JPS6150930A - Production of cycloolefin - Google Patents
Production of cycloolefinInfo
- Publication number
- JPS6150930A JPS6150930A JP59169906A JP16990684A JPS6150930A JP S6150930 A JPS6150930 A JP S6150930A JP 59169906 A JP59169906 A JP 59169906A JP 16990684 A JP16990684 A JP 16990684A JP S6150930 A JPS6150930 A JP S6150930A
- Authority
- JP
- Japan
- Prior art keywords
- water
- ruthenium
- crystallites
- selectivity
- hydrogenation catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000001925 cycloalkenes Chemical class 0.000 title claims abstract description 5
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000003054 catalyst Substances 0.000 claims abstract description 31
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910001868 water Inorganic materials 0.000 claims abstract description 26
- -1 monocyclic aromatic hydrocarbon Chemical class 0.000 claims abstract description 21
- 239000002245 particle Substances 0.000 claims abstract description 21
- 238000005984 hydrogenation reaction Methods 0.000 claims abstract description 14
- 150000003752 zinc compounds Chemical class 0.000 claims abstract description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000001257 hydrogen Substances 0.000 claims abstract description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052751 metal Inorganic materials 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 22
- 239000000654 additive Substances 0.000 claims description 7
- 230000000996 additive effect Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 21
- 238000006243 chemical reaction Methods 0.000 abstract description 17
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 abstract description 16
- 239000002994 raw material Substances 0.000 abstract description 6
- 239000013078 crystal Substances 0.000 abstract description 4
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 abstract description 2
- 239000004472 Lysine Substances 0.000 abstract description 2
- 239000004952 Polyamide Substances 0.000 abstract description 2
- 229920002647 polyamide Polymers 0.000 abstract description 2
- 150000001875 compounds Chemical class 0.000 abstract 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 12
- 150000001298 alcohols Chemical class 0.000 description 8
- 150000001934 cyclohexanes Chemical class 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 6
- 150000001935 cyclohexenes Chemical class 0.000 description 6
- 238000006722 reduction reaction Methods 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 239000007791 liquid phase Substances 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 3
- 239000011163 secondary particle Substances 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- YXEUGTSPQFTXTR-UHFFFAOYSA-K lanthanum(3+);trihydroxide Chemical compound [OH-].[OH-].[OH-].[La+3] YXEUGTSPQFTXTR-UHFFFAOYSA-K 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000005169 Debye-Scherrer Methods 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- RHQDFWAXVIIEBN-UHFFFAOYSA-N Trifluoroethanol Chemical compound OCC(F)(F)F RHQDFWAXVIIEBN-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000006757 chemical reactions by type Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 238000009775 high-speed stirring Methods 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- HVTHJRMZXBWFNE-UHFFFAOYSA-J sodium zincate Chemical compound [OH-].[OH-].[OH-].[OH-].[Na+].[Na+].[Zn+2] HVTHJRMZXBWFNE-UHFFFAOYSA-J 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 description 1
- 229940007718 zinc hydroxide Drugs 0.000 description 1
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は゛、単環芳香族炭化水素を部分還元し、高選択
率ζ高収率で対応するシクロオレフィン、特にシクロヘ
キセン類を製造する方法に関するものである。
□
シクロヘキセン類は有機化学工業製品の中間原料として
その価値が高く、特にポリアミド原料、リジン原料など
として重要である。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for partially reducing monocyclic aromatic hydrocarbons to produce corresponding cycloolefins, particularly cyclohexanes, with high selectivity and high yield. It is something.
□ Cyclohexenes have high value as intermediate raw materials for organic chemical industry products, and are particularly important as raw materials for polyamides and lysine.
(従来の技術)
かかるシクロヘキセン類の製造方法としては、例えば、
(l)水およびアルカリ剤と周期表第■族元素を含有す
る触媒組成物を用いる方法(特公昭56−22850号
公報) 、(2)ニッケル、コバルト、クロム、チタン
またはジルコニウムの酸化物に担持したルテニウム触媒
を用い、アルコールまたはエステルを添加剤として用い
る方法(特公昭52−3933号公報) 、(3)銅、
銀、コバルト、またはカリウムを含有するルテニウム触
媒と水、およびリン酸化合物を使用する方法(特公昭5
6−4536号公報)、(4)ルテニウム触媒と水、お
よび硫酸コバルトを使用する方法(特開昭57−130
926号公報)などが提目的とするシクロヘキセン類の
選択率を高めるために、原料の転化率を著しく低く押さ
えることが必須であるなど、一般にシクロヘキセン類の
収率が低く、実用的なシクロヘキセン類の製造法になっ
ていなのが現状である。(Prior art) As a method for producing such cyclohexanes, for example,
(l) A method using a catalyst composition containing water, an alkaline agent, and an element of Group I of the periodic table (Japanese Patent Publication No. 56-22850), (2) Supported on oxides of nickel, cobalt, chromium, titanium, or zirconium. (3) Copper,
A method using a ruthenium catalyst containing silver, cobalt, or potassium, water, and a phosphoric acid compound (Japanese Patent Publication No. 5
6-4536), (4) Method using a ruthenium catalyst, water, and cobalt sulfate (Japanese Unexamined Patent Publication No. 57-130)
In order to increase the selectivity of cyclohexene, which is the objective of Japanese Patent Publication No. 926), it is essential to keep the conversion rate of raw materials extremely low. Currently, it is not a manufacturing method.
