[go: up one dir, main page]

JPS6151940A - Wiring structure of semiconductor device - Google Patents

Wiring structure of semiconductor device

Info

Publication number
JPS6151940A
JPS6151940A JP17464784A JP17464784A JPS6151940A JP S6151940 A JPS6151940 A JP S6151940A JP 17464784 A JP17464784 A JP 17464784A JP 17464784 A JP17464784 A JP 17464784A JP S6151940 A JPS6151940 A JP S6151940A
Authority
JP
Japan
Prior art keywords
film
layer
wiring
nitride film
plasma nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17464784A
Other languages
Japanese (ja)
Inventor
Tsutomu Matsuura
松浦 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP17464784A priority Critical patent/JPS6151940A/en
Publication of JPS6151940A publication Critical patent/JPS6151940A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To facilitate the electrical connection of parts of through-holes by smoothing the insulation film and thinning the interlayer insulation film, by a method wherein a metallic wiring of the first layer is provided with an oxide film of low temperature vapor growth and a plasma nitride film, which are coated with silica film, and a plasma nitride film is grown again. CONSTITUTION:After formation of the metallic wiring 23 of the first layer, the oxide film 29 of low temperature vapor growth is deposited to approx. 2,000- 4,000Angstrom , and the plasma nitride film 24 is grown thereon to approx. 2,000Angstrom . Then, the silica film 25 is applied, and a plasma nitride film 26 is grown again to approx. 2,000-3,000Angstrom . A metallic wiring 28 of the second layer is deposited. The multilayer wiring thus produced can be reduced in film thickness because an oxide film of low temperature vapor growth with a small dielectric constant lies on the metallic wiring of the first layer. Therefore, the hole depth of the through -hole part does not become deeper so much, and it electrical connection can be easily made.

Description

【発明の詳細な説明】 (技術分野) 本発明は、半導体集積回路装置の配線の構造にかかり、
特に半導体集積回路装置の多層配線(1り造に関するも
のである。
[Detailed Description of the Invention] (Technical Field) The present invention relates to the wiring structure of a semiconductor integrated circuit device.
In particular, it relates to multilayer wiring (single construction) of semiconductor integrated circuit devices.

(従来技術) 従来、半導体集積回路装置の高密度化にともなって、そ
の配線構造が一層配線から多層配線へと変化してきた。
(Prior Art) Conventionally, as the density of semiconductor integrated circuit devices increases, the wiring structure thereof has changed from a single layer wiring to a multilayer wiring.

多層配線構造を形成するうえでの問題点は、一層目の金
属配線と二層目の金属配線の間の層間絶縁膜の形成法と
一層目の金属配線と二層目の金属配線の電気的接続用の
窓、スルーホールの形成法である。すなわち、一層目の
金属配線の有る部分と無い部分との段差の上にそのまま
層間絶縁膜を成長させると、二層目の金r1配線材料を
蒸着または、スパッタ法などで形成した際にこの段部で
二層目の金属配線が段線する不良が発生する。また1層
間絶縁膜の形成法を工夫し一層目の金属配線の段差を減
らす方法が考えられた。
The problems in forming a multilayer wiring structure are the method of forming the interlayer insulating film between the first layer metal wiring and the second layer metal wiring, and the electrical connection between the first layer metal wiring and the second layer metal wiring. This is a method of forming connection windows and through holes. In other words, if an interlayer insulating film is grown as it is on the step between the part with and without metal wiring in the first layer, this step will be removed when the second layer gold r1 wiring material is formed by vapor deposition or sputtering. A defect occurs in which the second layer metal wiring becomes a dashed line. In addition, a method of forming the first interlayer insulating film was devised to reduce the level difference in the first layer of metal wiring.

第1図は、この改良された半導体集積回路装置の多層配
線形成法の製造工程を示したものである。
FIG. 1 shows the manufacturing process of this improved multilayer wiring formation method for a semiconductor integrated circuit device.

