧延では、旧来の
再加熱・圧延プロセス(第1図3)と異り鋼片を
室温まで、冷やすことなく、熱間圧延ないしは加
熱炉に装入した後圧延することを特徴としてい
る。従つて、本発明が対象とする巾圧延方法は、
かかる熱間圧延において通常の圧延温度域である
1200〜900℃の温度域で50mm/パス・片側以上の
巾圧下で所定巾寸法に最小パス回数で圧延を行な
いかつその際には、1〜5パス目の圧延で鋼片の
表面に横割れあるいは鋼片エツジ部にエツジ割れ
を発生させず、それに引き続く連続圧延中にも割
れが発生し製品疵として残存することのないよう
に、3/sec以下に歪速度で行なう。 本発明において歪速度を3/sec以下に限定し
たのは次の知見による。すなわち、第2図に示す
本発明者等のシミユレーシヨン実験法の結果が示
すように1300〜900℃の温度域での断面収縮率が
60%以上を示す鋼においては、直送圧延ないしは
ホツトチヤージ圧延時に表面割れ発生頻度が非常
に少なくなる。逆に断面収縮率60%未満になると
表面割れが多発する傾向にあることと、第1表に
示す低炭素Alキルド(〇印)、低炭Siキルド鋼
(×印)、中炭素Alキルド鋼(●印)から作成し
た試験片を第4図に示す熱サイクルを施して、グ
リーブルテスト(通電加熱による横型引張り試験
機によるテスト)を行なつた結果である第3図に
示す歪速度と断面収縮率との関係にもとずいてい
る。
The present invention relates to a method for supplying a slab slab to a hot rolling process, particularly in a direct rolling process in which a slab after continuous casting is rolled as it is, or in a hot charge rolling process in which a slab is kept warm and then hot rolled. The present invention relates to a method for supplying slabs from a continuous casting process to a hot rolling process with a predetermined width and no cracks on the surface or inside. In direct rolling or hot charge rolling, in order to maintain the heat retained during continuous casting and transfer it to the hot rolling process, compared to the normally adopted process of continuous casting - cold care - heating - hot rolling, Care steps and heating steps can be omitted. Therefore, it can be said that direct rolling or hot charge rolling is an extremely excellent process industrially in terms of improving productivity by omitting manufacturing steps and saving energy by reducing unit heat energy consumption. However, when carrying out the above-mentioned direct rolling or hot charge rolling, the problems are the consistency of the continuous casting process and the hot rolling process, and the quality (particularly cracking) of the cast slab. In other words, regarding consistency, in the normal hot rolling process, the width size of the material that is most suitable for producing the desired product with a high yield is determined, and since the width sizes of the finished products are diverse, the width size of the material to be supplied is determined. The width size of the continuous casting mold must also be varied to accommodate this, but from the viewpoint of productivity and workability, it is preferable that the continuous casting mold has a constant width size. It is often not possible to respond to requests. Conventionally, in order to solve such inconsistencies, a casting method using a dimensionally variable mold that allows the slab size to be changed has been proposed, but the mold structure becomes complicated and workability and maintainability deteriorate. Since this is unavoidable, this method is not necessarily advantageous. For this reason, it is thought to be advantageous to adopt a method in which cast slabs are produced with a constant width, then subjected to a hot rolling process in which the slabs are sized to the desired width, and then supplied to the normal hot rolling process, and various studies have been conducted. ing. However, in this hot rolling process, it is important to complete the width rolling as quickly and accurately as possible.This is done by preventing the temperature of the material from dropping and by improving various conditions to completely prevent the occurrence of cracks and ensure continuity. It is necessary to maintain a high level of workability and productivity in hot rolling, and to ensure consistency efficiently. Therefore, in the hot rolling process of the present invention, it is essential that the width reduction amount is 50 mm/pass or more per side edge of the slab slab, and the width rolling is performed at a strain rate of 3/sec or less. In practice, vertical rolls with upper and lower brim are used to reduce the slab in the width direction by 50mm/pass and more than one side to transform it into a dogbone shape, and then horizontal rolls are used to eliminate dogbones. These are then subjected to reversible rolling as necessary to perform multiple passes to obtain a steel billet of a desired width with a minimum number of passes. Therefore, when the width is greatly reduced, the slab stress distribution becomes non-uniform, and compressive or tensile stress is distributed in a complicated manner along the width and longitudinal direction of the slab. In particular, the strain near the dogbone becomes large, and the flaws on the edge of the slab are enlarged (flaws in the direction perpendicular to the rolling direction become noticeable), which appear as defects on the edge of the slab. In addition, during width reduction, a large tensile stress acts inside the central part of the slab in the width direction, which enlarges internal cracks in the slab and makes it difficult to compress in the subsequent rolling process, causing material deterioration. In the invention, the strain rate during width reduction is set to 3/sec or less to prevent the occurrence of the various types of cracks mentioned above. The content of the present invention will be explained in detail below. Figure 1 schematically shows the temperature history and processing history of a continuously cast slab or ingot during direct rolling (Figure 1, 1) and hot charge rolling (Figure 1, 2). Indicated. Direct rolling and hot charge rolling differ from the traditional reheating/rolling process (Fig. 1, 3) in that the billets are hot rolled or charged into a heating furnace and then rolled without being cooled to room temperature. There is. Therefore, the width rolling method targeted by the present invention is as follows:
This is the normal rolling temperature range for such hot rolling.
Rolling is carried out at a temperature range of 1200 to 900°C with a minimum number of passes of 50 mm/pass and width reduction on one side or more to a specified width dimension, and at that time, horizontal cracks are generated on the surface of the steel billet in the 1st to 5th passes of rolling. Alternatively, the rolling is carried out at a strain rate of 3/sec or less so as not to cause edge cracks at the edges of the steel billet, and to prevent cracks from occurring during subsequent continuous rolling and remaining as defects in the product. The reason why the strain rate is limited to 3/sec or less in the present invention is based on the following findings. In other words, as shown in the results of the inventor's simulation experiment shown in Figure 2, the cross-sectional shrinkage rate in the temperature range of 1300 to 900°C is
In steels exhibiting 60% or more, the frequency of surface cracking during direct rolling or hot charge rolling becomes extremely low. On the other hand, when the cross-sectional shrinkage rate is less than 60%, surface cracks tend to occur frequently, and the low carbon Al killed steel (marked with ○), low carbon Si killed steel (marked with x), and medium carbon Al killed steel shown in Table 1. The strain rate shown in Figure 3 is the result of a Greeble test (a test using a horizontal tensile tester using electrical heating) by subjecting the test piece prepared from (● mark) to the heat cycle shown in Figure 4. It is based on the relationship with cross-sectional shrinkage.