(問題点を解決するための手段)
本発明者らは、かかる問題点を解決すべく、シクロヘキ
セン類の選択率および収率向上のため、単環芳香族炭化
水素の部分還元法における触媒系、すなわち、主触媒と
その他の成分からなる系について鋭意検討し、本発明に
到達したものである。(Means for Solving the Problem) In order to solve the problem, the present inventors have developed a catalyst system in a partial reduction method for monocyclic aromatic hydrocarbons in order to improve the selectivity and yield of cyclohexene. That is, the present invention was arrived at after intensive study on a system consisting of a main catalyst and other components.
すなわち、水素化触媒として、200オンj′ストロー
ム以下の平均結晶子径を有する金属ルテニウム結晶子お
よび/またはその凝集した粒子を用い、水および少なく
とも1種の亜鉛化合物を共存させて反応行なうことによ
り、従来にない優れた選択率および収率でシクロヘキセ
ン類が得られることを見い出したのである。また、添加
剤として少なくとも1種のアルコールを使用することに
より、さらに選択率、収率とも大きく向上することを見
い出した。That is, by using metal ruthenium crystallites and/or aggregated particles thereof having an average crystallite diameter of 200 Å or less as a hydrogenation catalyst, and carrying out the reaction in the coexistence of water and at least one zinc compound. They discovered that cyclohexanes can be obtained with unprecedented selectivity and yield. It has also been found that by using at least one type of alcohol as an additive, both the selectivity and the yield can be greatly improved.
本発明方法によれば、反応条件および単環芳香族炭化水
素の転化率を適当に選択することにより、シクロヘキセ
ン類を高選択率、高収率で取得でき、驚くべきことには
、収率が40%以上となる条件を選ぶことが可能である
。According to the method of the present invention, by appropriately selecting the reaction conditions and the conversion rate of monocyclic aromatic hydrocarbons, cyclohexanes can be obtained with high selectivity and high yield, and surprisingly, the yield is It is possible to select conditions under which the ratio is 40% or more.
次に、本発明の具体的な実施態様を説明する。Next, specific embodiments of the present invention will be described.
本発明の原料となる単環芳香族炭化水素とは、ベンゼン
、トルエン、キシレン類、低級アルキルベンゼンをいう
。Monocyclic aromatic hydrocarbons used as raw materials in the present invention include benzene, toluene, xylenes, and lower alkylbenzenes.
本発明における水素化触媒は、金属ルテニウム結晶子お
よび/またはその凝集した粒子であり、そのffi’i
晶子は、200オングストローム以下の平均結晶子径
を有するものであり、好ましくは150オングストロー
ム以下、さらに好ましくは100オングストローム以下
の平均結晶子径であることが望ましい。また、この金属
ルテニウム粒子は、それ自身が200オングストローム
以下の結晶子であってもよいし、それらの集合体からな
る一次粒子であってもよい。さらに、これら−次粒子の
凝集して二次粒子を形成したものも有効である。かかる
小さな結晶子径を有する金属結晶子および/またはその
凝集した粒子の製法としては、ルテニウムに限らず様々
な方法が公知である。The hydrogenation catalyst in the present invention is metal ruthenium crystallite and/or aggregated particles thereof, and its ffi'i
The crystallites have an average crystallite diameter of 200 angstroms or less, preferably 150 angstroms or less, and more preferably 100 angstroms or less. Further, the metal ruthenium particles themselves may be crystallites of 200 angstroms or less, or may be primary particles consisting of aggregates thereof. Furthermore, secondary particles formed by agglomeration of these secondary particles are also effective. Various methods are known for producing metal crystallites having such small crystallite diameters and/or aggregated particles thereof, not only for ruthenium.
例えば、金属を低圧下の不活性ガス中で加熱蒸発させ、
ガス中で冷却させて得る方法〔応用物理第42巻、 1
067頁(1973年)参照〕、金属の塩を保護コロイ
ドの存在下に、アルコール中で加熱還元する方法(Ch
em、Lett、 1976、905頁参照)、高 ゛
真空下で金属を加熱して蒸発させ、適当な溶媒の蒸気と
ともに凝縮させる方法[J 、 Am、 Chem、
Soc、。For example, metals are heated and evaporated in an inert gas under low pressure,
Method of obtaining by cooling in gas [Applied Physics Vol. 42, 1
067 (1973)], a method of thermally reducing metal salts in alcohol in the presence of a protective colloid (Ch.
