[go: up one dir, main page]

JPS6151772A - Flow rate controller of fuel cell system - Google Patents

Flow rate controller of fuel cell system

Info

Publication number
JPS6151772A
JPS6151772A JP59172038A JP17203884A JPS6151772A JP S6151772 A JPS6151772 A JP S6151772A JP 59172038 A JP59172038 A JP 59172038A JP 17203884 A JP17203884 A JP 17203884A JP S6151772 A JPS6151772 A JP S6151772A
Authority
JP
Japan
Prior art keywords
flow rate
hydrogen
oxygen
utilization factor
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59172038A
Other languages
Japanese (ja)
Other versions
JPH0572071B2 (en
Inventor
Masashi Fujitsuka
正史 藤塚
Manabu Hibino
日比野 学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59172038A priority Critical patent/JPS6151772A/en
Publication of JPS6151772A publication Critical patent/JPS6151772A/en
Publication of JPH0572071B2 publication Critical patent/JPH0572071B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04402Pressure; Ambient pressure; Flow of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04343Temperature; Ambient temperature of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04462Concentration; Density of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To optimize utilization factor of hydrogen or oxygen by calculating utilization factor of hydrogen or oxygen based on electric power generated and flow rate and concentration of fuel gas or oxidizing agent gas, and operating a control valve according to a deviation of the calculated utilization factor to a setting utilization factor. CONSTITUTION:Flow rate detectors 22 and 24 detect the flow rate of fuel gas supplied to a fuel chamber 2 and that of oxidizing gas supplied to an air chamber 3 respectively. A detector 14 detects electric power or current generated in a fuel cell 1. A controller 26 calculates hydrogen utilization factor based on an output signal 23 of the flow rate detector 22, an output signal 15 of the detector 14, and hydrogen concentration, pressure, and temperature in the fuel gas, and outputs a valve operation signal 28 according to a deviation of the calculated value to a setting hydrogen utilization factor to operate a control valve 8, and controls hydrogen utilization factor to a specified value by changing fuel gas flow rate. A controller 29 operates a control valve 11 to control oxygen utilization factor to a specified value by changing oxidizing agent gas flow rate.

Description

【発明の詳細な説明】 〔発明の技?#分野〕 この発明は燃料電池発電装置の燃料電池本体例供給する
燃料ガスあるいは酸化剤ガスの流量制御装置に関するも
のである。
[Detailed description of the invention] [Technique of invention? #Field] The present invention relates to a flow rate control device for fuel gas or oxidant gas supplied to a fuel cell main body of a fuel cell power generation device.

〔従来の技術〕[Conventional technology]

