JPS6151772A - Flow rate controller of fuel cell system - Google Patents
Flow rate controller of fuel cell systemInfo
- Publication number
- JPS6151772A JPS6151772A JP59172038A JP17203884A JPS6151772A JP S6151772 A JPS6151772 A JP S6151772A JP 59172038 A JP59172038 A JP 59172038A JP 17203884 A JP17203884 A JP 17203884A JP S6151772 A JPS6151772 A JP S6151772A
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- hydrogen
- oxygen
- utilization factor
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 30
- 239000001257 hydrogen Substances 0.000 claims abstract description 35
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 35
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000001301 oxygen Substances 0.000 claims abstract description 32
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 32
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 31
- 239000002737 fuel gas Substances 0.000 claims abstract description 23
- 239000007789 gas Substances 0.000 claims abstract description 22
- 230000001590 oxidative effect Effects 0.000 claims abstract description 17
- 239000007800 oxidant agent Substances 0.000 claims abstract description 16
- 238000010248 power generation Methods 0.000 claims description 8
- 239000004020 conductor Substances 0.000 claims description 5
- 230000005611 electricity Effects 0.000 claims 1
- 238000003487 electrochemical reaction Methods 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 14
- 238000010586 diagram Methods 0.000 description 3
- 210000005056 cell body Anatomy 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0438—Pressure; Ambient pressure; Flow
- H01M8/04402—Pressure; Ambient pressure; Flow of anode exhausts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0432—Temperature; Ambient temperature
- H01M8/04343—Temperature; Ambient temperature of anode exhausts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0438—Pressure; Ambient pressure; Flow
- H01M8/04388—Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0438—Pressure; Ambient pressure; Flow
- H01M8/04395—Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0444—Concentration; Density
- H01M8/04462—Concentration; Density of anode exhausts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04574—Current
- H01M8/04589—Current of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04604—Power, energy, capacity or load
- H01M8/04619—Power, energy, capacity or load of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04746—Pressure; Flow
- H01M8/04753—Pressure; Flow of fuel cell reactants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技?#分野〕
この発明は燃料電池発電装置の燃料電池本体例供給する
燃料ガスあるいは酸化剤ガスの流量制御装置に関するも
のである。[Detailed description of the invention] [Technique of invention? #Field] The present invention relates to a flow rate control device for fuel gas or oxidant gas supplied to a fuel cell main body of a fuel cell power generation device.
第1図は例えば特開昭57−212776号公報に示さ
れた従来の燃料電池発電装置の燃料IIJ御装置の構成
を示す系統図である。図において、(1)は水素−酸素
(空気)FMの燃料電池本体、(2)は燃料室、(3)
は酸化剤(空気)室、(4)は水素極、(5)は酸素極
、(6)は電解液室ないしは電解液含浸マ) IJンク
ス、(7)は上記燃料室(2)へ水素を生成分とする燃
料ガスを供給する第1の供給流路、(8)はこの第1の
供給流路(7)に設けられた第1の調ロ゛6弁、(9)
は上記燃料室(2)からガスを排出する第1の排出流路
、(10)は上記空気室(3)へ酸素を含む酸化剤ガス
を供給する第2のP袷流路、(11)はこの第2の供給
流路(10)に投けられた第2の調整弁、(12)は上
記空気室(3)からガスを排出する第2の排出流路、(
13)は燃料電池本体(1)で発生する直流電力を取り
出す導線、(14)はこの導線(13)に設けられ、燃
料電池本体(11)の電力または電流を検出する検出器
、(15)はこの検出器(14)の出力信号、(16)
は出力制御演算部、(17)は弁開度設定値、(18)
は流量調節器、(19)は弁開度操作信号、(20)は
第1の供給流路(7)中の燃料ガスの流量を検出する流
量検出器、(21)はこの流量検出器(20)の出力信
号である。FIG. 1 is a system diagram showing the configuration of a fuel IIJ control device of a conventional fuel cell power generator disclosed in, for example, Japanese Patent Laid-Open No. 57-212776. In the figure, (1) is the main body of the hydrogen-oxygen (air) FM fuel cell, (2) is the fuel chamber, and (3) is
