JPS6152165B2 - - Google Patents
Info
- Publication number
- JPS6152165B2 JPS6152165B2 JP56019588A JP1958881A JPS6152165B2 JP S6152165 B2 JPS6152165 B2 JP S6152165B2 JP 56019588 A JP56019588 A JP 56019588A JP 1958881 A JP1958881 A JP 1958881A JP S6152165 B2 JPS6152165 B2 JP S6152165B2
- Authority
- JP
- Japan
- Prior art keywords
- solvent
- polyolefin
- carbon atoms
- catalyst
- cleaning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002904 solvent Substances 0.000 claims description 79
- 239000003054 catalyst Substances 0.000 claims description 43
- 238000004140 cleaning Methods 0.000 claims description 42
- 229920000098 polyolefin Polymers 0.000 claims description 41
- 150000002430 hydrocarbons Chemical class 0.000 claims description 30
- 239000004215 Carbon black (E152) Substances 0.000 claims description 29
- 229930195733 hydrocarbon Natural products 0.000 claims description 29
- 125000004432 carbon atom Chemical group C* 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 25
- 229920000642 polymer Polymers 0.000 claims description 25
- 239000007788 liquid Substances 0.000 claims description 21
- 239000002002 slurry Substances 0.000 claims description 20
- 238000006116 polymerization reaction Methods 0.000 claims description 19
- 238000005406 washing Methods 0.000 claims description 19
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 15
- 239000000178 monomer Substances 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- 239000011575 calcium Substances 0.000 claims description 8
- 239000011777 magnesium Substances 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 8
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 7
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 7
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 229910052791 calcium Inorganic materials 0.000 claims description 7
- 229910052749 magnesium Inorganic materials 0.000 claims description 7
- 239000011591 potassium Substances 0.000 claims description 7
- 229910052700 potassium Inorganic materials 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 238000001704 evaporation Methods 0.000 claims description 6
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 6
- 125000002947 alkylene group Chemical group 0.000 claims description 5
- 230000008020 evaporation Effects 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 4
- 229930195735 unsaturated hydrocarbon Natural products 0.000 claims description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 3
- 230000000379 polymerizing effect Effects 0.000 claims description 3
- 238000009835 boiling Methods 0.000 description 15
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 15
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 15
- -1 polypropylene Polymers 0.000 description 12
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 9
- 239000005977 Ethylene Substances 0.000 description 9
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 7
- 239000004743 Polypropylene Substances 0.000 description 7
- 229920001155 polypropylene Polymers 0.000 description 7
- 239000001273 butane Substances 0.000 description 6
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 6
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 229910052801 chlorine Inorganic materials 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000011949 solid catalyst Substances 0.000 description 5
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 5
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 4
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- MTZQAGJQAFMTAQ-UHFFFAOYSA-N ethyl benzoate Chemical compound CCOC(=O)C1=CC=CC=C1 MTZQAGJQAFMTAQ-UHFFFAOYSA-N 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 150000004679 hydroxides Chemical class 0.000 description 4
- 150000002902 organometallic compounds Chemical class 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 150000003623 transition metal compounds Chemical class 0.000 description 2
- JLGLQAWTXXGVEM-UHFFFAOYSA-N triethylene glycol monomethyl ether Chemical compound COCCOCCOCCO JLGLQAWTXXGVEM-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- YSUQLAYJZDEMOT-UHFFFAOYSA-N 2-(butoxymethyl)oxirane Chemical compound CCCCOCC1CO1 YSUQLAYJZDEMOT-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- 229910018626 Al(OH) Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910019440 Mg(OH) Inorganic materials 0.000 description 1