第1図は例えば特開昭57−212776号公報に示さ
れた従来の燃料電池発電装置の燃料IIJ御装置の構成
を示す系統図である。図において、(1)は水素−酸素
(空気)FMの燃料電池本体、(2)は燃料室、(3)
は酸化剤(空気)室、(4)は水素極、(5)は酸素極
、(6)は電解液室ないしは電解液含浸マ) IJンク
ス、(7)は上記燃料室(2)へ水素を生成分とする燃
料ガスを供給する第1の供給流路、(8)はこの第1の
供給流路(7)に設けられた第1の調ロ゛6弁、(9)
は上記燃料室(2)からガスを排出する第1の排出流路
、(10)は上記空気室(3)へ酸素を含む酸化剤ガス
を供給する第2のP袷流路、(11)はこの第2の供給
流路(10)に投けられた第2の調整弁、(12)は上
記空気室(3)からガスを排出する第2の排出流路、(
13)は燃料電池本体(1)で発生する直流電力を取り
出す導線、(14)はこの導線(13)に設けられ、燃
料電池本体(11)の電力または電流を検出する検出器
、(15)はこの検出器(14)の出力信号、(16)
は出力制御演算部、(17)は弁開度設定値、(18)
は流量調節器、(19)は弁開度操作信号、(20)は
第1の供給流路(7)中の燃料ガスの流量を検出する流
量検出器、(21)はこの流量検出器(20)の出力信
号である。
FIG. 1 is a system diagram showing the configuration of a fuel IIJ control device of a conventional fuel cell power generator disclosed in, for example, Japanese Patent Laid-Open No. 57-212776. In the figure, (1) is the main body of the hydrogen-oxygen (air) FM fuel cell, (2) is the fuel chamber, and (3) is
(4) is the oxidizer (air) chamber, (4) is the hydrogen electrode, (5) is the oxygen electrode, (6) is the electrolyte chamber or electrolyte impregnated tank), and (7) is the hydrogen to the fuel chamber (2). (8) is a first regulating valve 6 provided in this first supply channel (7), (9)
(10) is a first exhaust flow path that discharges gas from the fuel chamber (2); (10) is a second P-line flow path that supplies oxidant gas containing oxygen to the air chamber (3); (11) is a second regulating valve inserted into this second supply channel (10), (12) is a second discharge channel for discharging gas from the air chamber (3), (
13) is a conductor that takes out the DC power generated in the fuel cell main body (1); (14) is a detector that is provided on this conductor (13) and detects the electric power or current of the fuel cell main body (11); (15) is the output signal of this detector (14), (16)
is the output control calculation section, (17) is the valve opening setting value, (18)
is a flow rate regulator, (19) is a valve opening operation signal, (20) is a flow rate detector that detects the flow rate of fuel gas in the first supply channel (7), and (21) is this flow rate detector ( 20).

次に動作について説明する。燃料電池本体(1)で発電
される直流電力または電流を検出器(14)で検出する
。出力制御演算部(16)は検出器(14)の出力信号
(15)を受けて、予め判明している電池特性や水素利
用率設定値等から弁開度−流量特性江見合った弁開度設
定値(17)を演算出力し、流量調節器(18)に与え
る。流量調節器(1B)は弁開度設定値(17)と流量
検出器(20)の検出信号を入力し、第1の調節弁(8
)の開度を弁開度設定値まで変えて第1の供給流路(7
)を流れる燃料ガス流量を制御する。
Next, the operation will be explained. A detector (14) detects the DC power or current generated by the fuel cell main body (1). The output control calculation unit (16) receives the output signal (15) from the detector (14) and determines the valve opening that matches the valve opening-flow rate characteristic based on the battery characteristics known in advance, the hydrogen utilization rate setting value, etc. The set value (17) is calculated and outputted and given to the flow rate regulator (18). The flow rate regulator (1B) inputs the valve opening setting value (17) and the detection signal of the flow rate detector (20), and controls the first control valve (8).
) to the valve opening setting value, and the first supply flow path (7
) to control the flow rate of fuel gas flowing through the fuel gas.

従来の燃料電池発電装置の流量制御装置は以上のよう【
構成されているので、出力制御演算部(16)は調節弁
(8)の弁開度−流量特性を把握しておく必要があり、
また、弁開度−流量特性は調節弁(8)の前後の圧力例
より異なり、圧力による補正演算をも機能として持たせ
ることが必要となり、出力制御演算部(16)の処理機
能が複雑になるという欠点があった。
The flow control device for conventional fuel cell power generation equipment is as described above.
Therefore, the output control calculation unit (16) needs to know the valve opening-flow rate characteristic of the control valve (8).
In addition, the valve opening degree-flow rate characteristic differs from the pressure example before and after the control valve (8), and it is necessary to provide a function for correction calculation based on pressure, which complicates the processing function of the output control calculation section (16). There was a drawback.