Em, Lett, 1976, p. 905), a method in which the metal is vaporized by heating under high vacuum and condensed with the vapor of a suitable solvent [J, Am, Chem.
Soc.
98、1021頁(1976年)参照]などが知られて
おり、′ これらの方法は、結晶子が小さいと同時に
、結晶子で構成された微粒子自身が極めて小さい製法と
して有用であり、本発明においても使用される。98, p. 1021 (1976)], these methods are useful as manufacturing methods in which the crystallites are small and the fine particles composed of the crystallites themselves are extremely small. is also used.
また、もつと筒便な方法、例えば、(1)塩化ルテニウ
ムの水溶液に高濃度のアルカリを高速撹拌下に加え、析
出する黒色沈澱物を水中において、水素で還元して金属
ルテニウム結晶子および/またはその凝集した粒子を得
る方法(J、 Chem、Tech。In addition, a convenient method, for example, (1) adding a highly concentrated alkali to an aqueous solution of ruthenium chloride under high-speed stirring, and reducing the precipitated black precipitate with hydrogen in water to produce metal ruthenium crystallites and/or or a method for obtaining aggregated particles thereof (J, Chem, Tech.
Biorechnol、+ 31+ 691頁(198
2年)参照〕、(2)あらかじめ金属ルテニウムを担持
した担体を適当な溶剤で溶解し、溶解残渣として金属ル
テニウム結晶子および/またはその凝集した粒子を得る
方法などが掲げられる。これら(1)、(2)の方法は
、結晶子の凝集した二次粒子が適当な粒径を有しており
、濾過などにより容易に単離、保存できる利点があり、
本発明方法においても好ましく採用される。Biorechannel, + 31 + 691 pages (198
2)] and (2) a method in which a carrier on which metal ruthenium is supported in advance is dissolved in an appropriate solvent to obtain metal ruthenium crystallites and/or aggregated particles thereof as a dissolution residue. These methods (1) and (2) have the advantage that the secondary particles of aggregated crystallites have an appropriate particle size and can be easily isolated and stored by filtration etc.
It is also preferably employed in the method of the present invention.
このようにして平均結晶子径が200オングストローム
以下の金属ルテニウム結晶子および/またはその凝集し
た粒子が得られるが、平均結晶子径は一般的方法、すな
わち、X線回折法によって得られる回折線巾の拡がりか
らD ebye −S cherrerの式より算出さ
れるものである。結晶子径は200オングストローム以
下であればよく、下限値は理論上の結晶単位よりも大き
な値であって、現実的には10オングストローム以上で
ある。In this way, metallic ruthenium crystallites and/or agglomerated particles thereof having an average crystallite diameter of 200 angstroms or less can be obtained. It is calculated from the Debye-Scherrer equation from the spread of . The crystallite diameter may be 200 angstroms or less, and the lower limit value is larger than the theoretical crystal unit, and is realistically 10 angstroms or more.
また、上記のような金属ルテニウム結晶子および/また
はその凝集した粒子の調製段階もしくは調製後において
、助触媒として他の金属を混入させてもよい。助触媒と
してはそれ自身公知のもの、例えば、周期表第■族元素
、銅、銀、クロム、バナジウム、金などを指し、これら
の混入によって本発明の主旨が損なわれるものではない
。調製時においてこのような他の金属を混入させると、
金属ルテニウムの結晶子径を小さくする効果が得られる
こともある。Further, other metals may be mixed as co-catalysts during or after the preparation of the metal ruthenium crystallites and/or aggregated particles thereof as described above. The cocatalysts are known per se, such as elements of group 1 of the periodic table, copper, silver, chromium, vanadium, gold, etc., and the gist of the present invention is not impaired by their inclusion. If such other metals are mixed during preparation,
The effect of reducing the crystallite diameter of metal ruthenium may be obtained.
本発明においては、水の存在が必要である。水の量とし
ては、反応形式によって異なるが、一般的に用いる単環
芳香族炭化水素に対して0.01〜100重量倍共存さ
せることができるが、反応条件下において、原料および
生成物を主成分とする有機液相と、水を含む液相とが2
相を形成することが必要であり、反応条件下において均
一相となるような極り微量の水の共存、もしくは極多量
の水の共存は効果を減少させ、また、水の量が多すぎる
と反応器を大きくする必要性も生ずるので、実用的には
0.5〜20重量倍共存させることが望ましい。The present invention requires the presence of water. The amount of water varies depending on the reaction type, but it can be made to coexist from 0.01 to 100 times the weight of the commonly used monocyclic aromatic hydrocarbon. The organic liquid phase as a component and the liquid phase containing water are 2
It is necessary to form a phase, and the coexistence of an extremely small amount of water that forms a homogeneous phase under the reaction conditions, or the coexistence of an extremely large amount of water, will reduce the effect, and if the amount of water is too large, Since it is necessary to increase the size of the reactor, it is practically desirable to coexist 0.5 to 20 times by weight.