【表】 つまり第3図から解明されたことは、グリーブ
ルテスト時の歪速度が3/sec以下となると断面
収縮率を60%以上に保持することができ、3/
secを超えると断面収縮率が急激に60%未満に低
下することである。この現象はグリーブルテスト
において、歪速度が3/sec以下であると応力集
中が緩和され、各試験片の析出物による脆化を防
止することができる反面、歪速度が3/secを超
えると応力集中が急激に増大し、各試験片の析出
物による脆化を伴なうことによるものと考えられ
る。 このような知見にもとずき歪速度3/sec以下
で熱間圧延を実施した結果、第5図に示すように
熱間圧延時の脆化温度域は直送又はホツトチヤー
ジ温度以下の低温側に移動しかつその温度範囲が
縮小し、熱間圧延温度管理範囲を有利に拡大せし
める優れた効果が得られることが見い出された。 すなわち、第2表に示す成分の試験スラブを用
いて、歪速度30/sec(●印)、および3/sec
(〇印)のそれぞれで熱間圧延を行なつた時の割
れ発生程度と試験スラブ圧延温度との関係を第5
図に示す。この図から明らかなように、歪速度を
3/sec以下にすることによつて割れ発生が見ら
れる温度、即ち脆化温度が900℃以下となりかつ
700〜900℃とその範囲Yが縮小する。このことは
50mm/パス・片側以上の巾大圧下の圧延を行なつ
ても、圧延温度が直送又はホツトチヤージ圧延の
一般的温度である900℃以上であるので、割れ発
生のおそれは全くない。これに対し歪速度が30/
secとなると、割れ発生が見られる脆化温度範囲
Xが図示の如く700〜1100℃と広く、これでは後
続する圧延温度範囲と一致してしまい、割れ発生
を招くことになる。
[Table] In other words, what has been clarified from Figure 3 is that when the strain rate during the Greeble test is 3/sec or less, the cross-sectional shrinkage ratio can be maintained at 60% or more;
sec, the cross-sectional shrinkage rate suddenly decreases to less than 60%. This phenomenon can be seen in the Greeble test when the strain rate is 3/sec or less, stress concentration is alleviated and embrittlement due to precipitates in each test piece can be prevented, but when the strain rate exceeds 3/sec This is thought to be due to the sudden increase in stress concentration, which was accompanied by embrittlement due to precipitates in each specimen. Based on this knowledge, hot rolling was carried out at a strain rate of 3/sec or less, and as shown in Figure 5, the embrittlement temperature range during hot rolling was lowered to the low temperature side below the direct delivery or hot charge temperature. It has been found that the temperature range is reduced and the excellent effect of advantageously expanding the hot rolling temperature control range is obtained. That is, using a test slab with the components shown in Table 2, strain rates of 30/sec (● mark) and 3/sec
The relationship between the degree of crack occurrence and the test slab rolling temperature when hot rolling was performed for each of (marked with ○) is shown in the fifth table.
As shown in the figure. As is clear from this figure, by reducing the strain rate to 3/sec or less, the temperature at which cracking occurs, that is, the embrittlement temperature, decreases to 900℃ or less.
The range Y decreases to 700-900°C. This thing is
Even when rolling is performed with a large width reduction of 50 mm/pass on one side or more, there is no risk of cracking since the rolling temperature is 900° C. or higher, which is the general temperature for direct feed or hot charge rolling. On the other hand, the strain rate is 30/
sec, the embrittlement temperature range X in which cracking occurs is as wide as 700 to 1100°C as shown in the figure, which coincides with the subsequent rolling temperature range, leading to cracking.