〔発明の概要〕[Summary of the invention]

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、燃料電池本体で発生する電力また
は電流を検出する検出器の出力信号と燃料ガスの流量及
び水素濃度または酸化剤ガスの流量及び酸素濃度とから
水素利用率または酸素利用率を算出し、この算出値と予
め設定または指令されている水素利用率または酸素利用
率との偏差に応じて、第1の調節弁または第2の調節弁
の開度を操作することにより、燃料ガス流量または酸化
剤ガス流量を変えて、水素利用率または酸素利用率を簡
易な処理機能で最適にilJ御できる燃料電池発電装置
の流量制御装置を提供するものである。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and it uses the output signal of a detector that detects the electric power or current generated in the fuel cell body, the flow rate of fuel gas, hydrogen concentration, or oxidizing gas. The hydrogen utilization rate or oxygen utilization rate is calculated from the flow rate and oxygen concentration, and the first control valve or the first control valve is Flow rate control for fuel cell power generation equipment that can optimally control the hydrogen utilization rate or oxygen utilization rate with simple processing functions by changing the fuel gas flow rate or oxidant gas flow rate by manipulating the opening degree of the control valve 2. It provides equipment.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第2
図におけて、(1)〜(15)は上述した従来装置の構
成と同様である。(22)は第1の供給流路(7)に設
けられた燃料ガスの流量検出器、(23)はこの流量検
出器(22)の出力信号、(24)は第2の供給流路(
10)に設けられた酸化剤ガスの流量検出器、(25)
はこの流量検出器(24)の出力信号、(26)は検出
器(14)の出力信号(15)、流量検出器(22)の
出力信号(23) 、及び予め設定または指令されてい
る水素利用率(27)を入力し、第1の調節弁(8)へ
の弁開度操作信号(28)を出力し、燃料ガスの流量を
変えて水素利用率を制御する調節器、(29)は検出器
(14)の出力信号(15)、流量検出器(24)の出
力信号(25)、及び予め設定または指令されている酸
素利用率(30)を入力し、第2の調節弁(11)への
弁開度操作信号(31)を出力し、酸化剤ガスの流量を
変えて酸素利用率を制御する調節器である。
An embodiment of the present invention will be described below with reference to the drawings. Second
In the figure, (1) to (15) are similar to the configuration of the conventional device described above. (22) is a fuel gas flow rate detector provided in the first supply flow path (7), (23) is an output signal of this flow rate detector (22), and (24) is a fuel gas flow rate detector provided in the first supply flow path (7).
10) oxidant gas flow rate detector provided in (25)
is the output signal of this flow rate detector (24), (26) is the output signal (15) of the detector (14), the output signal (23) of the flow rate detector (22), and the preset or commanded hydrogen a regulator (29) that inputs the utilization rate (27), outputs a valve opening operation signal (28) to the first control valve (8), and controls the hydrogen utilization rate by changing the flow rate of fuel gas; inputs the output signal (15) of the detector (14), the output signal (25) of the flow rate detector (24), and the preset or commanded oxygen utilization rate (30), and then controls the second control valve ( This is a regulator that outputs a valve opening operation signal (31) to 11) and changes the flow rate of oxidizing gas to control the oxygen utilization rate.