また、水を共存させるに当たって、すでに提案されてい
る公知の方法のように、各種金属の塩化物、硫酸塩、炭
酸塩、リン酸塩などの塩類、または水酸化物などの水溶
液を用いてもよい。特に硫酸ナトリウムのような強酸塩
の水溶液を用いるこ 、とにより、シクロヘキセ類の
選択率が向上することもある。In addition, when coexisting with water, it is also possible to use aqueous solutions of salts such as chlorides, sulfates, carbonates, and phosphates of various metals, or hydroxides, as in known methods that have already been proposed. good. In particular, the selectivity of cyclohexanes may be improved by using an aqueous solution of a strong acid salt such as sodium sulfate.
本発明においては、水素化触媒、水の他に少なくとも1
種の亜鉛化合物の存在が必要である。ここで亜鉛化合物
としては、各種塩類例えば、炭酸塩、酢酸塩などの弱酸
塩、塩酸塩、硝酸塩、硫酸塩などの強酸塩が使用され、
また、酸化亜鉛、水酸化亜鉛、亜鉛酸ナトリウム類など
も有効に使用される。使用される量は、反応中に共存す
る水に対しlX10−’〜0.3重量倍、好ましくはl
X10−’〜0.1重■倍である。使用された亜鉛化合
物は、反応中に共存する水に全量が溶解している必要は
特にない。In the present invention, in addition to the hydrogenation catalyst and water, at least one
The presence of a species of zinc compound is required. Here, as the zinc compound, various salts are used, such as weak acid salts such as carbonates and acetates, and strong acid salts such as hydrochlorides, nitrates, and sulfates.
In addition, zinc oxide, zinc hydroxide, sodium zincate, etc. are also effectively used. The amount used is 1 x 10-' to 0.3 times the weight of water coexisting during the reaction, preferably 1
X10-' to 0.1 times. It is not particularly necessary that the entire amount of the zinc compound used be dissolved in the water coexisting during the reaction.
さらに、本発明においては、添加剤として少なくとも1
種のアルコールを使用すると、シクロヘキセン類の選択
率および収率がなお一層向上する。Furthermore, in the present invention, at least one
The use of seed alcohols improves the selectivity and yield of cyclohexanes even further.
このアルコールとしては、一般的なアルキルおよびアラ
ルキルアルコール類、例えば、メタノール、エタノール
などの低級アルコールからドデカノール、ステアリルア
ルコールなどの高級アルコール、エチレングリコール、
グリセリンなどの多価アルコール、ベンジルアルコール
、アリルアルコールなどが使用でき、また、メチルセル
ソルブのようなエーテルアルコール、トリフロロエタノ
ールのようなハロゲン化アルコール、さらには、エタノ
ールアミン、トリエタノールアミンのようなアミノアル
コールなど、極めて広範囲のアルコールの使用が可能で
ある。特に炭素数3以上の第−緘アルコールは好ましく
使用される。This alcohol includes general alkyl and aralkyl alcohols, from lower alcohols such as methanol and ethanol to higher alcohols such as dodecanol and stearyl alcohol, ethylene glycol,
Polyhydric alcohols such as glycerin, benzyl alcohol, allyl alcohol, etc. can be used, as well as ether alcohols such as methylcellosolve, halogenated alcohols such as trifluoroethanol, and even ethanolamine and triethanolamine. A very wide range of alcohols can be used, including amino alcohols. In particular, primary alcohols having 3 or more carbon atoms are preferably used.
添加剤として使用される量は、アルコールの種類および
共存する水の量によって異なるが、反応条件下において
、原料および生成物を主成分とする有機液相と、水を含
む液相とが2相を形成できる領域で添加され、一般的に
は、用いる単環芳香族炭化水素に対しtxto−’−を
重・量倍、好ましくはlXl0−’〜0.5重景倍であ
る。The amount used as an additive varies depending on the type of alcohol and the amount of coexisting water, but under the reaction conditions, there are two phases: an organic liquid phase mainly composed of raw materials and products, and a liquid phase containing water. It is generally added in an amount of txto-'- by weight, preferably lXl0-' to 0.5 times the weight of the monocyclic aromatic hydrocarbon used.