- FQYUMYWMJTYZTK-UHFFFAOYSA-N Phenyl glycidyl ether Chemical compound C1OC1COC1=CC=CC=C1 FQYUMYWMJTYZTK-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229940095564 anhydrous calcium sulfate Drugs 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- YNLAOSYQHBDIKW-UHFFFAOYSA-M diethylaluminium chloride Chemical compound CC[Al](Cl)CC YNLAOSYQHBDIKW-UHFFFAOYSA-M 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- AHAREKHAZNPPMI-UHFFFAOYSA-N hexa-1,3-diene Chemical compound CCC=CC=C AHAREKHAZNPPMI-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 229920001384 propylene homopolymer Polymers 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000010558 suspension polymerization method Methods 0.000 description 1
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
本発明は、プロピレン又はエチレンを主成分と
するポリオレフインの精製技術に関し、特にプロ
ピレン又はエチレンを主成分とするポリオレフイ
ンを炭素数3〜4の液状の炭化水素溶剤中で、チ
ーグラー・ナツタ触媒を用いて重合させることに
より合成し、該重合体を向流式洗浄塔を用いて、
炭素数3〜4の液状の炭化水素を主成分とする洗
浄溶剤で洗浄し、該洗浄溶剤に可溶触媒残査及び
重合体を除去することにより、上記ポリオレフイ
ンを精製する場合に適用して好適な技術である。
従来、炭素数3〜4の低沸点の炭化水素溶剤中
でチーグラー・ナツタ触媒を用いてポリオレフイ
ンを製造する方法は公知であり、特にプロピレン
自身を溶媒としてポリプロピレンあるいはエチレ
ンとプロピレンの共重合体を合成する方法やプロ
パン、ブタン中でポリエチレンあるいはエチレン
と少量のプロピレン、ブテン等との共重合体を合
成する方法は工業的にも広く実施されている。
これら低沸点の炭化水素溶剤中でポリオレフイ
ンを製造する方法は、炭素数6〜8の比較的高沸
点の飽和炭化水素溶剤を溶媒として重合する従来
の懸濁重合法に比較すれば、重合溶剤である低沸
点の炭化水素溶剤は蒸気圧が高く気化しやすいた
めに重合スラリーを大気圧下にフラツシユする等
の簡単な操作で重合体を溶剤から分離することが
可能であるという大きな利点を有する。また、低
沸点の炭化水素溶剤中で比較的高い圧力で重合す
ることにより触媒当たりの取れ高を大きくするこ
とが可能であること及び近来の触媒の性能の大幅
な改良によつて触媒当たりの取れ高が大きくなつ
たことなどから、ポリオレフイン中に残る触媒残
査を、特にエチレンを主成分とするポリオレフイ
ンではかなりの分野の製品の品質面で問題が無い
程にまで、少なくすることが可能である。しかし
ながら、特定の分野、例えば食品用フイルム、コ
ンデンサー用フイルム等に用いる場合には、炭化
水素溶剤可溶ポリマー及び触媒残査(通常はポリ
オレフイン中の不燃性物として灰分として評価す
る)を低いレベルに保つことが要求される。又、
プロピレンを主成分とするポリオレフインでは、
エチレンを主成分とするポリオレフインに比較し
て触媒当たりの取れ高が小さいため、低沸点の溶
剤を単に蒸発除去するだけでは得られるポリマー
の色相とか耐侯性等が不充分であり、さらに得ら
れた重合体の立体規則性が低いとか、重合体を成
形した時、低分子量、低立体規則性のポリマーが
成形品の表面に浮きだし、ベタツク等の問題があ
る。
これらの問題点を、炭素数3〜4の炭化水素溶
剤を重合溶媒として用いる利点を失うことなく解
決し、さらには上記の種々の問題点を解決する方
法として、チーグラー・ナツタ触媒を用い炭素数
3〜4の低沸点の炭化水素溶剤中で重合して得た
ポリオレフインを、まずアルコール類、アルキレ
ンオキシド類で触媒を脱活させ、次いで炭素数3
〜4の低沸点の炭化水素溶剤で向流洗浄し、触媒
残査及び炭素数3〜4の低沸点の炭化水素溶剤に
可溶の低分子量、低立体規則性ポリマーを除去す
ることにより、すぐれた物性を有するポリオレフ
インを製造できる。(例えば、特公昭51−1274
号、特開昭54−142290号等)。
しかしながら、これらの方法では重合溶媒とし
て用いた低沸点の炭化水素溶剤に比較して非常に
多量の低沸点の炭化水素溶剤を向流洗浄で用いる
ため、向流洗浄で用いた炭化水素溶剤の回収使用
が大きな問題となる。向流洗浄に用いる低沸点の
炭化水素溶剤の回収方法としては、当然のことな
がら初めに用いた純度にまで高くできる方法が好
ましいが、より簡単な操作で向流洗浄に用いるこ
とができる程度の純度とすることができれば経済
的であり、そうする事がより好ましい。
例えば、重合用溶剤と向流洗浄用溶剤を分けて
用い、向流洗浄用には単に揮発分と不揮発分であ
る該溶剤に溶解した触媒残査及び低分子量、低立
体規則性ポリマーを分離して得た揮発分を沸点以
下の温度とすることにより液状の低沸点炭化水素
溶剤を用いることが考えられる。
しかし、この方法では原因ははつきりしないが
精製ポリオレフイン中の触媒残査が増加し、向流
式洗浄塔で洗浄する効果が大幅に失われる。
本発明の目的は、触媒残査及び低分子量、低立
体規側性ポリマーの極めて少ない物性の優れたポ
リオレフインを比較的簡単な操作で得る方法を提
供することにある。
本発明者らは、上記問題点に対して種々の方法
を検討した結果、特定の方法を取ることにより極
めて簡単な方法で上記問題点を解決する方法を見
出し、本発明を完成した。
すなわち、本発明は、チーグラー・ナツタ触媒
を用いて炭素数3〜4の液状の炭化水素溶剤中で
炭素数2〜4の不飽和炭化水素モノマーを、該炭
素数2〜4の不飽和炭化水素成分が全ポリマー中
で少なくとも90重量%以上を含有する条件で重合
あるいは共重合し、次いで炭素数1〜15のアルコ
ール又はグリコールモノエーテル、又は炭素数2
〜15のアルキレンオキシドで触媒を脱活して得た
ポリオレフインスラリーを向流式洗浄塔上部に導
入し、下部から少なくとも50容量%が上記重合溶
媒として用いる炭素数3〜4の炭化水素溶剤であ
る洗浄溶剤と未反応モノマー及び該溶剤中に溶解
した触媒残査及び溶解したポリマーを抜き出すこ
とにより精製ポリオレフインを得る方法に於て、
下部から抜き出したポリオレフインスラリーから
蒸発によりポリオレフインを除去した溶剤及び/
又は上部から抜き出した触媒残査及び溶解したポ
リマーを含む溶液を蒸発によつて不揮発成分とし
て該触媒残査及び溶解したポリマーを除いた溶剤
を、少なくともマグネシウム、アルミニウム、ケ
イ素、カルシウム又はカリウムの炭酸塩、水酸化
物又は酸化物を含有する固体と接触処理したもの
を向流式洗浄塔下部へ導入する洗浄溶剤として用
いることを特徴とするポリオレフインの精製法で
ある。
本発明に用いるチーグラー・ナツタ触媒として
は、公知のエチレン、プロピレン、ブテン等のα
−オレフイン又はそれらの混合物の(共)重合や
さらにジエンとの共重合に用いられるものであれ
ば何れでもよく特に制限はないが、炭素数3〜4
の液状の炭化水素溶剤中でスラリー状態でポリオ
レフインを与える触媒系が特に有効にである。具
体的には四塩化チタンを金属アルミニウム又は有
機金属化合物で還元したものあるいは電子供与体
でさらに処理したもの等の三塩化チタンを主成分
とする固体触媒と有機金属化合物を組み合わせた
もの、種々の金属の酸化物、塩化物、水酸化物等
の担体に四塩化チタン等の遷移金属化合物を担持
した固体触媒あるいは上記担体を有機金属化合物
で処理したものに四塩化チタン等の遷移金属化合
物を担持した固体触媒と有機金属化合物及び/又
は電子供与性化合物と組み合わせたもの等が好ま
しいものとして例示できる。
本発明で重合溶媒として用いる炭素数3〜4の
炭化水素溶剤として、それ自身が重合するモノマ
ーであるプロピレン、ブテンなどを用いることも
可能であり、特にプロピレンホモポリマーやプロ
ピレンとエチレンの共重合体等のプロピレンを主
成分とするポリオレフインをうる場合には、プロ
ピレン自身を重合溶媒として用いることが好まし
い。また、それ自身は重合しない飽和炭化水素溶
剤を用いることも可能であり、プロパン、ブタン
等も好ましく用いられる。
本発明において用いる炭素数2〜4の不飽和炭
化水素モノマーとして、エチレン、プロピレン、
1−ブテンなどのα−オレフインが好ましく、そ
れらは単独重合でも共重合でも構わない。また、
さらに他の炭素数の多いモノマー、例えば、ペン
テン、ヘキセン、オクテン等のオレフイン類、ブ
タジエン、ヘキサジエン等のジエン類などを共重
合させることも可能であり、本発明の方法でこれ
らの共重合体を処理することは勿論可能である。
しかしながら、これら炭素数の多いモノマーを全
ポリマー中に10重量%以上導入することは困難で
ある。
本発明に関係する触媒を脱活する工程は、向流
式洗浄塔内で制御されない重合をなくす目的を持
ち、ここでは比較的少量で触媒を失活させる効果
のあるアルコール、グリコールモノエーテル、ア
ルキレンオキシド等が好ましく用いられ、これら
の化合物で触媒を脱活することにより触媒残査を
ポリオレフインから取り除く効果が大きくなる。
ここに用いるアルコール、グリコールモノエー
テルとしては炭素数1〜15のものが好ましく、具
体的には、メタノール、エタノール、プロパノー
ル、ブタノール、ヘキサノール等のモノアルコー
ル、エチレングリコール、ブタンジオール等のジ
アルコール、エチレングリコールモノメチルエー
テル、トリエチレングリコールモノメチルエーテ
ル、ジエチレングリコールモノブチルエーテル等
のグリコールモノエーテルが例示できる。また、
アルキレンオキシドとしては炭素数2〜15のもの
が好ましく、例えば、エチレンオキサイド、プロ
ピレンオキサイド、ブチルグリシジルエーテル、
フエニルグリシジルエーテルなどが挙げられる。
本発明に用いる向流式洗浄塔としては公知のも
のを用いるのが可能であり、特殊なものに限定さ
れないが、一般には円筒形の耐圧容器で、その内
径と高さの比が1:2〜1:50のものが用いられ
る。さらに、塔内に撹拌機を設けて洗浄溶剤とポ
リオレフインの接触をより効率的にすることも可
能である。
向流式洗浄塔下部から導入する洗浄溶剤につい
ては低沸点の炭素数3〜4の炭化水素溶剤を主成
分とするものであればよく、特に制限はない。す
なわち、向流式洗浄塔の運転条件下で液状であれ
ばよい。また、少なくとも50容量%が重合工程で
用いられる炭素数3〜4の液状の炭化水素溶剤を
用いることが好ましく、50容量%以上が炭素数1
〜2の炭化水素化合物や水素であると運転圧力が