(4) is the oxidizer (air) chamber, (4) is the hydrogen electrode, (5) is the oxygen electrode, (6) is the electrolyte chamber or electrolyte impregnated tank), and (7) is the hydrogen to the fuel chamber (2). (8) is a first regulating valve 6 provided in this first supply channel (7), (9)
(10) is a first exhaust flow path that discharges gas from the fuel chamber (2); (10) is a second P-line flow path that supplies oxidant gas containing oxygen to the air chamber (3); (11) is a second regulating valve inserted into this second supply channel (10), (12) is a second discharge channel for discharging gas from the air chamber (3), (
13) is a conductor that takes out the DC power generated in the fuel cell main body (1); (14) is a detector that is provided on this conductor (13) and detects the electric power or current of the fuel cell main body (11); (15) is the output signal of this detector (14), (16)
is the output control calculation section, (17) is the valve opening setting value, (18)
is a flow rate regulator, (19) is a valve opening operation signal, (20) is a flow rate detector that detects the flow rate of fuel gas in the first supply channel (7), and (21) is this flow rate detector ( 20).
次に動作について説明する。燃料電池本体(1)で発電
される直流電力または電流を検出器(14)で検出する
。出力制御演算部(16)は検出器(14)の出力信号
(15)を受けて、予め判明している電池特性や水素利
用率設定値等から弁開度−流量特性江見合った弁開度設
定値(17)を演算出力し、流量調節器(18)に与え
る。流量調節器(1B)は弁開度設定値(17)と流量
検出器(20)の検出信号を入力し、第1の調節弁(8
)の開度を弁開度設定値まで変えて第1の供給流路(7
)を流れる燃料ガス流量を制御する。Next, the operation will be explained. A detector (14) detects the DC power or current generated by the fuel cell main body (1). The output control calculation unit (16) receives the output signal (15) from the detector (14) and determines the valve opening that matches the valve opening-flow rate characteristic based on the battery characteristics known in advance, the hydrogen utilization rate setting value, etc. The set value (17) is calculated and outputted and given to the flow rate regulator (18). The flow rate regulator (1B) inputs the valve opening setting value (17) and the detection signal of the flow rate detector (20), and controls the first control valve (8).
) to the valve opening setting value, and the first supply flow path (7
) to control the flow rate of fuel gas flowing through the fuel gas.
従来の燃料電池発電装置の流量制御装置は以上のよう【
構成されているので、出力制御演算部(16)は調節弁
(8)の弁開度−流量特性を把握しておく必要があり、
また、弁開度−流量特性は調節弁(8)の前後の圧力例
より異なり、圧力による補正演算をも機能として持たせ
ることが必要となり、出力制御演算部(16)の処理機
能が複雑になるという欠点があった。The flow control device for conventional fuel cell power generation equipment is as described above.
Therefore, the output control calculation unit (16) needs to know the valve opening-flow rate characteristic of the control valve (8).
In addition, the valve opening degree-flow rate characteristic differs from the pressure example before and after the control valve (8), and it is necessary to provide a function for correction calculation based on pressure, which complicates the processing function of the output control calculation section (16). There was a drawback.
この発明は上記のような従来のものの欠点を除去するた
めになされたもので、燃料電池本体で発生する電力また
は電流を検出する検出器の出力信号と燃料ガスの流量及
び水素濃度または酸化剤ガスの流量及び酸素濃度とから
水素利用率または酸素利用率を算出し、この算出値と予
め設定または指令されている水素利用率または酸素利用
率との偏差に応じて、第1の調節弁または第2の調節弁
の開度を操作することにより、燃料ガス流量または酸化
剤ガス流量を変えて、水素利用率または酸素利用率を簡
易な処理機能で最適にilJ御できる燃料電池発電装置
の流量制御装置を提供するものである。This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and it uses the output signal of a detector that detects the electric power or current generated in the fuel cell body, the flow rate of fuel gas, hydrogen concentration, or oxidizing gas. The hydrogen utilization rate or oxygen utilization rate is calculated from the flow rate and oxygen concentration, and the first control valve or the first control valve is Flow rate control for fuel cell power generation equipment that can optimally control the hydrogen utilization rate or oxygen utilization rate with simple processing functions by changing the fuel gas flow rate or oxidant gas flow rate by manipulating the opening degree of the control valve 2. It provides equipment.