次に動作例ついて説明する。流量検出器(22)、(2
4)はそれぞれ燃料室(2)へ供給される燃料ガスの流
量、空気室(3)へ供給される酸化剤ガスの流量と検出
する。検出器(14)は燃料電池本体(1)で発電され
る電力または電流を検出する。調節器(26) !/i
流量検出器(22)の出力信号(23)と、検出器(1
4)の出力信号(15)と、図には書いてないが燃料ガ
ス中の水素濃度及び圧力、温度(燃料ガス流量を湿田及
び組成補正するため)とから、水素利用率を例えQF+
=[電池で発電される電力の電流値(A) ] X 3
600(secAr)×□(電子/クーロン)×1(分
子数/1.6X10−111            
2その値と予め設定または指令されている水素利用率(
27)との偏差に応じて弁洲度操作信号(28)を出力
し、燃料室(2)への第1の供給流路(7〕K設けた第
1の調節弁(8〕の開度を操作して、燃料ガス流量分変
えて水素利用率を所定の値に制御する。同様に、調節器
(29) r/i、流量検出器(24)の出力信号(2
5)と、検出器(1りの出力信号(15)と、図には示
していないが酸化剤ガス中の酸素濃度及び圧力、温度(
酸化剤ガス流量を温圧及び組成補正するため)とから、
酸素利用率を例えば次の式を用いて算出QA1=[電池
で発電される電力の電流値(A) ] X 3600 
(secy’hr)この値と予め設定または指令されて
いる酸素利用率(30)との偏差に応じて弁Ug度操作
信8 (31)を出力し、空気室(3)への第2の供給
流路(10)に設けた第2の調節弁(11)の開度を操
作して、酸化剤ガス流量を変えて、酸素利用率を所定の
値に制御する。
Next, an example of operation will be explained. Flow rate detector (22), (2
4) detects the flow rate of fuel gas supplied to the fuel chamber (2) and the flow rate of oxidant gas supplied to the air chamber (3), respectively. The detector (14) detects the electric power or current generated by the fuel cell main body (1). Adjuster (26)! /i
The output signal (23) of the flow rate detector (22) and the
From the output signal (15) of 4) and the hydrogen concentration, pressure, and temperature in the fuel gas (to correct the wet field and composition of the fuel gas flow rate), which are not shown in the figure, the hydrogen utilization rate can be calculated using the QF+ example.
= [Current value of electric power generated by the battery (A)] X 3
600 (secAr) x □ (electron/coulomb) x 1 (number of molecules/1.6X10-111
2.The value and the preset or commanded hydrogen utilization rate (
27), outputs a valve degree operation signal (28) and adjusts the opening degree of the first control valve (8) provided in the first supply flow path (7)K to the fuel chamber (2). to control the hydrogen utilization rate to a predetermined value by changing the fuel gas flow rate.Similarly, the output signal (2) of the regulator (29) r/i and the flow rate detector (24)
5), a detector (one output signal (15), and although not shown in the figure, the oxygen concentration, pressure, and temperature in the oxidant gas (
(to correct the temperature, pressure and composition of the oxidant gas flow rate) and
Calculate the oxygen utilization rate using, for example, the following formula: QA1 = [Current value of electric power generated by the battery (A)] X 3600
(secy'hr) Valve Ug degree operation signal 8 (31) is output according to the deviation between this value and the preset or commanded oxygen utilization rate (30), and the second signal to the air chamber (3) is output. The oxygen utilization rate is controlled to a predetermined value by manipulating the opening degree of the second control valve (11) provided in the supply channel (10) to change the oxidant gas flow rate.

なお、上記実施例では、水素利用率を制御する調節器(
26)と酸素利用率を制御する調節器(29)の両方を
設置しているが、水素利用率だけを制御するならば調節
器(26)だけ分、酸素利用率だけt制御するならば調
節器(29)だけを投置しても良い。
In addition, in the above embodiment, a regulator (
26) and a regulator (29) to control the oxygen utilization rate, but if only the hydrogen utilization rate is to be controlled, only the regulator (26) is installed, and if only the oxygen utilization rate is to be controlled, the regulator (29) is installed. You may also place only the container (29).