高くなり、かつ可溶性ポリマーを除去する効果が
劣り、また、50容量%以上が炭素数5以上の高沸
点の炭化水素溶剤であると製品の乾燥や向流式洗
浄塔上部から抜き出した洗浄溶剤の回収が複雑と
なり好ましくない。
一般には重合工程から向流式洗浄塔に導入され
るスラリーの分散溶剤の組成に近いものが運転す
る上で好ましい。
向流式洗浄塔での下部から上部への液体の流速
は、ポリオレフインスラリーの性状、特にポリオ
レフインの形状、密度、洗浄溶剤の密度等により
好ましい条件が決定されるが、一般には0.01〜5
cm/sec程度である。
本発明を特徴づける要素は向流式洗浄塔の下部
から抜き出したポリオレフインスラリーから蒸発
によりポリオレフインを除去した溶剤及び/又は
上部から抜き出した触媒残査及び溶解したポリマ
ーを含む溶液を蒸発によつて不揮発成分として該
触媒残査及び溶解したポリマーを除いた溶剤を、
少なくとも、マグネシウム、アルミニウム、ケイ
素、カルシウム又はカリウムの炭酸塩、水酸化物
又は酸化物を含有する固体と接触処理した後、該
向流式洗浄塔下部へ液状で導入することであり、
該回収された炭化水素溶剤が向流式洗浄塔の下部
へ導入される洗浄溶剤の40容量%以上とすること
ができる。すなわち、向流式洗浄塔から排出され
たポリオレフインスラリーや触媒残査及び溶解し
たポリマーを含む溶液から蒸発によつて回収され
た溶剤を、液状あるいはガス状で単にマグネシウ
ム、アルミニウム、ケイ素、カルシウム又はカリ
ウムの炭酸塩、水酸化物又は酸化物を含む固体と
接触処理するだけで、洗浄溶剤として再利用でき
る程度に精製され、精製ポリオレフイン中の触媒
残査が増加させることなく再利用可能となるので
ある。
ここに用いるマグネシウム、アルミニウム、ケ
イ素、カルシウム、カリウムの炭酸塩、水酸化物
又は酸化物としては、種々の化合物があげられ、
具体的には、Mg(OH)2、MgO、Al(OH)3、
Al2O3、SiO2、Ca(OH)2、CaO、KOH、K2O、
MgCO3、Al2(CO3)3、CaCO3、K2CO3等が例示
でき、これらは単独であるいは混合して、また、
これらの共晶体が用いられる。これらの化合物の
形状は特に制限はないが、通常直径0.1〜10mmの
球状、円筒状などのものが用いられる。
触媒は液状あるいはガス状で通常の固体液体あ
るいは固体気体接触装置を用いて行うことが可能
であり、一般には上記マグネシウム、アルミニウ
ム、ケイ素、カルシウム、カリウムの炭酸塩、水
酸化物又は酸化物を含む固体を充填した容器に液
状の回収された洗浄溶剤を通じるのが好ましい。
次ぎに図面によつて本発明を詳細に説明する。
この図面は本発明の方法を簡略化し、必要な部分
のみを示すものであり、本発明はこの例のみに限
定されるものではなく、本発明の方法を適用する
に際し、必要に応じ適宜装置や物質の追加あるい
は削除を行うことも可能である。
向流式洗浄塔1の上部に重合工程及び脱活工程
(該脱活工程は向流式洗浄塔内で行うことも勿論
可能である。)を経たポリオレフインスラリーが
配管6より導入される。向流式洗浄塔1の下部か
ら下記の工程を経て回収された炭化水素溶剤が必
要に応じ新たに加えられた低沸点の炭化水素溶剤
と共に洗浄溶剤として導入される。上部からは触
媒残査及び可溶性ポリマーを溶解した溶液が抜き
出され、配管9を経てフラツシユタンク2に導入
され、不揮発性の触媒残査及び可溶性ポリマーか
ら分離される。一方向流式洗浄塔1の下部から精
製ポリオレフインがスラリーとして抜き出され、
フラツシユタンク5で精製ポリオレフインと揮発
成分に分離される。
フラツシユタンク2及び5からの揮発成分は冷
却装置3で冷却され液状となり、上記マグネシウ
ム、アルミニウム、ケイ素、カルシウム、カリウ
ムの炭酸塩、水酸化物又は酸化物を含む固体が充
填された固体液体接触装置4を通つて、必要があ
れば新たな炭化水素溶剤を追加したり一部を抜き
出して、向流式洗浄塔1に導入される。
本発明は、向流式洗浄塔に導入される洗浄溶剤
として、簡単な操作で精製に使用された溶剤を回
収再利用することが可能にすることができる点で
工業的に有意義である。
以下、実施例により本発明を説明する。
実施例 1
(1) 塩化マグネシウム300g、塩化アルミニウム
と安息香酸エチルの1:1錯体166gを共粉砕
し、四塩化チタン1.5gを担持させて得た固体
触媒20g、安息香酸エチル56ml、ジエチルアル
ミニウムクロライド96ml及びトリエチルアルミ
ニウム80mlを液状プロピレン440Kgに入れて重
合し、重合終了後イソプロピルアルコール100
mlを加え触媒を脱活して、ポリプロピレン200
Kg、液状プロピレン240Kgからなるポリプロピ
レンスラリーを得た。
(2) 塔径3インチ(7.62cm)、高さ5mの向流式
洗浄塔上部に(1)で得たポリプロピレンスラリー
を10時間かけて供給し、下部には液状のプロピ
レンを供給し、塔頂から洗浄済溶液を一時間当
たり41Kgで抜き出した。一方向流式洗浄塔底部
からはポリプロピレン20Kgとプロピレン14Kgと
からなるスラリーを抜き出した。向流式洗浄塔
から抜き出されたスラリー及び洗浄済溶液をそ
れぞれ別々のフラツシユタンクに導入して不揮
発分を除去した後、10℃に冷却し液化したもの
を、Mg6Al2(OH)16CO3(推定化学式、協和化
学工業株式会社製のキヨワード500を300℃で3
時間焼成したもの)3Kgを充填した径10cm、高
さ1mの充填塔を通し、毎時45Kgでプロピレン
を主体とする洗浄溶剤を回収した。この回収し
た洗浄溶剤31Kgを上記向流式洗浄塔下部に供給
した重合用プロピレンと2時間後に切り換えて
用いた。
この洗浄の間、向流式洗浄塔の運転開始から
1時間、3時間、5時間、9時間毎に得られた
精製ポリプロピレン中の灰分、チタン量及び塩
素量を分析し、下記表の結果を得た。また、洗
浄溶剤中の塩素量を分析した結果も表に示す。
The present invention relates to a technology for purifying polyolefin containing propylene or ethylene as a main component, and in particular, purifying polyolefin containing propylene or ethylene as a main component in a liquid hydrocarbon solvent having 3 to 4 carbon atoms using a Ziegler-Natsuta catalyst. Synthesized by polymerization, and using a countercurrent washing tower,
Suitable for use in purifying the above polyolefin by washing with a washing solvent mainly composed of a liquid hydrocarbon having 3 to 4 carbon atoms and removing catalyst residues and polymers soluble in the washing solvent. It is a great technology. Conventionally, a method for producing polyolefin using a Ziegler-Natsuta catalyst in a low-boiling hydrocarbon solvent having 3 to 4 carbon atoms is known, and in particular, a method for synthesizing polypropylene or a copolymer of ethylene and propylene using propylene itself as a solvent is known. The method of synthesizing polyethylene or a copolymer of ethylene and a small amount of propylene, butene, etc. in propane or butane is widely practiced industrially. Compared to the conventional suspension polymerization method in which polymerization is carried out using a relatively high-boiling saturated hydrocarbon solvent having 6 to 8 carbon atoms, the method of producing polyolefin in these low-boiling hydrocarbon solvents requires less polymerization solvent. Certain low boiling point hydrocarbon solvents have a high vapor pressure and are easily vaporized, so they have the great advantage that the polymer can be separated from the solvent by a simple operation such as flashing the polymerization slurry under atmospheric pressure. In addition, it is possible to increase the yield per catalyst by polymerizing in a low-boiling hydrocarbon solvent at relatively high pressure, and the yield per catalyst can be increased due to the significant improvement in the performance of recent catalysts. Due to the increase in the catalyst height, it is possible to reduce the amount of catalyst residue remaining in polyolefins, especially in polyolefins whose main component is ethylene, to the point where there are no problems with the quality of products in many fields. . However, when used in certain fields, such as food films, condenser films, etc., hydrocarbon solvent soluble polymers and catalyst residues (usually evaluated as ash, a non-combustible substance in polyolefins) are reduced to low levels. required to maintain. or,