以下、この発明の一実施例を図について説明する。第2
図におけて、(1)〜(15)は上述した従来装置の構
成と同様である。(22)は第1の供給流路(7)に設
けられた燃料ガスの流量検出器、(23)はこの流量検
出器(22)の出力信号、(24)は第2の供給流路(
10)に設けられた酸化剤ガスの流量検出器、(25)
はこの流量検出器(24)の出力信号、(26)は検出
器(14)の出力信号(15)、流量検出器(22)の
出力信号(23) 、及び予め設定または指令されてい
る水素利用率(27)を入力し、第1の調節弁(8)へ
の弁開度操作信号(28)を出力し、燃料ガスの流量を
変えて水素利用率を制御する調節器、(29)は検出器
(14)の出力信号(15)、流量検出器(24)の出
力信号(25)、及び予め設定または指令されている酸
素利用率(30)を入力し、第2の調節弁(11)への
弁開度操作信号(31)を出力し、酸化剤ガスの流量を
変えて酸素利用率を制御する調節器である。An embodiment of the present invention will be described below with reference to the drawings. Second
In the figure, (1) to (15) are similar to the configuration of the conventional device described above. (22) is a fuel gas flow rate detector provided in the first supply flow path (7), (23) is an output signal of this flow rate detector (22), and (24) is a fuel gas flow rate detector provided in the first supply flow path (7).
10) oxidant gas flow rate detector provided in (25)
is the output signal of this flow rate detector (24), (26) is the output signal (15) of the detector (14), the output signal (23) of the flow rate detector (22), and the preset or commanded hydrogen a regulator (29) that inputs the utilization rate (27), outputs a valve opening operation signal (28) to the first control valve (8), and controls the hydrogen utilization rate by changing the flow rate of fuel gas; inputs the output signal (15) of the detector (14), the output signal (25) of the flow rate detector (24), and the preset or commanded oxygen utilization rate (30), and then controls the second control valve ( This is a regulator that outputs a valve opening operation signal (31) to 11) and changes the flow rate of oxidizing gas to control the oxygen utilization rate.
次に動作例ついて説明する。流量検出器(22)、(2
4)はそれぞれ燃料室(2)へ供給される燃料ガスの流
量、空気室(3)へ供給される酸化剤ガスの流量と検出
する。検出器(14)は燃料電池本体(1)で発電され
る電力または電流を検出する。調節器(26) !/i
流量検出器(22)の出力信号(23)と、検出器(1
4)の出力信号(15)と、図には書いてないが燃料ガ
ス中の水素濃度及び圧力、温度(燃料ガス流量を湿田及
び組成補正するため)とから、水素利用率を例えQF+
=[電池で発電される電力の電流値(A) ] X 3
600(secAr)×□(電子/クーロン)×1(分
子数/1.6X10−111
2その値と予め設定または指令されている水素利用率(
27)との偏差に応じて弁洲度操作信号(28)を出力
し、燃料室(2)への第1の供給流路(7〕K設けた第
1の調節弁(8〕の開度を操作して、燃料ガス流量分変
えて水素利用率を所定の値に制御する。同様に、調節器
(29) r/i、流量検出器(24)の出力信号(2
5)と、検出器(1りの出力信号(15)と、図には示
していないが酸化剤ガス中の酸素濃度及び圧力、温度(
酸化剤ガス流量を温圧及び組成補正するため)とから、
酸素利用率を例えば次の式を用いて算出QA1=[電池
で発電される電力の電流値(A) ] X 3600
(secy’hr)この値と予め設定または指令されて
いる酸素利用率(30)との偏差に応じて弁Ug度操作
信8 (31)を出力し、空気室(3)への第2の供給
流路(10)に設けた第2の調節弁(11)の開度を操
作して、酸化剤ガス流量を変えて、酸素利用率を所定の
値に制御する。Next, an example of operation will be explained. Flow rate detector (22), (2
4) detects the flow rate of fuel gas supplied to the fuel chamber (2) and the flow rate of oxidant gas supplied to the air chamber (3), respectively. The detector (14) detects the electric power or current generated by the fuel cell main body (1). Adjuster (26)! /i
The output signal (23) of the flow rate detector (22) and the
From the output signal (15) of 4) and the hydrogen concentration, pressure, and temperature in the fuel gas (to correct the wet field and composition of the fuel gas flow rate), which are not shown in the figure, the hydrogen utilization rate can be calculated using the QF+ example.