【表】 次に本発明の実施例を第3表に列記する。第3
表においてNo.1、2、3、5、6、7、9、
10、11、13、14、16、17が本発明例であり、
No.4、8、12、15、18が比較例である。また割
れ疵発生率における記号の意味は次の通りであ
る。 〇:表面疵、内部割れ共に無欠陥 △:表面疵小(3mm以下)個数2個以下 内部割れ小(サルフアープリントのみで確認さ
れる割れ個数10個以下) ×:△印以上の疵
[Table] Next, Examples of the present invention are listed in Table 3. Third
In the table No.1, 2, 3, 5, 6, 7, 9,
10, 11, 13, 14, 16, and 17 are examples of the present invention,
Nos. 4, 8, 12, 15, and 18 are comparative examples. Furthermore, the meanings of the symbols in the crack occurrence rate are as follows. 〇: No defects on both surface and internal cracks △: Small surface flaws (3 mm or less) Number of cracks: 2 or less Small internal cracks (number of cracks confirmed only by sulfur print: 10 or less) ×: Defects marked with △ or more

【表】 上記の第3表に示す如く、歪速度が本発明で規
定する3/sec以下を満足する場合には、表面割
れ、内部割れ共に発生が防止されることが確認さ
れた。 以上説明した如く、本発明の方法によれば、50
mm/パス・片側以上という巾大圧下熱間圧延に鋳
片を供しても表面疵、内部割れ等の熱間巾圧延割
れの発生がなく、連続鋳造工程と熱間圧延工程と
を高い省エネルギーと生産性で結合整合すること
ができ、そのもたらす工業的効果は非常に大き
い。
[Table] As shown in Table 3 above, it has been confirmed that when the strain rate satisfies the 3/sec or less specified by the present invention, both surface cracks and internal cracks are prevented from occurring. As explained above, according to the method of the present invention, 50
Even if the slab is subjected to large-reduction hot rolling of mm/pass/one side or more, hot rolling cracks such as surface flaws and internal cracks do not occur, and the continuous casting process and hot rolling process are highly energy-saving. It is possible to combine and match productivity, and the industrial effects brought about by this are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種の製造プロセスの模式図、第2図
はシミユレーシヨン実験結果と直送又はホツトチ
ヤージ圧延時の鋼片割れの相関を示す説明図、第
3図はグリーブルテストにおける歪速度と断面収
縮率の関係を示す説明用グラフ、第4図は試験片
の熱サイクルパターンを示す説明用グラフ、第5
図はスラブの圧延温度と割れ発生程度の関係を歪
速度を変えて示したグラフである。
Figure 1 is a schematic diagram of various manufacturing processes, Figure 2 is an explanatory diagram showing the correlation between simulation experiment results and billet cracking during direct feed or hot charge rolling, and Figure 3 is an illustration of the strain rate and cross-sectional shrinkage rate in the Greeble test. An explanatory graph showing the relationship, Figure 4 is an explanatory graph showing the thermal cycle pattern of the test piece, and Figure 5 is an explanatory graph showing the thermal cycle pattern of the test piece.
The figure is a graph showing the relationship between slab rolling temperature and degree of cracking as the strain rate is varied.