また、上記実施例では燃料ガス中の水素濃度または酸化
剤ガス中の酸素濃度を既知としているが第1の供給流路
(7)または第2の供給流路(10)中のガス組成を検
出する装置例えば水素センサまたは酸素センナ)を設け
て、水素濃度または酸素濃度を検出しても良い。
Further, in the above embodiment, the hydrogen concentration in the fuel gas or the oxygen concentration in the oxidant gas is known, but the gas composition in the first supply channel (7) or the second supply channel (10) is detected. A device (for example, a hydrogen sensor or an oxygen sensor) may be provided to detect the hydrogen concentration or oxygen concentration.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、燃料電池本体で発生
する電力またV′i電流を検出する検出器の出力信号と
燃料ガスの流量及び水素濃度または酸化剤ガスの流量及
び酸素濃度とから水素利用率または酸素利用率を算出し
、この算出値と予め設定または指令されている水素利用
率または酸素利用率との偏差に応じて、第1のm節介ま
たは第2の調節弁の開度を操作することにより、燃料ガ
ス流量または酸化剤ガス流量を変えて、水素利用率また
は酸素利用率を簡易な処理機能で最適に制御できる燃料
電池発電装置の流量制御装置を得ることができる。
As described above, according to the present invention, the output signal of the detector for detecting the electric power or V'i current generated in the fuel cell body and the flow rate and hydrogen concentration of fuel gas or the flow rate and oxygen concentration of oxidant gas are used. Calculate the hydrogen utilization rate or oxygen utilization rate, and open the first m adjustment or the second control valve according to the deviation between this calculated value and the preset or commanded hydrogen utilization rate or oxygen utilization rate. By controlling the fuel gas flow rate or the oxidant gas flow rate, it is possible to obtain a flow rate control device for a fuel cell power generation device that can optimally control the hydrogen utilization rate or the oxygen utilization rate with a simple processing function.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の燃料電池発電装置の燃料制御装置を示す
系統図、第2図はこの発明の一実施例によ、る燃料電池
発電装置の流量制御装置を示す系統図である。 図において、(1)は燃料電池本体、(4)は水素極、
(5)は酸素極、(7)、(10)け第11第2の供給
流路、(8)、(11)は第1、第2の調節弁、(13
)は導線、(14)は検出器、(26) 、 (29)
は調節器である。 なお、図中、同一符号は同一、又は相肖部分を示す。 第1図
FIG. 1 is a system diagram showing a fuel control device for a conventional fuel cell power generation device, and FIG. 2 is a system diagram showing a flow rate control device for a fuel cell power generation device according to an embodiment of the present invention. In the figure, (1) is the fuel cell main body, (4) is the hydrogen electrode,
(5) is an oxygen electrode, (7) and (10) are the 11th and 2nd supply channels, (8) and (11) are the first and second control valves, (13)
) is the conductor, (14) is the detector, (26), (29)
is a regulator. In addition, in the figures, the same reference numerals indicate the same or similar parts. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 水素極側の水素と酸素極側の酸素との電気化学反応によ
って発電する燃料電池本体と、この燃料電池本体で発生
する直流電力をとり出す導線と、この導線に設けられた
電力または電流を検出する検出器と、水素を主成分とす
る燃料ガスを上記水素極側へ供給する第1の供給流路と
、この第1の供給流路に設けられた第1の調節弁と、酸
素を含む酸化剤ガスを上記酸素極側へ供給する第2の供
給流路と、この第2の供給流路に設けられた第2の調節
弁とを備えた燃料電池発電装置において、上記検出器か
らの出力信号と、燃料ガスの流量及び水素濃度または酸
化剤ガスの流量及び酸素濃度とから、水素利用率または
酸素利用率を算出し、この算出値と予め設定または指令
されている水素利用率または酸素利用率との偏差に応じ
て、第1の調節弁または第2の調節弁の開度を操作して
、燃料ガス流量または酸化剤ガス流量を変えて水素利用
率または酸素利用率を制御する調節器を備えたことを特
徴とする燃料電池発電装置の流量制御装置。
A fuel cell that generates electricity through an electrochemical reaction between hydrogen on the hydrogen electrode side and oxygen on the oxygen electrode side, a conductor that takes out the DC power generated in this fuel cell, and the power or current installed in this conductor is detected. a first supply channel for supplying a fuel gas containing hydrogen as a main component to the hydrogen electrode side; a first control valve provided in the first supply channel; In a fuel cell power generation device comprising a second supply channel for supplying oxidant gas to the oxygen electrode side and a second control valve provided in the second supply channel, The hydrogen utilization rate or oxygen utilization rate is calculated from the output signal and the fuel gas flow rate and hydrogen concentration or the oxidant gas flow rate and oxygen concentration, and this calculated value is combined with the preset or commanded hydrogen utilization rate or oxygen concentration. Adjustment that controls the hydrogen utilization rate or oxygen utilization rate by manipulating the opening degree of the first control valve or the second control valve to change the fuel gas flow rate or the oxidizing gas flow rate according to the deviation from the utilization rate. 1. A flow control device for a fuel cell power generation device, characterized in that it is equipped with a flow rate control device.
JP59172038A 1984-08-18 1984-08-18 Flow rate controller of fuel cell system Granted JPS6151772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59172038A JPS6151772A (en) 1984-08-18 1984-08-18 Flow rate controller of fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59172038A JPS6151772A (en) 1984-08-18 1984-08-18 Flow rate controller of fuel cell system