= [Current value of electric power generated by the battery (A)] X 3
600 (secAr) x □ (electron/coulomb) x 1 (number of molecules/1.6X10-111
2.The value and the preset or commanded hydrogen utilization rate (
27), outputs a valve degree operation signal (28) and adjusts the opening degree of the first control valve (8) provided in the first supply flow path (7)K to the fuel chamber (2). to control the hydrogen utilization rate to a predetermined value by changing the fuel gas flow rate.Similarly, the output signal (2) of the regulator (29) r/i and the flow rate detector (24)
5), a detector (one output signal (15), and although not shown in the figure, the oxygen concentration, pressure, and temperature in the oxidant gas (
(to correct the temperature, pressure and composition of the oxidant gas flow rate) and
Calculate the oxygen utilization rate using, for example, the following formula: QA1 = [Current value of electric power generated by the battery (A)] X 3600
(secy'hr) Valve Ug degree operation signal 8 (31) is output according to the deviation between this value and the preset or commanded oxygen utilization rate (30), and the second signal to the air chamber (3) is output. The oxygen utilization rate is controlled to a predetermined value by manipulating the opening degree of the second control valve (11) provided in the supply channel (10) to change the oxidant gas flow rate.
なお、上記実施例では、水素利用率を制御する調節器(
26)と酸素利用率を制御する調節器(29)の両方を
設置しているが、水素利用率だけを制御するならば調節
器(26)だけ分、酸素利用率だけt制御するならば調
節器(29)だけを投置しても良い。In addition, in the above embodiment, a regulator (
26) and a regulator (29) to control the oxygen utilization rate, but if only the hydrogen utilization rate is to be controlled, only the regulator (26) is installed, and if only the oxygen utilization rate is to be controlled, the regulator (29) is installed. You may also place only the container (29).
また、上記実施例では燃料ガス中の水素濃度または酸化
剤ガス中の酸素濃度を既知としているが第1の供給流路
(7)または第2の供給流路(10)中のガス組成を検
出する装置例えば水素センサまたは酸素センナ)を設け
て、水素濃度または酸素濃度を検出しても良い。Further, in the above embodiment, the hydrogen concentration in the fuel gas or the oxygen concentration in the oxidant gas is known, but the gas composition in the first supply channel (7) or the second supply channel (10) is detected. A device (for example, a hydrogen sensor or an oxygen sensor) may be provided to detect the hydrogen concentration or oxygen concentration.
以上のように、この発明によれば、燃料電池本体で発生
する電力またV′i電流を検出する検出器の出力信号と
燃料ガスの流量及び水素濃度または酸化剤ガスの流量及
び酸素濃度とから水素利用率または酸素利用率を算出し
、この算出値と予め設定または指令されている水素利用
率または酸素利用率との偏差に応じて、第1のm節介ま
たは第2の調節弁の開度を操作することにより、燃料ガ
ス流量または酸化剤ガス流量を変えて、水素利用率また
は酸素利用率を簡易な処理機能で最適に制御できる燃料
電池発電装置の流量制御装置を得ることができる。As described above, according to the present invention, the output signal of the detector for detecting the electric power or V'i current generated in the fuel cell body and the flow rate and hydrogen concentration of fuel gas or the flow rate and oxygen concentration of oxidant gas are used. Calculate the hydrogen utilization rate or oxygen utilization rate, and open the first m adjustment or the second control valve according to the deviation between this calculated value and the preset or commanded hydrogen utilization rate or oxygen utilization rate. By controlling the fuel gas flow rate or the oxidant gas flow rate, it is possible to obtain a flow rate control device for a fuel cell power generation device that can optimally control the hydrogen utilization rate or the oxygen utilization rate with a simple processing function.