また、反応条件下において容易にアルコール転化される
物質、例えば、酢酸エチル、酢酸ブチルのようなエステ
ル類、およびアセトアルデヒド、ベンズアルデヒドのよ
うなケトン類、トリブチルフォスフェートのような有機
リン酸エステル類なども使用できる。Substances that are easily converted into alcohols under reaction conditions, such as esters such as ethyl acetate and butyl acetate, ketones such as acetaldehyde and benzaldehyde, and organic phosphate esters such as tributyl phosphate, etc. Can be used.
本発明は、上記のように、10〜200オングストロー
ムの平均結晶子径を有する金属ルテニウム結晶子および
/またはその′a集した粒子を含有する水素化触媒、水
、亜鉛化合物および添加剤としてアルコールを使用し、
極めて高い選択率および収率でシクロヘキセン類を得る
ことができる。この理由については必ずしも定かではな
いが、結晶子径が小さいことに伴ない、単環芳香族炭化
水素の部分還元に適した結晶子表面の部位が増大し、さ
らに、水、亜鉛化合物、アルコールなどの一部が結晶子
表面に吸着し、シクロヘキセン類の生成に非常に有利な
反応活性点を現出しているとも考えられる。As described above, the present invention comprises a hydrogenation catalyst containing metal ruthenium crystallites having an average crystallite diameter of 10 to 200 angstroms and/or aggregated particles thereof, water, a zinc compound, and an alcohol as an additive. use,
Cyclohexenes can be obtained with extremely high selectivity and yield. The reason for this is not necessarily clear, but as the crystallite size becomes smaller, the number of sites on the crystallite surface suitable for partial reduction of monocyclic aromatic hydrocarbons increases, and furthermore, the area on the crystallite surface that is suitable for partial reduction of monocyclic aromatic hydrocarbons increases. It is also thought that a part of the adsorbed on the crystallite surface, exposing reactive active sites that are very advantageous for the production of cyclohexenes.
本発明方法における部分還元反応は、通常、液相懸濁法
にて連続的または回分的に行なわれるが、固定相式でも
行なうことができる。反応条件は、使用する触媒や添加
物の種類や量によって適宜選択されるが、通常水素圧は
1〜200 kg/cniG、好ましくは10〜100
kg/cn!Gの範囲であり、反応温度は室温〜25
0℃、好ましくは100〜200 ’Cの範囲である。The partial reduction reaction in the method of the present invention is usually carried out continuously or batchwise by a liquid phase suspension method, but it can also be carried out by a stationary phase method. The reaction conditions are appropriately selected depending on the type and amount of the catalyst and additives used, but the hydrogen pressure is usually 1 to 200 kg/cniG, preferably 10 to 100 kg/cniG.
kg/cm! G range, and the reaction temperature is room temperature to 25
0°C, preferably in the range of 100-200'C.
また、反応時間は、目的とするシクロヘキセン類の選択
率や収率の実質的な目標値を定め適宜選択すればよく、
特に制限はないが、通常数秒ないし数時間である。In addition, the reaction time may be appropriately selected based on the actual target values for the selectivity and yield of the desired cyclohexene.
There is no particular limit, but it is usually several seconds to several hours.
(発明の効果)
本発明においては、200オングストローム以下、好ま
しくは150オングストローム以下、さらに好ましくは
100オングストローム以下の平均結晶子を有する金属
ルテニウム結晶子および/またはその凝集した粒子を含
有する水素化触媒と水、少なくとも1種の亜鉛化合物、
さらに好ましくは添加剤として少なくとも1種のアルコ
ールを使用することにより、単環芳香族炭化水素からシ
クロヘキセン類を従来にない高い選択率および収率で得
ることができ、工業的に極めて価値の高いものである。(Effects of the Invention) In the present invention, a hydrogenation catalyst containing metallic ruthenium crystallites and/or aggregated particles thereof having an average crystallite of 200 angstroms or less, preferably 150 angstroms or less, and more preferably 100 angstroms or less. water, at least one zinc compound,
More preferably, by using at least one kind of alcohol as an additive, cyclohexanes can be obtained from monocyclic aromatic hydrocarbons with unprecedentedly high selectivity and yield, which is extremely valuable industrially. It is.
(実施例)
次に、実施例をもって本発明をさらに詳細に説明するが
、本発明は、これらの実施例によって何ら限定されるも
のではない。(Examples) Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way.
実施例1〜6
塩化ルテニウム(RuC1s ・3HzO)の1%水溶
液II!を、テフロンコーティングを施したタービン羽
根付き撹拌機で強力に撹拌しておき、これに30%カセ
イソーダ水溶液150 mlを瞬時に加えた後、この混
合液を80℃とし、3時間攪拌を続けた。Examples 1-6 1% aqueous solution of ruthenium chloride (RuC1s 3HzO) II! was strongly stirred using a Teflon-coated turbine blade stirrer, and 150 ml of a 30% caustic soda aqueous solution was instantly added thereto, and the mixture was heated to 80° C. and stirred for 3 hours.