Publications (2)

Publication Number Publication Date
JPS6151772A true JPS6151772A (en) 1986-03-14
JPH0572071B2 JPH0572071B2 (en) 1993-10-08

Family

ID=15934373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59172038A Granted JPS6151772A (en) 1984-08-18 1984-08-18 Flow rate controller of fuel cell system

Country Status (1)

Country Link
JP (1) JPS6151772A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351060A (en) * 1986-08-20 1988-03-04 Hitachi Ltd Fuel cell power generation system
JPS6351061A (en) * 1986-08-20 1988-03-04 Hitachi Ltd Fuel cell power generation system
JPH0417269A (en) * 1990-05-10 1992-01-22 Fuji Electric Co Ltd Fuel cell power generation system
JPH0461755A (en) * 1990-06-28 1992-02-27 Tohoku Electric Power Co Inc fuel cell power generator
JPH05335029A (en) * 1992-06-01 1993-12-17 Hitachi Ltd Fuel cell power generation system
JPH08507025A (en) * 1992-12-22 1996-07-30 ランパック コーポレイション Fan-shaped stock material for use with cushion converters
NL1003042C2 (en) * 1996-05-06 1997-11-07 Stichting Energie Method for determining the flow rate of reactants in each cell of an electrochemical cell stack.
WO1999060654A1 (en) * 1998-05-18 1999-11-25 The Procter & Gamble Company Metal/oxygen battery or fuel cell with oxygen cathode containing oxygen concentrator and regulating means of controlling its supply
JP2002050377A (en) * 2000-08-01 2002-02-15 Matsushita Electric Ind Co Ltd Fuel cell system
JP2004055192A (en) * 2002-07-17 2004-02-19 Mitsubishi Materials Corp Operating method and operating system for solid oxide fuel cell
US6698278B2 (en) * 2001-12-19 2004-03-02 Ballard Power Systems Inc. Indirect measurement of fuel concentration in a liquid feed fuel cell
JP2004071228A (en) * 2002-08-02 2004-03-04 Hitachi Industrial Equipment Systems Co Ltd Fuel cell system for vehicles
JP2004171842A (en) * 2002-11-18 2004-06-17 Honda Motor Co Ltd Fuel cell system
JP2004273162A (en) * 2003-03-05 2004-09-30 Nissan Motor Co Ltd Fuel cell control system
JP2007066845A (en) * 2005-09-02 2007-03-15 Denso Corp Fuel cell system
JP2012059614A (en) * 2010-09-10 2012-03-22 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and control method thereof
JP2018181455A (en) * 2017-04-05 2018-11-15 大阪瓦斯株式会社 Solid oxide fuel cell system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166670A (en) * 1982-03-27 1983-10-01 Kansai Electric Power Co Inc:The Fuel cell pressure control method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166670A (en) * 1982-03-27 1983-10-01 Kansai Electric Power Co Inc:The Fuel cell pressure control method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351061A (en) * 1986-08-20 1988-03-04 Hitachi Ltd Fuel cell power generation system
JPS6351060A (en) * 1986-08-20 1988-03-04 Hitachi Ltd Fuel cell power generation system
JPH0417269A (en) * 1990-05-10 1992-01-22 Fuji Electric Co Ltd Fuel cell power generation system
JPH0461755A (en) * 1990-06-28 1992-02-27 Tohoku Electric Power Co Inc fuel cell power generator
JPH05335029A (en) * 1992-06-01 1993-12-17 Hitachi Ltd Fuel cell power generation system
JPH08507025A (en) * 1992-12-22 1996-07-30 ランパック コーポレイション Fan-shaped stock material for use with cushion converters
US6162557A (en) * 1996-05-06 2000-12-19 Stichting Energieonderzoek Centrum Nederland Method for determining the flow rate of reactants in each cell of an electrochemical cell stack
NL1003042C2 (en) * 1996-05-06 1997-11-07 Stichting Energie Method for determining the flow rate of reactants in each cell of an electrochemical cell stack.
WO1997042674A1 (en) * 1996-05-06 1997-11-13 Stichting Energieonderzoek Centrum Nederland Method for determining the flow rate of reactants in each cell of an electrochemical cell stack
WO1999060654A1 (en) * 1998-05-18 1999-11-25 The Procter & Gamble Company Metal/oxygen battery or fuel cell with oxygen cathode containing oxygen concentrator and regulating means of controlling its supply
JP2002050377A (en) * 2000-08-01 2002-02-15 Matsushita Electric Ind Co Ltd Fuel cell system
US6698278B2 (en) * 2001-12-19 2004-03-02 Ballard Power Systems Inc. Indirect measurement of fuel concentration in a liquid feed fuel cell
JP2004055192A (en) * 2002-07-17 2004-02-19 Mitsubishi Materials Corp Operating method and operating system for solid oxide fuel cell
JP2004071228A (en) * 2002-08-02 2004-03-04 Hitachi Industrial Equipment Systems Co Ltd Fuel cell system for vehicles
JP2004171842A (en) * 2002-11-18 2004-06-17 Honda Motor Co Ltd Fuel cell system
JP2004273162A (en) * 2003-03-05 2004-09-30 Nissan Motor Co Ltd Fuel cell control system
JP2007066845A (en) * 2005-09-02 2007-03-15 Denso Corp Fuel cell system
JP2012059614A (en) * 2010-09-10 2012-03-22 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and control method thereof
JP2018181455A (en) * 2017-04-05 2018-11-15 大阪瓦斯株式会社 Solid oxide fuel cell system