第1図は従来の燃料電池発電装置の燃料制御装置を示す
系統図、第2図はこの発明の一実施例によ、る燃料電池
発電装置の流量制御装置を示す系統図である。
図において、(1)は燃料電池本体、(4)は水素極、
(5)は酸素極、(7)、(10)け第11第2の供給
流路、(8)、(11)は第1、第2の調節弁、(13
)は導線、(14)は検出器、(26) 、 (29)
は調節器である。
なお、図中、同一符号は同一、又は相肖部分を示す。
第1図FIG. 1 is a system diagram showing a fuel control device for a conventional fuel cell power generation device, and FIG. 2 is a system diagram showing a flow rate control device for a fuel cell power generation device according to an embodiment of the present invention. In the figure, (1) is the fuel cell main body, (4) is the hydrogen electrode,
(5) is an oxygen electrode, (7) and (10) are the 11th and 2nd supply channels, (8) and (11) are the first and second control valves, (13)
) is the conductor, (14) is the detector, (26), (29)
is a regulator. In addition, in the figures, the same reference numerals indicate the same or similar parts. Figure 1
Claims (1)
って発電する燃料電池本体と、この燃料電池本体で発生
する直流電力をとり出す導線と、この導線に設けられた
電力または電流を検出する検出器と、水素を主成分とす
る燃料ガスを上記水素極側へ供給する第1の供給流路と
、この第1の供給流路に設けられた第1の調節弁と、酸
素を含む酸化剤ガスを上記酸素極側へ供給する第2の供
給流路と、この第2の供給流路に設けられた第2の調節
弁とを備えた燃料電池発電装置において、上記検出器か
らの出力信号と、燃料ガスの流量及び水素濃度または酸
化剤ガスの流量及び酸素濃度とから、水素利用率または
酸素利用率を算出し、この算出値と予め設定または指令
されている水素利用率または酸素利用率との偏差に応じ
て、第1の調節弁または第2の調節弁の開度を操作して
、燃料ガス流量または酸化剤ガス流量を変えて水素利用
率または酸素利用率を制御する調節器を備えたことを特
徴とする燃料電池発電装置の流量制御装置。A fuel cell that generates electricity through an electrochemical reaction between hydrogen on the hydrogen electrode side and oxygen on the oxygen electrode side, a conductor that takes out the DC power generated in this fuel cell, and the power or current installed in this conductor is detected. a first supply channel for supplying a fuel gas containing hydrogen as a main component to the hydrogen electrode side; a first control valve provided in the first supply channel; In a fuel cell power generation device comprising a second supply channel for supplying oxidant gas to the oxygen electrode side and a second control valve provided in the second supply channel, The hydrogen utilization rate or oxygen utilization rate is calculated from the output signal and the fuel gas flow rate and hydrogen concentration or the oxidant gas flow rate and oxygen concentration, and this calculated value is combined with the preset or commanded hydrogen utilization rate or oxygen concentration. Adjustment that controls the hydrogen utilization rate or oxygen utilization rate by manipulating the opening degree of the first control valve or the second control valve to change the fuel gas flow rate or the oxidizing gas flow rate according to the deviation from the utilization rate. 1. A flow control device for a fuel cell power generation device, characterized in that it is equipped with a flow rate control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59172038A JPS6151772A (en) | 1984-08-18 | 1984-08-18 | Flow rate controller of fuel cell system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59172038A JPS6151772A (en) | 1984-08-18 | 1984-08-18 | Flow rate controller of fuel cell system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6151772A true JPS6151772A (en) | 1986-03-14 |
JPH0572071B2 JPH0572071B2 (en) | 1993-10-08 |
Family
ID=15934373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59172038A Granted JPS6151772A (en) | 1984-08-18 | 1984-08-18 | Flow rate controller of fuel cell system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6151772A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6351060A (en) * | 1986-08-20 | 1988-03-04 | Hitachi Ltd | Fuel cell power generation system |
JPS6351061A (en) * | 1986-08-20 | 1988-03-04 | Hitachi Ltd | Fuel cell power generation system |
JPH0417269A (en) * | 1990-05-10 | 1992-01-22 | Fuji Electric Co Ltd | Fuel cell power generation system |
JPH0461755A (en) * | 1990-06-28 | 1992-02-27 | Tohoku Electric Power Co Inc | fuel cell power generator |
JPH05335029A (en) * | 1992-06-01 | 1993-12-17 | Hitachi Ltd | Fuel cell power generation system |
JPH08507025A (en) * | 1992-12-22 | 1996-07-30 | ランパック コーポレイション | Fan-shaped stock material for use with cushion converters |
NL1003042C2 (en) * | 1996-05-06 | 1997-11-07 | Stichting Energie | Method for determining the flow rate of reactants in each cell of an electrochemical cell stack. |
WO1999060654A1 (en) * | 1998-05-18 | 1999-11-25 | The Procter & Gamble Company | Metal/oxygen battery or fuel cell with oxygen cathode containing oxygen concentrator and regulating means of controlling its supply |
JP2002050377A (en) * | 2000-08-01 | 2002-02-15 | Matsushita Electric Ind Co Ltd | Fuel cell system |
JP2004055192A (en) * | 2002-07-17 | 2004-02-19 | Mitsubishi Materials Corp | Operating method and operating system for solid oxide fuel cell |
US6698278B2 (en) * | 2001-12-19 | 2004-03-02 | Ballard Power Systems Inc. | Indirect measurement of fuel concentration in a liquid feed fuel cell |
JP2004071228A (en) * | 2002-08-02 | 2004-03-04 | Hitachi Industrial Equipment Systems Co Ltd | Fuel cell system for vehicles |
JP2004171842A (en) * | 2002-11-18 | 2004-06-17 | Honda Motor Co Ltd | Fuel cell system |
JP2004273162A (en) * | 2003-03-05 | 2004-09-30 | Nissan Motor Co Ltd | Fuel cell control system |
JP2007066845A (en) * | 2005-09-02 | 2007-03-15 | Denso Corp | Fuel cell system |
JP2012059614A (en) * | 2010-09-10 | 2012-03-22 | Toshiba Fuel Cell Power Systems Corp | Fuel cell power generation system and control method thereof |
JP2018181455A (en) * | 2017-04-05 | 2018-11-15 | 大阪瓦斯株式会社 | Solid oxide fuel cell system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58166670A (en) * | 1982-03-27 | 1983-10-01 | Kansai Electric Power Co Inc:The | Fuel cell pressure control method |
-
1984
- 1984-08-18 JP JP59172038A patent/JPS6151772A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58166670A (en) * | 1982-03-27 | 1983-10-01 | Kansai Electric Power Co Inc:The | Fuel cell pressure control method |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6351061A (en) * | 1986-08-20 | 1988-03-04 | Hitachi Ltd | Fuel cell power generation system |
JPS6351060A (en) * | 1986-08-20 | 1988-03-04 | Hitachi Ltd | Fuel cell power generation system |
JPH0417269A (en) * | 1990-05-10 | 1992-01-22 | Fuji Electric Co Ltd | Fuel cell power generation system |
JPH0461755A (en) * | 1990-06-28 | 1992-02-27 | Tohoku Electric Power Co Inc | fuel cell power generator |
JPH05335029A (en) * | 1992-06-01 | 1993-12-17 | Hitachi Ltd | Fuel cell power generation system |
JPH08507025A (en) * | 1992-12-22 | 1996-07-30 | ランパック コーポレイション | Fan-shaped stock material for use with cushion converters |
US6162557A (en) * | 1996-05-06 | 2000-12-19 | Stichting Energieonderzoek Centrum Nederland | Method for determining the flow rate of reactants in each cell of an electrochemical cell stack |