室温まで冷却後静置し、上澄み液を除去した後、残った
黒色沈澱物を含む液を水で500 mlとし、これをテ
フロンコーテングを施したIlのオートクレーブに仕込
み、水素により全圧を50 kg / cat Gとし
、150℃で2時間還元した。この液をアルゴン雰囲気
下で濾過し、水で数回洗浄した後、アルゴン雰囲気下、
80℃で乾燥し、黒色の金属ルテニウムの結晶子の凝集
粒子水素化触媒3.7gを得た。After cooling to room temperature and allowing it to stand still, removing the supernatant liquid, the remaining liquid containing the black precipitate was made up to 500 ml with water, and this was charged into a Teflon-coated Il autoclave, and the total pressure was increased to 50 kg with hydrogen. / cat G and reduced at 150°C for 2 hours. This solution was filtered under an argon atmosphere, washed several times with water, and then filtered under an argon atmosphere.
The mixture was dried at 80° C. to obtain 3.7 g of a black metal ruthenium crystallite agglomerated particle hydrogenation catalyst.
この触媒のX線回折図形の線巾の拡がりから平均結晶子
径を算出したところ、43オングストロームであった。The average crystallite diameter was calculated from the line width expansion of the X-ray diffraction pattern of this catalyst, and was found to be 43 angstroms.
以下、これを触媒Aとする。Hereinafter, this will be referred to as catalyst A.
上記触媒Aの調製における還元前の黒色沈澱物を濾過後
、水素気流中で還元しながら結晶子を成 −長させた。After filtering the black precipitate before reduction in the preparation of Catalyst A, crystallites were grown while being reduced in a hydrogen stream.
得られた金属ルテニウムの結晶子の凝集粒子X線回折図
形の線巾の拡がりから平均結晶子径を算出したところ、
135オングストロームであった。以下、この触媒を触
媒Bとする。The average crystallite diameter was calculated from the spread of the line width of the agglomerated particle X-ray diffraction pattern of the obtained metal ruthenium crystallites.
It was 135 angstroms. Hereinafter, this catalyst will be referred to as catalyst B.
塩化ルテニウム水溶液に水酸化ランタンの粉末を浸し、
ルテニウムを吸着させた後、オートクレーブを用いて、
150℃、水素圧50 kg / cni Gの条件で
還元を行ない、金属ルテニウム3重量%を担持した水酸
化ランタンを得た。この粉末50gを20%硝酸ll中
に徐々に溶解し、はく離、沈澱してくる黒色物を遠心分
離後、濾別し、金属ルテニウム結晶子の凝集粒子を得た
。これのX Hjn回折図形より平均結晶子径を算出し
たところ、88オングストロームであった。以下、この
触媒を触媒Cとする。Soak lanthanum hydroxide powder in ruthenium chloride aqueous solution,
After adsorbing ruthenium, using an autoclave,
Reduction was carried out at 150° C. and hydrogen pressure of 50 kg/cni G to obtain lanthanum hydroxide carrying 3% by weight of metal ruthenium. 50 g of this powder was gradually dissolved in 1 l of 20% nitric acid, and the black material that flaked off and precipitated was centrifuged and filtered to obtain aggregated particles of metal ruthenium crystallites. The average crystallite diameter was calculated from the X Hjn diffraction pattern of this, and was found to be 88 angstroms. Hereinafter, this catalyst will be referred to as catalyst C.
次に、テフロンコーティングを施した内容積11の攪拌
機つきオートクレーブに、上で調製した触媒ASBSC
のいずれかを200mg 、ベンゼン80m1、水32
0m1 、および亜鉛化合物を仕込み、オートクレーブ
内を水素で数回置換した後、150℃まで昇温した。水
素を圧入して全圧を50 kg / cra Gとし、
1600回転/分で攪拌しながら反応を行ない、オート
クレーブにあらかじめ取り付けられた抜き出し口より経
時的に反応液を抜き出し、ガスクロマトグラフィーによ
り油相の組成を分析した。これらの結果を表1に示す。Next, the catalyst ASBSC prepared above was placed in a Teflon-coated autoclave with an inner volume of 11 and equipped with a stirrer.
200mg of either, 80ml of benzene, 32ml of water
After charging 0 ml and a zinc compound and purging the inside of the autoclave with hydrogen several times, the temperature was raised to 150°C. Hydrogen was injected to make the total pressure 50 kg/cra G,
The reaction was carried out with stirring at 1600 rpm, and the reaction solution was extracted over time from an outlet previously installed in the autoclave, and the composition of the oil phase was analyzed by gas chromatography. These results are shown in Table 1.