Claims (1)

【特許請求の範囲】[Claims] 1 溶鋼を連続鋳造して得た熱鋳片スラブを50
mm/パス・片側以上の熱間巾圧延後熱間圧延工程
に供給するに際して、前記熱鋳片スラブを前記熱
間巾圧延する時の歪速度を3/sec以下にして該
熱間巾圧延時の鋳片割れを防止することを特徴と
する鋳片スラブを熱間圧延工程に供給する方法。
1 50 pieces of hot slab slab obtained by continuous casting of molten steel
mm/pass・When supplying the hot slab slab to the hot rolling process after hot width rolling on one side or more, the strain rate during the hot width rolling is set to 3/sec or less during the hot width rolling. A method for supplying slab slabs to a hot rolling process, characterized by preventing slab cracking.
JP10659479A 1979-08-23 1979-08-23 Feeding method for cast slab to hot rolling pass Granted JPS5633103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10659479A JPS5633103A (en) 1979-08-23 1979-08-23 Feeding method for cast slab to hot rolling pass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10659479A JPS5633103A (en) 1979-08-23 1979-08-23 Feeding method for cast slab to hot rolling pass

Publications (2)

Publication Number Publication Date
JPS5633103A JPS5633103A (en) 1981-04-03
JPS6154086B2 true JPS6154086B2 (en) 1986-11-20

Family

ID=14437485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10659479A Granted JPS5633103A (en) 1979-08-23 1979-08-23 Feeding method for cast slab to hot rolling pass

Country Status (1)

Country Link
JP (1) JPS5633103A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60210675A (en) * 1984-04-05 1985-10-23 Kikusui Kagaku Kogyo Kk Method for manufacturing water-based paint with deodorizing effect
JPS60263043A (en) * 1984-06-08 1985-12-26 Kourinshiya:Kk How to prevent mold from forming in your air conditioner
TW297788B (en) * 1994-12-15 1997-02-11 Sumitomo Metal Ind

Also Published As

Publication number Publication date
JPS5633103A (en) 1981-04-03

Similar Documents

Publication Publication Date Title
CN109234495B (en) Continuous casting production process of SM4Gr2MnNi die steel plate with low compression ratio and high flaw detection requirement
CN110396648A (en) A kind of special thick alloy mold steel plate of continuous casting billet production and its manufacturing method
US3710436A (en) Method for the production of plates
JPS6154086B2 (en)
CN114632818B (en) Technological method for reducing hot rolling edge cracking of oriented silicon steel
JPH0112561B2 (en)
KR101795871B1 (en) Mathod for manufacturing high copper stainless steel with twin roll strip casting apparatus
JPH0565263B2 (en)
JP2004237291A (en) Method for producing continuous cast slab and steel material processed from the slab
JPS59159934A (en) Continuous casting method of blank material for producing directional silicon steel plate
JP4312928B2 (en) Metal rolling method
JPH0460741B2 (en)
JPS60262915A (en) Method for preventing surface cracking of continuously cast slabs
JPH0347601A (en) Hot width reduction rolling method for continuously cast unidirectional electrical steel slabs
JP4613444B2 (en) Method for producing hot-rolled steel sheet with excellent surface properties
JPH0158251B2 (en)
JPH07290101A (en) Method of preventing surface cracks during hot width reduction rolling of continuously cast slabs
JPS623211B2 (en)
JPH02263931A (en) Manufacturing method of Cr-Ni stainless steel thin plate with excellent surface quality
JPH03133501A (en) Hot rolling method for slab of continuous casting grain -oriented magnetic steel
KR101758476B1 (en) Mathod for manufacturing high copper stainless steel with twin roll strip casting apparatus and high copper stainless steel manufactured thereby
JPH057107B2 (en)
JPS6155571B2 (en)
JPH0796684B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JPH02137602A (en) Direct rolling method for continuously cast slabs