Also Published As

Publication number Publication date
JPH0572071B2 (en) 1993-10-08

Similar Documents

Publication Publication Date Title
JPS6151772A (en) Flow rate controller of fuel cell system
JP2008166019A (en) Fuel cell system
CA2282192C (en) Fuel cell control apparatus and method of controlling fuel cell using control apparatus
JPH0458463A (en) Output control device for fuel cell power generating system
JPH07240220A (en) Fuel cell system
JP5070794B2 (en) Fuel cell system
JPH097618A (en) Fuel cell power generation system
JPH07296834A (en) Fuel cell power generation plant and method for operating reformer of the plant
US6815104B2 (en) Method for controlling flow rate of oxidizer in fuel cell system
JPH0714595A (en) Operating method of power generating device of fuel cell type
JP2004179126A (en) Oxidant pressure control method for fuel cell system
JP4742540B2 (en) Fuel cell system
JP2002313385A (en) Fuel cell system
JPH0349185B2 (en)
JP3387234B2 (en) Fuel cell generator
JPS60154471A (en) Air and fuel control system of fuel cell
JPH0556628B2 (en)
JP2838087B2 (en) Operation control device for fuel cell power generation system
JP2009140658A (en) Fuel cell system
JPS60230364A (en) Fuel cell system
JPH0461466B2 (en)
WO2008088316A2 (en) Controlling an amount of liquid within a fuel cell
JPS62160667A (en) Fuel cell power generation system
JPS60241664A (en) Flow controller for fuel cell power generator
JPS6091568A (en) Air-supply-controlling system for fuel cell plant