For polyolefins whose main component is propylene,
Compared to polyolefins whose main component is ethylene, the yield per catalyst is small, so simply evaporating and removing the low-boiling point solvent will result in insufficient polymer color and weather resistance. If the stereoregularity of the polymer is low, or when the polymer is molded, the low molecular weight, low stereoregularity polymer will stand out on the surface of the molded product, causing problems such as stickiness. In order to solve these problems without losing the advantages of using a hydrocarbon solvent having 3 to 4 carbon atoms as a polymerization solvent, and furthermore, to solve the various problems mentioned above, a method using a Ziegler-Natsuta catalyst has been proposed. A polyolefin obtained by polymerizing in a hydrocarbon solvent with a low boiling point of 3 to 4 carbon atoms is first deactivated with an alcohol or an alkylene oxide, and then a catalyst with a carbon number of 3
The excellent It is possible to produce polyolefins with improved physical properties. (For example, Tokuko Sho 51-1274
No., JP-A-54-142290, etc.). However, in these methods, a much larger amount of low-boiling hydrocarbon solvent is used in countercurrent cleaning compared to the low-boiling hydrocarbon solvent used as the polymerization solvent, so it is difficult to recover the hydrocarbon solvent used in countercurrent cleaning. Usage is a big problem. As a method for recovering low-boiling hydrocarbon solvents used in countercurrent cleaning, it is naturally preferable to use a method that can increase the purity to the level used in the beginning. It is economical if purity can be achieved, and it is more preferable to do so. For example, a polymerization solvent and a countercurrent cleaning solvent are used separately, and for countercurrent cleaning, the volatile and nonvolatile components, catalyst residue and low molecular weight, low stereoregularity polymer, are simply separated. It is conceivable to use a liquid low-boiling hydrocarbon solvent by bringing the temperature of the volatile components obtained by the process below the boiling point. However, in this method, although the cause is not clear, the amount of catalyst residue in the purified polyolefin increases, and the effectiveness of cleaning in the countercurrent type cleaning tower is significantly lost. An object of the present invention is to provide a method for obtaining a polyolefin having excellent physical properties with very little catalyst residue and low molecular weight, low stereogenicity polymer by a relatively simple operation. As a result of examining various methods for solving the above problems, the present inventors have found a method of solving the above problems in an extremely simple manner by taking a specific method, and have completed the present invention. That is, the present invention uses a Ziegler-Natsuta catalyst to convert an unsaturated hydrocarbon monomer having 2 to 4 carbon atoms into a liquid hydrocarbon monomer having 2 to 4 carbon atoms in a liquid hydrocarbon solvent having 3 to 4 carbon atoms. The component is polymerized or copolymerized under conditions in which the component accounts for at least 90% by weight of the total polymer, and then an alcohol or glycol monoether having 1 to 15 carbon atoms, or an alcohol or glycol monoether having 2 carbon atoms is added.
A polyolefin slurry obtained by deactivating the catalyst with ~15 alkylene oxides is introduced into the upper part of the countercurrent washing tower, and at least 50% by volume from the lower part is a hydrocarbon solvent having 3 to 4 carbon atoms used as the polymerization solvent. In a method for obtaining purified polyolefin by extracting unreacted monomers with a washing solvent, catalyst residues dissolved in the solvent, and dissolved polymers,
Solvent and/or solvent from which polyolefin was removed by evaporation from polyolefin slurry extracted from the bottom.
Alternatively, the solution containing the catalyst residue and dissolved polymer extracted from the upper part is evaporated and the solvent excluding the catalyst residue and dissolved polymer is converted into a non-volatile component by at least carbonate of magnesium, aluminum, silicon, calcium or potassium. This is a method for purifying polyolefin, which is characterized in that a solvent treated in contact with a solid containing a hydroxide or oxide is used as a cleaning solvent that is introduced into the lower part of a countercurrent type cleaning tower. As the Ziegler-Natsuta catalyst used in the present invention, known α-based catalysts such as ethylene, propylene, butene, etc.
- Any material may be used as long as it is used for (co)polymerization of olefins or mixtures thereof and copolymerization with dienes, but there are no particular limitations, but the number of carbon atoms is 3 to 4.
Particularly effective are catalyst systems that provide the polyolefin in slurry form in a liquid hydrocarbon solvent. Specifically, titanium tetrachloride reduced with metallic aluminum or an organometallic compound, or a combination of a solid catalyst mainly composed of titanium trichloride, such as one further treated with an electron donor, and an organometallic compound, and various other catalysts. A solid catalyst in which a transition metal compound such as titanium tetrachloride is supported on a carrier such as a metal oxide, chloride, or hydroxide, or a transition metal compound such as titanium tetrachloride is supported on the above carrier treated with an organometallic compound. Preferred examples include combinations of solid catalysts and organometallic compounds and/or electron-donating compounds. As the hydrocarbon solvent having 3 to 4 carbon atoms used as a polymerization solvent in the present invention, it is also possible to use propylene, butene, etc., which are monomers that themselves polymerize, and in particular propylene homopolymers and copolymers of propylene and ethylene. When obtaining a polyolefin containing propylene as a main component, it is preferable to use propylene itself as a polymerization solvent. It is also possible to use a saturated hydrocarbon solvent that does not polymerize itself, and propane, butane, etc. are also preferably used. Examples of unsaturated hydrocarbon monomers having 2 to 4 carbon atoms used in the present invention include ethylene, propylene,
α-olefins such as 1-butene are preferred, and they may be homopolymerized or copolymerized. Also,
Furthermore, it is also possible to copolymerize other monomers with a large number of carbon atoms, such as olefins such as pentene, hexene, and octene, and dienes such as butadiene and hexadiene. It is of course possible to process it.
However, it is difficult to incorporate 10% by weight or more of these monomers with a large number of carbon atoms into the entire polymer. The process of deactivating the catalyst in relation to the present invention has the purpose of eliminating uncontrolled polymerization in the countercurrent washing tower, and here we use alcohols, glycol monoethers, alkylenes, etc., which have the effect of deactivating the catalyst in relatively small amounts. Oxides and the like are preferably used, and deactivating the catalyst with these compounds increases the effect of removing catalyst residues from the polyolefin. The alcohol and glycol monoether used here preferably have 1 to 15 carbon atoms, and specifically include monoalcohols such as methanol, ethanol, propanol, butanol, and hexanol, dialcohols such as ethylene glycol and butanediol, and ethylene. Examples include glycol monoethers such as glycol monomethyl ether, triethylene glycol monomethyl ether, and diethylene glycol monobutyl ether. Also,
The alkylene oxide preferably has 2 to 15 carbon atoms, such as ethylene oxide, propylene oxide, butyl glycidyl ether,
Examples include phenyl glycidyl ether. As the countercurrent type washing tower used in the present invention, it is possible to use a known one and is not limited to a special one, but it is generally a cylindrical pressure-resistant vessel with an inner diameter to height ratio of 1:2. ~1:50 is used. Furthermore, it is also possible to provide a stirrer in the column to make contact between the cleaning solvent and the polyolefin more efficient. The cleaning solvent introduced from the lower part of the countercurrent cleaning tower is not particularly limited as long as it has a low boiling point hydrocarbon solvent having 3 to 4 carbon atoms as its main component. That is, it suffices if it is liquid under the operating conditions of the countercurrent cleaning tower. In addition, it is preferable to use a liquid hydrocarbon solvent having 3 to 4 carbon atoms in which at least 50% by volume is used in the polymerization step, and 50% by volume or more is a liquid hydrocarbon solvent having 1 carbon number.
~2 hydrocarbon compounds or hydrogen will increase the operating pressure and will be less effective in removing soluble polymers, and if more than 50% by volume is a high boiling point hydrocarbon solvent with a carbon number of 5 or more, the product may deteriorate. This is undesirable because it complicates drying and recovery of the cleaning solvent extracted from the upper part of the countercurrent cleaning tower. In general, a dispersion solvent close to the composition of the slurry introduced into the countercurrent washing tower from the polymerization process is preferable for operation. The preferred flow rate of the liquid from the bottom to the top in the countercurrent cleaning tower is determined by the properties of the polyolefin slurry, particularly the shape and density of the polyolefin, the density of the cleaning solvent, etc., but is generally 0.01 to 5.
It is about cm/sec. The elements that characterize the present invention are the solvent used to remove the polyolefin by evaporation from the polyolefin slurry extracted from the lower part of the countercurrent washing tower, and/or the solution containing the catalyst residue and dissolved polymer extracted from the upper part of the countercurrent washing tower to be made non-volatile by evaporation. A solvent excluding the catalyst residue and dissolved polymer as a component,
After contacting with a solid containing at least a carbonate, hydroxide or oxide of magnesium, aluminum, silicon, calcium or potassium, the method is introduced in liquid form into the lower part of the countercurrent washing tower,
The recovered hydrocarbon solvent can account for 40% or more by volume of the cleaning solvent introduced into the lower part of the countercurrent cleaning tower. That is, the solvent recovered by evaporation from the solution containing the polyolefin inslurry, catalyst residue, and dissolved polymer discharged from the countercurrent washing tower is simply used as magnesium, aluminum, silicon, calcium, or potassium in liquid or gaseous form. Simply by contact treatment with solids containing carbonates, hydroxides, or oxides, the polyolefin can be purified to the extent that it can be reused as a cleaning solvent, and it can be reused without increasing the catalyst residue in the purified polyolefin. . The carbonates, hydroxides, or oxides of magnesium, aluminum, silicon, calcium, and potassium used here include various compounds.
Specifically, Mg(OH) 2 , MgO, Al(OH) 3 ,
Al2O3 , SiO2 , Ca(OH) 2 , CaO, KOH, K2O ,
Examples include MgCO 3 , Al 2 (CO 3 ) 3 , CaCO 3 , K 2 CO 3 , etc., which may be used alone or in combination, and
These eutectics are used. The shape of these compounds is not particularly limited, but spherical or cylindrical shapes with a diameter of 0.1 to 10 mm are usually used. The catalyst can be carried out in liquid or gaseous form using conventional solid-liquid or solid-gas contact equipment, and generally contains carbonates, hydroxides or oxides of the above-mentioned magnesium, aluminum, silicon, calcium and potassium. Preferably, the liquid recovered cleaning solvent is passed through a container filled with solids. Next, the present invention will be explained in detail with reference to the drawings.
This drawing simplifies the method of the present invention and shows only necessary parts, and the present invention is not limited to this example. It is also possible to add or delete substances. A polyolefin slurry that has undergone a polymerization process and a deactivation process (the deactivation process can of course be carried out in the countercurrent cleaning tower) is introduced into the upper part of the countercurrent cleaning tower 1 through a pipe 6. A hydrocarbon solvent recovered from the lower part of the countercurrent cleaning tower 1 through the following steps is introduced as a cleaning solvent together with a low-boiling hydrocarbon solvent newly added as needed. A solution in which catalyst residue and soluble polymer are dissolved is extracted from the upper part, introduced into flash tank 2 via piping 9, and separated from nonvolatile catalyst residue and soluble polymer. Purified polyolefin is extracted as a slurry from the lower part of the unidirectional flow cleaning tower 1,
It is separated into purified polyolefin and volatile components in a flash tank 5. The volatile components from the flash tanks 2 and 5 are cooled in the cooling device 3 and become liquid, and the solid-liquid contact is filled with solids containing carbonates, hydroxides, or oxides of magnesium, aluminum, silicon, calcium, and potassium. Through the device 4, if necessary, new hydrocarbon solvent is added or a portion is withdrawn, and the mixture is introduced into the countercurrent washing tower 1. The present invention is industrially significant in that it makes it possible to recover and reuse the solvent used for purification with a simple operation as a cleaning solvent introduced into a countercurrent type cleaning tower. The present invention will be explained below with reference to Examples. Example 1 (1) 20 g of a solid catalyst obtained by co-pulverizing 300 g of magnesium chloride, 166 g of a 1:1 complex of aluminum chloride and ethyl benzoate and supporting 1.5 g of titanium tetrachloride, 56 ml of ethyl benzoate, and diethyl aluminum chloride. Add 96ml and 80ml of triethylaluminum to 440kg of liquid propylene and polymerize, and after polymerization, add 100ml of isopropyl alcohol.
ml to deactivate the catalyst, polypropylene 200
A polypropylene slurry consisting of 240 kg of liquid propylene was obtained. (2) The polypropylene slurry obtained in (1) was fed into the upper part of the countercurrent washing tower with a diameter of 3 inches (7.62 cm) and a height of 5 m over 10 hours, and liquid propylene was fed into the lower part of the tower. The washed solution was withdrawn from the top at a rate of 41 kg per hour. A slurry consisting of 20 kg of polypropylene and 14 kg of propylene was extracted from the bottom of the unidirectional flow type washing tower. The slurry and washed solution extracted from the countercurrent washing tower were introduced into separate flash tanks to remove non-volatile components, and then cooled to 10°C and liquefied . 16 CO 3 (Estimated chemical formula, Kyowa Kagaku Kogyo Co., Ltd.'s Kiyoward 500 at 300℃
A cleaning solvent mainly composed of propylene was recovered at a rate of 45 kg per hour through a packed tower with a diameter of 10 cm and a height of 1 m filled with 3 kg of the cleaning solvent. After 2 hours, 31 kg of the recovered cleaning solvent was switched to the propylene for polymerization supplied to the lower part of the countercurrent type cleaning tower. During this cleaning, the ash content, titanium content, and chlorine content in the purified polypropylene obtained every 1 hour, 3 hours, 5 hours, and 9 hours from the start of operation of the countercurrent cleaning tower were analyzed, and the results are shown in the table below. Obtained. The table also shows the results of analyzing the amount of chlorine in the cleaning solvent.
【表】
比較例 1
洗浄溶剤としてMg6Al2(OH)16CO3の充填塔を
経ない回収溶剤を用いる他は実施例1と同様の実
験を行い、下記表の結果を得た。[Table] Comparative Example 1 The same experiment as in Example 1 was conducted, except that a recovered solvent of Mg 6 Al 2 (OH) 16 CO 3 that did not pass through a packed column was used as the cleaning solvent, and the results shown in the table below were obtained.
【表】
洗浄溶剤中の塩素量が実施例1と変わらないに
係わらず、時間経過と共に精製ポリプロピレン中
の灰分や塩素量が増加している。
実施例 2
充填塔に入れる固体を直径3mmのシリカゲルに
代える他は実施例1と同様の実験を行い、下記表
の結果を得た。[Table] Even though the amount of chlorine in the cleaning solvent was the same as in Example 1, the amount of ash and chlorine in the purified polypropylene increased over time. Example 2 An experiment similar to Example 1 was conducted, except that the solid introduced into the packed column was replaced with silica gel having a diameter of 3 mm, and the results shown in the table below were obtained.
【表】
比較例 2
充填塔に入れる固体を直径3mmの無水硫酸カル
シウムに代える他は実施例1と同様の実験を行つ
た。結果を下記表に示す。[Table] Comparative Example 2 The same experiment as in Example 1 was conducted except that the solid introduced into the packed column was replaced with anhydrous calcium sulfate having a diameter of 3 mm. The results are shown in the table below.
【表】
全く充填塔を使用しない場合よりは改善されて
いるが、なお、満足すべき結果ではない。
実施例 3
(1) 塩化マグネシウム300g、塩化アルミニウム
とジフエニルエーテルの1:1錯体58g及び四
塩化チタン33gを共粉砕して得た固体触媒8g
とトリエチルアルミニウム50gからなる触媒を
用いて、ブタン300Kg中でエチレン220Kgと1−
ブテン5Kgを共重合し、圧力がほぼブタンの蒸
気圧程度になつてからトリエチレングリコール
モノメチルエーテル200mlで触媒を脱活した後
気層をパージして、1−ブテンを1.5重量%含
むポリエチレン220Kgとブタン300Kgからなるス
ラリーを得た。
(2) 向流式洗浄塔の上部に導入するスラリーとし
て上記(1)で得たスラリーを用い、下部に導入す
る溶剤をブタンに代える他は実施例1と同様に
した。精製ポリエチレン中の灰分、チタン量及
び塩素量を分析し、下記表の結果を得た。[Table] This is an improvement over the case where no packed column is used at all, but the result is still not satisfactory. Example 3 (1) 8 g of a solid catalyst obtained by co-pulverizing 300 g of magnesium chloride, 58 g of a 1:1 complex of aluminum chloride and diphenyl ether, and 33 g of titanium tetrachloride.
220 kg of ethylene and 1-
Copolymerize 5 kg of butene, and after the pressure reaches approximately the vapor pressure of butane, deactivate the catalyst with 200 ml of triethylene glycol monomethyl ether, purge the gas layer, and produce 220 kg of polyethylene containing 1.5% by weight of 1-butene. A slurry consisting of 300Kg of butane was obtained. (2) The same procedure as in Example 1 was carried out, except that the slurry obtained in (1) above was used as the slurry introduced into the upper part of the countercurrent washing tower, and the solvent introduced into the lower part was replaced with butane. The ash content, titanium content, and chlorine content in purified polyethylene were analyzed, and the results shown in the table below were obtained.
【表】
比較例 3
充填塔を経ることなく回収したブタンを主成分
とする溶剤を洗浄溶剤として用いる実施例3と同
様の実験を行つた。結果を下記表に示す。[Table] Comparative Example 3 An experiment similar to Example 3 was conducted using a solvent mainly composed of butane, which was recovered without passing through a packed tower, as a cleaning solvent. The results are shown in the table below.
図面は本発明を実施する場合の装置の説明図の
一例であり、図において、それぞれ
1……向流式洗浄塔、2……フラツシユタン
ク、3……凝縮器、4……充填塔、5……フラツ
シユタンク、6……重合工程よりのポリオレフイ
ンスラリー、7……可溶性重合体及び触媒残査、
8……ポリオレフイン製品、9……ガス状溶媒
(モノマーを含む)、である。
The drawing is an example of an explanatory diagram of an apparatus for carrying out the present invention, and in the drawing, 1... Countercurrent cleaning tower, 2... Flush tank, 3... Condenser, 4... Packed tower, 5... Flash tank, 6... Polyolefin slurry from the polymerization process, 7... Soluble polymer and catalyst residue,
8... Polyolefin product, 9... Gaseous solvent (including monomer).
Claims (1)
4の液状の炭化水素溶剤中で炭素数2〜4の不飽
和炭化水素モノマーを、該炭素数2〜4の不飽和
炭化水素成分が全ポリマー中で少なくとも90重量
%以上を含有する条件で重合あるいは共重合し、
次いで炭素数1〜15のアルコール又はグリコール
モノエーテル、又は炭素数2〜15のアルキレンオ
キシドで触媒を脱活して得たポリオレフインスラ
リーを向流式洗浄塔上部に導入し、下部から少な
くとも50容量%が上記重合溶媒として用いる炭素
数3〜4の炭化水素溶剤である洗浄溶剤と未反応
モノマー及び該溶剤中に溶解した触媒残査及び溶
解したポリマーを抜き出すことにより精製ポリオ
レフインを得る方法に於て、下部から抜き出した
ポリオレフインスラリーから蒸発によりポリオレ
フインを除去した溶剤及び/又は上部から抜き出
した触媒残査及び溶解したポリマーを含む溶液を
蒸発によつて不揮発成分として該触媒残査及び溶
解したポリマーを除いた溶剤を、少なくともマグ
ネシウム、アルミニウム、ケイ素、カルシウム又
はカリウムの炭酸塩、水酸化物又は酸化物を含有
する固体と接触処理したものを向流式洗浄塔下部
へ導入する洗浄溶剤として用いることを特徴とす
るポリオレフインの精製法。1 Using Ziegler-Natsuta catalyst with 3 or more carbon atoms
Polymerizing an unsaturated hydrocarbon monomer having 2 to 4 carbon atoms in a liquid hydrocarbon solvent in step 4 under conditions such that the unsaturated hydrocarbon component having 2 to 4 carbon atoms accounts for at least 90% by weight of the total polymer. Or copolymerize,
Next, a polyolefin slurry obtained by deactivating the catalyst with an alcohol or glycol monoether having 1 to 15 carbon atoms, or an alkylene oxide having 2 to 15 carbon atoms is introduced into the upper part of the countercurrent washing column, and at least 50% by volume is removed from the lower part. In a method for obtaining a purified polyolefin by extracting a cleaning solvent which is a hydrocarbon solvent having 3 to 4 carbon atoms used as the polymerization solvent, unreacted monomers, catalyst residues dissolved in the solvent, and dissolved polymers, The polyolefin was removed from the polyolefin slurry by evaporation from the polyolefin slurry extracted from the lower part, and/or the solution containing the catalyst residue and dissolved polymer extracted from the upper part was evaporated to remove the catalyst residue and the dissolved polymer as non-volatile components. The method is characterized in that a solvent treated in contact with a solid containing at least carbonate, hydroxide or oxide of magnesium, aluminum, silicon, calcium or potassium is used as a cleaning solvent to be introduced into the lower part of the countercurrent cleaning tower. A method for purifying polyolefin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1958881A JPS57135802A (en) | 1981-02-14 | 1981-02-14 | Purification of polyolefin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1958881A JPS57135802A (en) | 1981-02-14 | 1981-02-14 | Purification of polyolefin |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57135802A JPS57135802A (en) | 1982-08-21 |
JPS6152165B2 true JPS6152165B2 (en) | 1986-11-12 |
Family
ID=12003409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1958881A Granted JPS57135802A (en) | 1981-02-14 | 1981-02-14 | Purification of polyolefin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57135802A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010234344A (en) * | 2009-03-31 | 2010-10-21 | Kitz Microfilter Corp | Hollow fiber membrane module and method of manufacturing the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5120791A (en) * | 1974-08-14 | 1976-02-19 | Nissan Chemical Ind Ltd | Yobaino seiseikaishuhoho |
JPS5292289A (en) * | 1976-01-29 | 1977-08-03 | Sumitomo Chem Co Ltd | Production of homo-and copolymers of propylene |
JPS557845A (en) * | 1978-06-30 | 1980-01-21 | Sumitomo Chem Co Ltd | Purification of washing liquid |
-
1981
- 1981-02-14 JP JP1958881A patent/JPS57135802A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5120791A (en) * | 1974-08-14 | 1976-02-19 | Nissan Chemical Ind Ltd | Yobaino seiseikaishuhoho |
JPS5292289A (en) * | 1976-01-29 | 1977-08-03 | Sumitomo Chem Co Ltd | Production of homo-and copolymers of propylene |
JPS557845A (en) * | 1978-06-30 | 1980-01-21 | Sumitomo Chem Co Ltd | Purification of washing liquid |
Also Published As
Publication number | Publication date |
---|---|
JPS57135802A (en) | 1982-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU603583B2 (en) | Process for the production of stable amorphous polyalphaolefins | |
US4016349A (en) | Process for removing vanadium residues from polymer solutions | |
CA1129876A (en) | Method of purifying readily polymerisable vinyl monomers | |
US3600463A (en) | Process for producing substantially ash-free polyolefin polymers | |
US7038008B2 (en) | Method for the processing of a liquid reaction discharge of the cationic polymerization of isobutene | |
JPH0532409B2 (en) | ||
US6075174A (en) | BF3 removal from BF3 catalyzed olefin oligomer | |
US3505300A (en) | Method of refining resins | |
CA1111198A (en) | Process for the purification of highly crystalline polyolefins | |
JPS6152165B2 (en) | ||
CA1301200C (en) | Isoprene recovery in the butyl rubber process | |
US5035794A (en) | Isoprene recovery in the butyl rubber process | |
WO1995004762A2 (en) | Liquid phase and aqueous solutions of poly(vinyl methyl ether) from highly purified vinyl methyl ether monomer | |
US3378467A (en) | Method of recovering unsaturated monomer by thin film evaporation with a gas and absorption with a solvent | |
JPS60192716A (en) | Manufacture of granular stereoregular but ene-1 polymer in fluidized bed | |
US4195168A (en) | Method of treating suspensions of vinyl chloride/vinyl acetate copolymers | |
US4921924A (en) | Isoprene recovery in the butyl rubber process | |
EP3763749B1 (en) | Method for purifying solvent | |
US5112928A (en) | Preparation of homopolymers of ethene and copolymers of ethene with high α-monoolefins using a Ziegler catalyst system | |
US3412779A (en) | Solvent and polymer recovery in a solution polymerization process | |
EP0100550B1 (en) | Method for the purification of propylene polymers | |
US2878168A (en) | Purification of polyvinyl acetate | |
US3721721A (en) | Method of ethylene polymerization | |
SU495326A1 (en) | The method of producing polypropylene | |
JPH0344563B2 (en) |