第1図において、11け半導体基板であり、12演、7
リコン酸化膜でおる。又、13は−Jけ百の金属配線で
あり、14はプラズマ気相化学反応により形成された第
一層目のシリコン窒化膜(以下プラズマ窒化膜と言う)
であり、15I/′iシリコン戚化物を有機溶材に溶か
したシリカフィルムであり、16は、この150シリカ
フイルムの上にさらに被着したプラズマ窒化膜である。
In Fig. 1, there are 11 semiconductor substrates, 12 parts, 7 parts.
Covered with silicon oxide film. Further, 13 is a -J100 metal wiring, and 14 is a first layer silicon nitride film (hereinafter referred to as plasma nitride film) formed by plasma vapor phase chemical reaction.
This is a silica film prepared by dissolving 15I/'i silicon oxide in an organic solvent, and 16 is a plasma nitride film further deposited on this 150 silica film.

18は二層目の金属配線でおり、17は一層目の金属配
線と二層目の金属配線の間の電気的接続をとるためのス
ルーホールである。
Reference numeral 18 indicates a second layer of metal wiring, and 17 indicates a through hole for establishing an electrical connection between the first layer of metal wiring and the second layer of metal wiring.

この様にして作られた多層配#i!構造では、第1図の
人で示す様に一層目の金属配線13と金属配線の間の部
分のプラズマ窒化膜14の上に7リカフイルム14が充
填されているので、このシリカフィルムの上に着けられ
たプラズマ窒化膜16は。
Multilayer layout #i made in this way! In the structure, as shown by the figure in FIG. 1, a silica film 14 is filled on the plasma nitride film 14 in the area between the first layer metal wiring 13 and the metal wiring. The plasma nitride film 16 is deposited.

滑かlこなる。従って、その上の二層目の金属配線18
は段部で切れることはない。
Smoothly. Therefore, the second layer of metal wiring 18 above it
will not break at the step.

ところで、N間絶縁膜としては、従来、低温気相成長法
によるシリコン酸化膜(以下低温気相成長酸化膜と言う
)または、プラズマ窒化膜が用いられていた。このプラ
ズマ窒化膜は、第2図に示す様に−ノ曽目の雀]り1自
己、1j13を十分1こ也い1段部Bも完全に憶いきっ
ている。これlこ反し、低温気相成長酸化膜では、第3
図に示す椋に2段部Cの金属配線を十分4夏いされなか
ったり、値いきれても段&6の端では、低温気相成長鹸
化膜の厚恣が不十分でおったりする。従って1段部の憶
い具合についてだけ考えれば、プラズマ窒化膜のほうが
好ましい。
By the way, as the N-interlayer insulating film, a silicon oxide film grown by a low temperature vapor phase growth method (hereinafter referred to as a low temperature vapor growth oxide film) or a plasma nitride film has conventionally been used. As shown in FIG. 2, this plasma nitride film is completely filled with the first step B, which is one tenth of 1j13. On the contrary, in low temperature vapor phase grown oxide films, the third
As shown in the figure, the metal wiring of the second step C was not sufficiently applied, and even if the price was sold out, the thickness of the saponified film by low-temperature vapor phase growth was insufficient at the end of step &6. Therefore, considering only the memory retention of the first step, the plasma nitride film is preferable.

しかし1層間絶縁膜は1段部のカバー状態たけで決める
ことはできず、配線容量も考慮しなければならない。金
属配線間に配線容1Kが付くと、半導体集積回路装置の
動作速度が遅くなってしまう。
However, the one-layer insulating film cannot be determined only by the cover state of one step, and the wiring capacitance must also be taken into consideration. When a wiring capacity of 1K is added between metal wirings, the operating speed of the semiconductor integrated circuit device becomes slow.