NL1003042C2 (en) * | 1996-05-06 | 1997-11-07 | Stichting Energie | Method for determining the flow rate of reactants in each cell of an electrochemical cell stack. |
WO1997042674A1 (en) * | 1996-05-06 | 1997-11-13 | Stichting Energieonderzoek Centrum Nederland | Method for determining the flow rate of reactants in each cell of an electrochemical cell stack |
WO1999060654A1 (en) * | 1998-05-18 | 1999-11-25 | The Procter & Gamble Company | Metal/oxygen battery or fuel cell with oxygen cathode containing oxygen concentrator and regulating means of controlling its supply |
JP2002050377A (en) * | 2000-08-01 | 2002-02-15 | Matsushita Electric Ind Co Ltd | Fuel cell system |
US6698278B2 (en) * | 2001-12-19 | 2004-03-02 | Ballard Power Systems Inc. | Indirect measurement of fuel concentration in a liquid feed fuel cell |
JP2004055192A (en) * | 2002-07-17 | 2004-02-19 | Mitsubishi Materials Corp | Operating method and operating system for solid oxide fuel cell |
JP2004071228A (en) * | 2002-08-02 | 2004-03-04 | Hitachi Industrial Equipment Systems Co Ltd | Fuel cell system for vehicles |
JP2004171842A (en) * | 2002-11-18 | 2004-06-17 | Honda Motor Co Ltd | Fuel cell system |
JP2004273162A (en) * | 2003-03-05 | 2004-09-30 | Nissan Motor Co Ltd | Fuel cell control system |
JP2007066845A (en) * | 2005-09-02 | 2007-03-15 | Denso Corp | Fuel cell system |
JP2012059614A (en) * | 2010-09-10 | 2012-03-22 | Toshiba Fuel Cell Power Systems Corp | Fuel cell power generation system and control method thereof |
JP2018181455A (en) * | 2017-04-05 | 2018-11-15 | 大阪瓦斯株式会社 | Solid oxide fuel cell system |
Also Published As
Publication number | Publication date |
---|---|
JPH0572071B2 (en) | 1993-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6151772A (en) | Flow rate controller of fuel cell system | |
JP2008166019A (en) | Fuel cell system | |
CA2282192C (en) | Fuel cell control apparatus and method of controlling fuel cell using control apparatus | |
JPH0458463A (en) | Output control device for fuel cell power generating system | |
JPH07240220A (en) | Fuel cell system | |
JP5070794B2 (en) | Fuel cell system | |
JPH097618A (en) | Fuel cell power generation system | |
JPH07296834A (en) | Fuel cell power generation plant and method for operating reformer of the plant | |
US6815104B2 (en) | Method for controlling flow rate of oxidizer in fuel cell system | |
JPH0714595A (en) | Operating method of power generating device of fuel cell type | |
JP2004179126A (en) | Oxidant pressure control method for fuel cell system | |
JP4742540B2 (en) | Fuel cell system | |
JP2002313385A (en) | Fuel cell system | |
JPH0349185B2 (en) | ||
JP3387234B2 (en) | Fuel cell generator | |
JPS60154471A (en) | Air and fuel control system of fuel cell | |
JPH0556628B2 (en) | ||
JP2838087B2 (en) | Operation control device for fuel cell power generation system | |
JP2009140658A (en) | Fuel cell system | |
JPS60230364A (en) | Fuel cell system | |
JPH0461466B2 (en) | ||
WO2008088316A2 (en) | Controlling an amount of liquid within a fuel cell | |
JPS62160667A (en) | Fuel cell power generation system | |
JPS60241664A (en) | Flow controller for fuel cell power generator | |
JPS6091568A (en) | Air-supply-controlling system for fuel cell plant |