反応終了後、水素化触媒A、およびCをそれぞれ回収し
、それらのX&’51回折図形より平均結晶子径を算出
したところ、いずれも使用前の結晶子径とほとん゛ど変
化はなかった。After the reaction was completed, hydrogenation catalysts A and C were recovered, and the average crystallite diameters were calculated from their X&'51 diffraction patterns, and it was found that there was almost no change in the crystallite diameters in either case compared to those before use.
表1
比較例1
水素化触媒として日本エンゲルハルト社製のルテニウム
ブラック(平均結晶子径500オングストロ一ム以上)
500mgを使用した他は、実施例1と同様の操作を
行なったところ、反応時間30分でベンゼン転化率5.
7%、シクロヘキセン選択率18.0%、シクロヘキセ
ン収率1.0%、60分では順に、9.8%、10.5
%、1.0%、90分では順に、15.0%、6.4%
、0.96%であった。Table 1 Comparative Example 1 Ruthenium black manufactured by Nippon Engelhard Co., Ltd. (average crystallite diameter of 500 angstroms or more) as a hydrogenation catalyst
The same operation as in Example 1 was carried out except that 500 mg was used, and the benzene conversion rate was 5.5 in the reaction time of 30 minutes.
7%, cyclohexene selectivity 18.0%, cyclohexene yield 1.0%, 9.8%, 10.5% at 60 minutes.
%, 1.0%, 90 minutes, 15.0%, 6.4%
, 0.96%.
以上のように、本発明において指摘される平均結晶子径
を有する金属ルテニウム結晶子またはその凝集粒子が、
シクロヘキセン類の製造に極めて有利な触媒であること
が判る。As described above, the metallic ruthenium crystallites or aggregated particles thereof having the average crystallite diameter pointed out in the present invention,
It turns out that it is an extremely advantageous catalyst for the production of cyclohexenes.
比較例2
触媒Aを25a+g使用し、亜鉛化合物を使用しなかっ
た他は、実施例1と同様の操作を行なったところ、反応
時間10分でベンゼン転化率24.2%、シクロヘキセ
ン選択率3.5%、シクロヘキセン収率0.8%、20
分では順に、48.3%、1.2%、0.6%、30分
では順に、71.1%、0.7%、0.5%であった。Comparative Example 2 The same operation as in Example 1 was performed except that 25a+g of Catalyst A was used and no zinc compound was used. The benzene conversion rate was 24.2% and the cyclohexene selectivity was 3.2% in a reaction time of 10 minutes. 5%, cyclohexene yield 0.8%, 20
In minutes, they were 48.3%, 1.2%, and 0.6%, and in 30 minutes, they were 71.1%, 0.7%, and 0.5%, in that order.
比較例2より、亜鉛化合物の共存がシクロヘキセン類の
選択率、収率を著しく向上させていることが判る。Comparative Example 2 shows that the coexistence of a zinc compound significantly improves the selectivity and yield of cyclohexenes.
実施例7〜13
添加剤として種々のアルコールを加えた他は、実施例4
と同様の操作を行なった。これらの結果を表2に示す。Examples 7 to 13 Example 4 except that various alcohols were added as additives.
The same operation was performed. These results are shown in Table 2.
表 2 @き)
表2より、アルコールの添加によりシクロヘキセン類の
選択率、収率がさらに向上することが判る。Table 2 From Table 2, it can be seen that the addition of alcohol further improves the selectivity and yield of cyclohexenes.
Claims (2)
水素化触媒と水および少なくとも1種の亜鉛化合物の存
在下で水素により部分還元するに際し、水素化触媒とし
て200オングストローム以下の平均結晶子径を有する
金属ルテニウム結晶子および/またはその凝集した粒子
を使用することを特徴とするシクロオレフィンを製造す
る方法。(1) When a monocyclic aromatic hydrocarbon is partially reduced with hydrogen in the presence of a hydrogenation catalyst mainly containing ruthenium, water and at least one zinc compound, crystallites with an average size of 200 angstroms or less are used as a hydrogenation catalyst. A method for producing a cycloolefin, comprising using metal ruthenium crystallites having a diameter and/or aggregated particles thereof.