それゆえ、できるだけ配線容量は少なくする必要がある
。一層目の金属配線と二層目の金傾配線の間の配線容量
は、平行平板型のコンデンサーが形成されるものとして
計算できる。すなわち、配腺答htCは、下記の様に現
わすことができる。
Therefore, it is necessary to reduce the wiring capacitance as much as possible. The wiring capacitance between the first layer metal wiring and the second layer gold tilted wiring can be calculated assuming that a parallel plate capacitor is formed. That is, the gland answer htC can be expressed as follows.

C=6・S/1   ・・・・・(1)ここで、8:平
行平板部の而+t< 、ζ:び電率。
C=6・S/1...(1) Here, 8: Parallel plate part +t<, ζ: Electricity rate.

1:電極間の距離である。この配線容コ、ト[を小さく
するlこけ、(1)式で、Sを小さくするか、tを小さ
くするか、17il−大きくするかのいずれかである。
1: Distance between electrodes. In this equation (1), either S is made small, t is made small, or 17il is made large.

この三つの方法のうち、Sの面積は、その時々の写真蝕
刻技術のレベルによって、最小のバクーンが決るので、
無闇にSの面積を小さくすることはできない。
Among these three methods, the area of S is determined by the level of photoetching technology at the time, so
The area of S cannot be reduced blindly.

また電極+=jの距y菰1は、半導体集fit回路上で
はjH間絶絶縁膜厚さとなるが、この層1μj絶縁膜の
厚さが余り厚いと第1図の17で示す様に17のスルー
ホール部の穴の深さが深くなり2段部での断線が製造工
程でのバラツキで発生しr −1’:L気的接続がとり
にくくなる欠点があった。
Further, the distance y 1 of the electrode +=j becomes jH insulation film thickness on the semiconductor integrated fit circuit, but if the thickness of this layer 1μj insulation film is too thick, it becomes 17 as shown by 17 in FIG. The depth of the hole in the through-hole portion becomes deep, and disconnection at the second step portion occurs due to variations in the manufacturing process, making it difficult to establish an r −1′:L air connection.

第三の方法の誘電率Eを小さくすることは1w4間絶縁
膜の材質を変更することである。If:i間絶縁膜の材
質として、一般に用いられている前述の低温気相成長1
設化j呉とプラズマ窒化膜の比誘電率6を比べると、下
記のようになる。
In the third method, the dielectric constant E can be reduced by changing the material of the 1w4 insulating film. If: The above-mentioned low-temperature vapor phase growth 1 which is generally used as the material for the inter-i insulating film.
A comparison of the dielectric constant 6 of the plasma nitride film and that of the plasma nitride film is as follows.

比+J ′IW ’J=  (I MHz )プラズマ
窒化j漢    7.0 低温気相成長鹸化lA3.7 これから−Filるように、同じ厚さの膜では、プラズ
マ態化j漠の万が抵温気相成長叡化膜より二倍はど配線
容量がa A↑についてしまう。従って、プラズマ・磁
化膜に付く配線容量を低温気相成長鹸化εへの配線容気
と同じにするには、プラズマ窒化ノ漢の膜厚1を約二倍
にしなければならない。このとき。
Ratio + J 'IW 'J = (I MHz) Plasma nitriding 7.0 Low temperature vapor phase growth saponification 1A 3.7 As will be seen from now on, for a film of the same thickness, the plasma formation will be much lower in temperature. The interconnect capacitance is twice that of a vapor-grown silicide film. Therefore, in order to make the wiring capacitance attached to the plasma magnetized film the same as the wiring capacitance to the low-temperature vapor phase growth saponification ε, the film thickness 1 of the plasma nitriding film must be approximately doubled. At this time.

前述したようにスルーホールの電気的接続がとりにくく
なってし1う。
As mentioned above, it becomes difficult to make electrical connections through the through holes.

以上述九様に第1図の半導体果1八回路装加の多層配線
法は、M同絶赦膜として、プラズマ窒化層。
As described above, the multilayer wiring method of adding 18 circuits to the semiconductor device shown in FIG.

クリ力フィルム、プラズマ屋化1’r’p!のサンドイ
ッチ構造をしているため、 Jg間絶縁膜上は非1催に
?i?かでちるが、配線容量を低減するため、屑間進縁
膜の厚さが厚くなり、スルーホール部の1L虱的接瞑が
とり1こくいといつ人助がめった。
Chestnut film, plasma shop 1'r'p! Since it has a sandwich structure, will there be a non-event on the insulating film between Jg? i? However, in order to reduce the wiring capacitance, the thickness of the interlayer film was increased, and the 1L contact area of the through hole was reduced by 1.

(発明の目的) 本発明の目的は2以上の欠点をなくシ1層間絶縁膜上が
清かで、かつ1層間絶縁膜の厚での薄く。
(Object of the Invention) The object of the present invention is to eliminate two or more drawbacks, to make the top of the interlayer insulating film clear and thin, and to reduce the thickness of the first interlayer insulating film.

スルーホール部の電気的接にノ℃にとり易い多層配線構
造を提供することでおる。
This is achieved by providing a multilayer wiring structure that is easy to maintain at temperatures of 100°C for electrical connection of through-hole portions.

(発明の4成) 本発明の多層配線の構造eユ、−庖・目の金稍配顧を形
成した後、薄い低温気相成長酸化膜を成長させ、その上
に、薄いプラズマ窒化膜を成長させ。
(Fourth Part of the Invention) After forming the structure of the multilayer wiring of the present invention, a thin low-temperature vapor phase grown oxide film is grown, and a thin plasma nitride film is formed on it. Let it grow.

その上にシリカフィルムを塗り、再度、プラズマ窒化膜
を成長させた四層の膜で構成した居間絶縁膜構造でめる
A silica film is applied on top of this, and a living room insulating film structure consisting of four layers of plasma nitride film grown is completed.

(実施例による説明) 次に2本発明を実施し1jを用いて説明する。(Explanation based on examples) Next, two embodiments of the present invention will be implemented and explained using 1j.

第4図は1本発明の一実施例の多層配線構造の断面図で
ある。第4図において、21は半導体基板であり、22
はシリコン酸化膜であり、23は一層目の金属配線でり
る。この一層目の金h1配鍵を形成したのち、29の低
温気相成長酸化膜を2000〜4000オンゲストo−
ムf4ッけ、24の薄いプラズマ窒化膜2000オング
ストローム程を成長させる。そして、25のシリカフィ
ルムを塗布し、26のプラズマ窒化2000〜3000
オングストローム程波を外匣成長させる。そして。
FIG. 4 is a sectional view of a multilayer wiring structure according to an embodiment of the present invention. In FIG. 4, 21 is a semiconductor substrate, 22
2 is a silicon oxide film, and 23 is a first layer metal wiring. After forming this first layer of gold h1 key, 29 low temperature vapor phase grown oxide film is applied at 2000 to 4000 on guest o-
24 thin plasma nitride films of about 2000 angstroms are grown on the wafer. Then, apply a silica film of 25 and plasma nitridation of 26 of 2000 to 3000.
Angstrom Chengbo is grown in an outer box. and.

28の二層目の金属配線を着ける。Attach the second layer of metal wiring No. 28.

この様Iこして作った多lu配線ば2−上目の全屈配線
の上に、誘′祇率の小ぜい低温気相成長は化膜があるの
で、第1図に示した多層配線構造に比べて、同じ配綜答
宜にした場合、その膜厚を薄くできる。従って、スルー
ホール部の穴の深さは、余り深くならずr ”111気
的縁続が容易にとれる。
Since there is a film formed by low-temperature vapor phase growth with a small dielectric constant on top of the multi-lu wiring made in this way, the multi-layer wiring shown in Fig. 1 is formed. Compared to the structure, if the same arrangement is used, the film thickness can be made thinner. Therefore, the depth of the hole in the through-hole portion is not very deep, and the r''111 air connection can be easily established.

(発明の効果) 以上説明した椋Iこ2本発明をも用いれば、層間絶縁膜
の表面が滑かで、層間絶縁膜の膜厚の薄い。
(Effects of the Invention) If the present invention described above is also used, the surface of the interlayer insulating film is smooth and the thickness of the interlayer insulating film is small.

配線容量の少く、かつスルーホール部の電気的接続の良
い多層配線が得られる。なお2本発明では。
Multilayer wiring with low wiring capacitance and good electrical connection at through-hole portions can be obtained. In addition, two things in the present invention.

判り易くす0ため二層の配線構造で説明したが。For the sake of clarity, the explanation was given using a two-layer wiring structure.

三層以上の多層配線にも1本発明は通用できるものであ
る。
The present invention can also be applied to multilayer wiring having three or more layers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の多層配線構造の層間絶縁膜の構造を示
す#Fr面図である。 第2図は、一層目の金属配線の上に1j間絶線膜として
プラズマ式化膜着けた時の層間絶縁膜の様子ジ    
を示す断面図である。 第3図11寸、一層目の金欄配置櫟の上lこ層間絶縁膜
として気相成長酸化膜を着けた時の層間絶縁膜の様子を
示す断面図でちる。 第4図は1本発明の構造l?:、よる層間5伯毅j漠を
着けた時の配線構造を示す断面図で6る。 11・・・・・半辺体基板、21・・・・・・半導体内
1な、12・・・・・・熱酸化膜、22・・・・・熱t
?化ゲ、1:3・・・・・・一層目の金書配靭(,23
・・・・・・一層目の金桜配し21.14・・・・・・
プラズマ窒化膜、24・・・・・・プラズマ窒化膜、1
5−・−・シリカフィルム、25・・・・・・シリカフ
ィA・ム、16・・・・・・プラズマ社化説、26・・
・・・・プラズマ’FA 化JR?、17・・・・・・
スルーホール、27・・・・・・スルーホール、18・
・・・・・二層目の金属配線、28・・・・・・二層目
の髄纏配6.19・・・・・・低温ミ(相成長酸化膜、
29・・・・・・低温気相成長酸化膜。 代理人 弁理士  内 原   昔・  2、\−I =2(
FIG. 1 is a #Fr plane view showing the structure of an interlayer insulating film in a conventional multilayer wiring structure. Figure 2 shows the state of the interlayer insulating film when a plasma-treated film is deposited as a 1j-interval insulation film on the first layer of metal wiring.
FIG. FIG. 3, dimension 11, is a cross-sectional view showing the state of the interlayer insulating film when a vapor-phase grown oxide film is deposited as the interlayer insulating film on the top of the first layer of metal columns. Figure 4 shows the structure of the present invention. 6 is a cross-sectional view showing the wiring structure when the interlayers are separated. 11... Hemilateral substrate, 21... Semiconductor internal 1, 12... Thermal oxide film, 22... Heat t
? Bakage, 1:3...The first layer of gold books (,23
・・・・・・First layer gold cherry blossom arrangement 21.14・・・・・・
Plasma nitride film, 24... Plasma nitride film, 1
5-- Silica film, 25... Silica film A. Mu, 16... Plasma socialization theory, 26...
...Plasma'FA JR? , 17...
Through hole, 27...Through hole, 18.
...Second layer metal wiring, 28...Second layer metal wiring 6.19...Low temperature micro (phase growth oxide film,
29...Low temperature vapor phase grown oxide film. Agent Patent Attorney Uchihara Formerly 2, \-I = 2 (

Claims (1)

【特許請求の範囲】[Claims]  半導体装置の多層金属配線において、半導体基板上に
設けた絶縁膜上に半導体集積回路装置の各素子間の電気
的接続用の第一の金属配線を設け、この第一の金属配線
の上および金属配線の無い絶縁膜の上に低温気相成長の
酸化膜を設け、さらに、プラズマ気相化学反応による第
一層目のシリコン窒化膜を設け、その上にシリコン酸化
膜を有機溶材に溶かしたシリカフィルムを塗布し、その
上に第二のプラズマ気相化学反応によるシリコン窒化膜
を設け、その上に第二の金属配線をもうけたことを特徴
とする半導体装置の配線構造。
In a multilayer metal wiring of a semiconductor device, a first metal wiring for electrical connection between each element of a semiconductor integrated circuit device is provided on an insulating film provided on a semiconductor substrate, and a metal An oxide film grown using low-temperature vapor phase growth is formed on the insulating film without wiring, and then a first layer of silicon nitride film is formed using a plasma vapor phase chemical reaction. 1. A wiring structure for a semiconductor device, characterized in that a film is applied, a silicon nitride film is provided on the film by a second plasma vapor phase chemical reaction, and a second metal wiring is provided on the film.
JP17464784A 1984-08-22 1984-08-22 Wiring structure of semiconductor device Pending JPS6151940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17464784A JPS6151940A (en) 1984-08-22 1984-08-22 Wiring structure of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17464784A JPS6151940A (en) 1984-08-22 1984-08-22 Wiring structure of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6151940A true JPS6151940A (en) 1986-03-14

Family

ID=15982249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17464784A Pending JPS6151940A (en) 1984-08-22 1984-08-22 Wiring structure of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6151940A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5070392A (en) * 1988-03-18 1991-12-03 Digital Equipment Corporation Integrated circuit having laser-alterable metallization layer
US5497034A (en) * 1986-03-31 1996-03-05 Hitachi, Ltd. IC wiring connecting method and apparatus
US5627403A (en) * 1993-05-31 1997-05-06 Sgs-Thomson Microelectronics S.R.L. Adhesion between dielectric layers in an integrated circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5497034A (en) * 1986-03-31 1996-03-05 Hitachi, Ltd. IC wiring connecting method and apparatus
US5070392A (en) * 1988-03-18 1991-12-03 Digital Equipment Corporation Integrated circuit having laser-alterable metallization layer
US5627403A (en) * 1993-05-31 1997-05-06 Sgs-Thomson Microelectronics S.R.L. Adhesion between dielectric layers in an integrated circuit

Similar Documents

Publication Publication Date Title
JP3281209B2 (en) Method for manufacturing semiconductor device
JPS6151940A (en) Wiring structure of semiconductor device
JPS6070743A (en) Manufacturing method of semiconductor device
JPS63188959A (en) Semiconductor device and its manufacture
JP2001189383A (en) Metal wiring of semiconductor element and manufacturing method therefor
JP3192903B2 (en) Semiconductor device manufacturing method and semiconductor manufacturing apparatus
JPS62155537A (en) Manufacturing method of semiconductor device
JPH0797583B2 (en) Method for forming interlayer insulating film
JPH05226475A (en) Manufacture of semiconductor device
JPS61196555A (en) Formation for multilayer interconnection
KR960011816B1 (en) Method of making a capacitor in semiconductor device
JP2993044B2 (en) Method for manufacturing semiconductor device
JPH0273652A (en) Manufacture of semiconductor device
JPS63168034A (en) Formation of multilayer gate electrode of semiconductor device
JPS63260051A (en) Semiconductor device
JPH08139185A (en) Manufacture of semiconductor device
JPS61206242A (en) Manufacture of semiconductor device
JPS6015948A (en) Manufacturing method for semiconductor devices
JPH04127425A (en) Manufacture of semiconductor integrated circuit
JPH0273651A (en) Semiconductor device
JPH03112151A (en) Active layer stacked element
JPH01312854A (en) Multilayer interconnection structure of semiconductor integrated circuit
JPH0346971B2 (en)
JPH0521608A (en) Manufacture of semiconductor device
JPH0685079A (en) Manufacture of semiconductor device