水素化触媒と水および少なくとも1種の亜鉛化合物の存
在下で水素により部分還元するに際し、水素化触媒とし
て200オングストローム以下の平均結晶子径を有する
金属ルテニウム結晶子および/またはその凝集した粒子
を使用し、添加剤として少なくとも1種のアルコールを
使用することを特徴とするシクロオレフィンを製造する
方法。(2) When a monocyclic aromatic hydrocarbon is partially reduced with hydrogen in the presence of a hydrogenation catalyst mainly containing ruthenium, water and at least one zinc compound, crystallites with an average size of 200 angstroms or less are used as a hydrogenation catalyst. A method for producing a cycloolefin, comprising using metal ruthenium crystallites having a diameter and/or aggregated particles thereof, and using at least one alcohol as an additive.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59169906A JPS6150930A (en) | 1984-08-16 | 1984-08-16 | Production of cycloolefin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59169906A JPS6150930A (en) | 1984-08-16 | 1984-08-16 | Production of cycloolefin |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6150930A true JPS6150930A (en) | 1986-03-13 |
JPH0219098B2 JPH0219098B2 (en) | 1990-04-27 |
Family
ID=15895158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59169906A Granted JPS6150930A (en) | 1984-08-16 | 1984-08-16 | Production of cycloolefin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6150930A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63243038A (en) * | 1987-03-30 | 1988-10-07 | Asahi Chem Ind Co Ltd | Production of cycloolefin |
US7919659B2 (en) | 2004-07-09 | 2011-04-05 | Asahi Kasei Chemicals Corporation | Catalyst for cycloolefin production and process for production |
CN103288577A (en) * | 2012-02-29 | 2013-09-11 | 北京安耐吉能源工程技术有限公司 | Method for preparing cyclohexene |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0769484B1 (en) | 1995-10-20 | 2001-06-13 | Mitsubishi Chemical Corporation | Method for separating cyclohexene |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51128939A (en) * | 1975-05-06 | 1976-11-10 | Mitsubishi Chem Ind Ltd | Process for preparing cycloolefins |
JPS57134422A (en) * | 1980-12-31 | 1982-08-19 | Stamicarbon | Manufacture of cycloalkene by partial hydrogenation of corresponding aromatic hydrocarbons |
-
1984
- 1984-08-16 JP JP59169906A patent/JPS6150930A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51128939A (en) * | 1975-05-06 | 1976-11-10 | Mitsubishi Chem Ind Ltd | Process for preparing cycloolefins |
JPS57134422A (en) * | 1980-12-31 | 1982-08-19 | Stamicarbon | Manufacture of cycloalkene by partial hydrogenation of corresponding aromatic hydrocarbons |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63243038A (en) * | 1987-03-30 | 1988-10-07 | Asahi Chem Ind Co Ltd | Production of cycloolefin |
US7919659B2 (en) | 2004-07-09 | 2011-04-05 | Asahi Kasei Chemicals Corporation | Catalyst for cycloolefin production and process for production |
CN103288577A (en) * | 2012-02-29 | 2013-09-11 | 北京安耐吉能源工程技术有限公司 | Method for preparing cyclohexene |
Also Published As
Publication number | Publication date |
---|---|
JPH0219098B2 (en) | 1990-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0220525B1 (en) | Process for producing cycloolefins | |
Lou et al. | PdFe bimetallic catalysts for debenzylation of hexabenzylhexaazaisowurtzitane (HBIW) and tetraacetyldibenzylhexaazaisowurtzitane (TADBIW) | |
WO2020049502A1 (en) | Copper-based catalysts | |
CN111215080A (en) | For regulating CO2The hydrogenation target product is C2-4Catalyst for olefin and preparation method thereof | |
JP3632071B2 (en) | Carbon monoxide hydrogenation using sulfide catalyst | |
JPS6150930A (en) | Production of cycloolefin | |
US4318829A (en) | Non-ferrous group VIII aluminum coprecipitated hydrogenation catalysts | |
WO2024067658A1 (en) | Lanthanum oxycarbonate catalyst, preparation method therefor and use thereof | |
JP3897830B2 (en) | Process for producing cycloolefin | |
JPH1129503A (en) | Production of cycloolefin | |
JP4641615B2 (en) | Method for producing cycloolefin | |
JP2932173B2 (en) | Method for producing cycloolefin | |
JP3143744B1 (en) | Catalyst for synthesizing methyl acetate and acetic acid, method for producing the same, and method for synthesizing methyl acetate and acetic acid using the catalyst | |
CN112619652B (en) | Catalyst for preparing low-carbon olefin from synthesis gas and preparation method thereof | |
JPS6245544A (en) | Production of cycloolefin | |
JPH0825919B2 (en) | Method for producing cycloolefin | |
CN109622006B (en) | Catalyst for preparing low-grade aliphatic amine from ammonia-containing synthesis gas and preparation method thereof | |
JPS63243039A (en) | Production of cycloolefin | |
JPH0816073B2 (en) | Method for producing cycloolefin | |
JP4033976B2 (en) | Method for producing cycloolefin | |
JPS63159329A (en) | Production of cycloolefin | |
JPH0639399B2 (en) | Partial hydrogenation method for monocyclic aromatic hydrocarbons | |
JPS62205037A (en) | Production of cycloolefin | |
JPH0335298B2 (en) | ||
JPH0430383B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |