JPS6150449B2 - - Google Patents
Info
- Publication number
- JPS6150449B2 JPS6150449B2 JP56129170A JP12917081A JPS6150449B2 JP S6150449 B2 JPS6150449 B2 JP S6150449B2 JP 56129170 A JP56129170 A JP 56129170A JP 12917081 A JP12917081 A JP 12917081A JP S6150449 B2 JPS6150449 B2 JP S6150449B2
- Authority
- JP
- Japan
- Prior art keywords
- array
- light
- measuring device
- diopter
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Eye Examination Apparatus (AREA)
Description
【発明の詳細な説明】
本発明は、眼科測定装置、殊に被検眼の角膜形
状と視度(眼屈折力)を、選択的に同一の装置で
測定できる眼科測定装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ophthalmological measuring device, and particularly to an ophthalmological measuring device that can selectively measure the corneal shape and diopter (eye refractive power) of an eye to be examined using the same device.
一般に角膜の形状を測定する角膜計は被検眼の
角膜の曲率、乱視度、乱視軸方向の3要素を測定
するために用いられるが、角膜の曲率測定により
コンタクトレンズのベースカーブの検査等にも応
用される。 A keratometer that measures the shape of the cornea is generally used to measure the three elements of the corneal curvature, degree of astigmatism, and astigmatism axis direction of the eye to be examined, but it can also be used to test the base curve of contact lenses by measuring the curvature of the cornea. Applied.
角膜計としては、市販されているオフサルモメ
ータあるいはケラトメータと呼ばれるものの他、
特開昭56―18837、特開昭56―66235、本件出願人
の先願である特願昭55―82516特開昭57―9431に
記載されるもの等がある。一方、視度測定に際し
ては、被検眼が乱視であることも多いため、視度
が極値になる様な経線方向の視度すなわち球面視
度と、経線方向の変化に伴う視度の変化すなわち
乱視度、及び視度が極値になるときの経線の方向
すなわち乱視軸の3要素の測定が必要とされる。
これを測定する眼屈折計としては特開昭55―
110531号公報、本件出願人の先願である特願昭55
―64443特開昭56―161031に記載されるもの等が
ある。一般にコンタクトレンズ等は、角膜に相対
するレンズ面の曲率及び視度の組として何種類か
予め用意されており、角膜曲率及び視度が測定さ
れれば被検眼に合つたものを提供できる。 In addition to commercially available keratometers called ophthalmometers or keratometers, there are
There are those described in JP-A-56-18837, JP-A-56-66235, and the applicant's earlier application, JP-A-55-82516 and JP-A-57-9431. On the other hand, when measuring diopter, the eye to be examined often has astigmatism, so the diopter in the meridian direction, that is, the spherical diopter, where the diopter reaches its extreme value, and the diopter that changes with the change in the meridian direction, that is, Three elements are required: the degree of astigmatism and the direction of the meridian when the diopter reaches its extreme value, that is, the axis of astigmatism.
An eye refractometer for measuring this was developed in Japanese Patent Application Publication No. 1986-
Publication No. 110531, patent application filed in 1983, which is the applicant's earlier application.
-64443 There are those described in Japanese Patent Application Laid-Open No. 56-161031. Generally, several types of contact lenses are prepared in advance as sets of curvature and diopter of the lens surface facing the cornea, and if the corneal curvature and diopter are measured, a lens suitable for the eye to be examined can be provided.
ところが一般に被検眼視度は、眼科医、メガネ
屋等において、角膜形状測定とは別箇に測定され
ているのが現状である。 However, the current situation is that the diopter of the eye to be examined is generally measured separately from the corneal shape measurement by ophthalmologists, opticians, and the like.
しかも角膜計に関して如上のオフサルモメータ
あるいはケラトメータを使用すると、測定に時間
が掛かり、被検眼の動きによる誤差が生じてい
た。 Moreover, when the above-mentioned off-salmometer or keratometer is used as a keratometer, measurement takes time and errors occur due to movement of the eye to be examined.
すなわち、オフサルモメータあるいはケラトメ
ータは、検査マークを角膜に投影してその反射像
を顕微鏡で観察し、反射像が既定状態になるまで
の調節量から測定するもの、あるいは同心円状の
マークを角膜に投影し、その反射像を撮影し、像
の歪から解析するものであり、例えば、角膜によ
る光源反射像の大きさを顕微鏡で読み取る装置で
は互いに垂直な二経線方向を測る手段を備えてお
り、まず反射像を観察して角膜乱視方向を決定
し、その経線方向とそれに垂直な経線方向につい
て、プリズム等の光学要素を順次動かし、その移
動量から曲率半径を求めていた。 In other words, an ophthalmometer or keratometer projects an inspection mark onto the cornea and observes the reflected image with a microscope, and measures the amount of adjustment until the reflected image reaches a predetermined state, or it measures concentric marks on the cornea. It projects, photographs the reflected image, and analyzes the distortion of the image. For example, a device that uses a microscope to read the size of the light source reflected image by the cornea is equipped with a means to measure two meridian directions perpendicular to each other. First, the direction of corneal astigmatism was determined by observing the reflected image, and then optical elements such as prisms were sequentially moved in the meridian direction and the meridian direction perpendicular to the meridian direction, and the radius of curvature was determined from the amount of movement.
本発明は、測定時間を短縮して被検眼の動きに
よる誤差要因を除去して角膜形状測定を行ない、
しかも、同一装置で選択的に被検眼視度測定を可
能ならしめる眼科測定装置を提供することを目的
とする。 The present invention performs corneal shape measurement by shortening measurement time and eliminating error factors caused by movement of the eye to be examined.
Moreover, it is an object of the present invention to provide an ophthalmological measuring device that enables selective eye diopter measurement using the same device.
以下、添附する図面を用いて本発明の実施例を
説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.
第1図は、本発明の実施例の図である。ここで
便宜上、まず角膜形状測定の系を説明し、次に視
度測定の系について述べる。 FIG. 1 is a diagram of an embodiment of the invention. Here, for convenience, the corneal shape measurement system will be described first, and then the diopter measurement system will be described.
図中1a,1bは角膜形状測定用の光源で、例
えば赤外発光ダイオード、閃光放電灯等である。
第1図では2個しか示されていないが、実際は、
第2図に示されるように測定光軸Xを通り、且つ
同傾角(120゜を成す3本経線R1,R2,R3上に光
軸から、等距離隔たつた2個づつ3組の光源1
a,1b,1c,1d,1e,1fが配されてい
る。ここで各光源は少なくとも円周方向に所定長
さを有するものであり、更には円周方向に一体的
となつた円環状光源であつても良い。 In the figure, 1a and 1b are light sources for corneal shape measurement, such as infrared light emitting diodes, flash discharge lamps, etc.
Although only two are shown in Figure 1, in reality,
As shown in Fig. 2, three sets of two pieces, each spaced at an equal distance from the optical axis, are placed on three meridians R 1 , R 2 , and R 3 that pass through the measurement optical axis light source 1
a, 1b, 1c, 1d, 1e, and 1f are arranged. Here, each light source has at least a predetermined length in the circumferential direction, and may further be an annular light source that is integrated in the circumferential direction.
ここで3本の経線を選んだ理由は、角膜の中心
部をトーリツク面とみなした時に角膜曲率の経線
方法の変化は正弦波的になるので、少なくとも3
経線方向の値がわかつていれば、他の任意の経線
方向での値は計算で求めることができ、その結
果、角膜乱視軸方向も算出し得ることによる。こ
の点は後述する視度測定のところで更に説明す
る。 The reason for choosing three meridians here is that when the center of the cornea is regarded as a toric surface, the change in the meridian direction of the corneal curvature becomes sinusoidal, so at least three
This is because if the value in the meridian direction is known, the value in any other meridian direction can be calculated, and as a result, the corneal astigmatism axis direction can also be calculated. This point will be further explained in the diopter measurement section described later.
2a,2bは、光源1a,1bに対応したスリ
ツトであり、円周方向、一体的に構成される円環
状スリツトであつても良い。 2a and 2b are slits corresponding to the light sources 1a and 1b, and may be annular slits integrally formed in the circumferential direction.
3a,3bはコリメーテイングレンズで光源1
a,1bから出てスリツト2a,2bを通過して
入射する光速を角膜へ向けて平行光束に変換す
る。すなわち、スリツト2a,2bはコリメーテ
イングレンズ3a,3bの焦点位置におかれる。 3a and 3b are collimating lenses for light source 1
The speed of light that exits from the slits 2a and 2b and enters the cornea is converted into a parallel beam of light toward the cornea. That is, the slits 2a, 2b are placed at the focal positions of the collimating lenses 3a, 3b.
コリメーテイングレンズ3a,3bは、各々光
源1a,1bに対応するものであるが断面形状が
図示されるような、円周方向に一体的となつた円
環状レンズであつても良い。 The collimating lenses 3a and 3b correspond to the light sources 1a and 1b, respectively, but may be annular lenses whose cross-sectional shapes are integral in the circumferential direction as shown in the figure.
2a′と2b′は角膜Ee表面が凸面鏡として作用し
た結果生じた光源像(虚像)で、光源1a,1b
と同一断面内に形成される。 2a' and 2b' are light source images (virtual images) generated as a result of the corneal Ee surface acting as a convex mirror, and light sources 1a and 1b
is formed within the same cross section.
4は対物レンズ、5は絞り板、6はプリズム、
7abはCCD等の一次元フオトダイオードアレイ
(以下アレイという)である。 4 is an objective lens, 5 is an aperture plate, 6 is a prism,
7ab is a one-dimensional photodiode array (hereinafter referred to as an array) such as a CCD.
4は光源像2a′,2b′をアレイ7ab上に投影す
るためのレンズで、光源像2a′,2b′とアレイ7
abの検出面を共役に結びつける。 4 is a lens for projecting the light source images 2a', 2b' onto the array 7ab;
Connect the sensing surface of ab to the conjugate.
アレイ7は、第3図に示されるように三経線方
向に対応して7ab,7cd,7efと測定光軸Xに関
し三つ放射状に設けられる。 As shown in FIG. 3, the array 7 is provided in three radial directions 7ab, 7cd, and 7ef corresponding to the three meridian directions with respect to the measurement optical axis X.
絞り板5は対物レンズ4の後側焦点位置に設け
られて、テレセントリツク系を構成している。す
なわち第1図の紙面内で結像主光線は光軸Xに平
行となる。 The diaphragm plate 5 is provided at the back focal position of the objective lens 4, and constitutes a telecentric system. That is, the imaging principal ray is parallel to the optical axis X within the plane of the paper in FIG.
光源1a,1bからの照明光束が平行光束であ
りしかも結像主光線が光軸Xに平行な構成をとる
ため、被検者が光軸X方向に移動し、光源像2
a′,2b′が光軸X方向に偏位しても、すなわち作
動距離(ワーキングデイスタンス)が変わつても
アレイ7ab上に形成される像の大きさは変化せ
ず、測定誤差を生じない。 Since the illumination light fluxes from the light sources 1a and 1b are parallel light fluxes, and the imaging principal ray is parallel to the optical axis X, the subject moves in the optical axis X direction, and the light source image 2
Even if a' and 2b' are displaced in the optical axis X direction, that is, even if the working distance changes, the size of the image formed on the array 7ab does not change, and no measurement error occurs. .
さて、ここで絞り板5とプリズム6の作用につ
いて説明する。 Now, the functions of the aperture plate 5 and the prism 6 will be explained.
第4図に示されるように絞り板5には光源1
a,1b,1c,1d,1e,1fに対応して、
開口5a,5b,5c,5e,5fが設けられ
る。 As shown in FIG.
Corresponding to a, 1b, 1c, 1d, 1e, 1f,
Openings 5a, 5b, 5c, 5e, and 5f are provided.
ここで注意すべきは、光源1a,1bに対応す
る開口5a,5bが光源1a,1bと同方向にあ
るのではなく、直交して設けられ第5図に示され
るプリズム6a,6bによつて光束が2次元的に
偏向されてアレイ7abに向かうということであ
る。 What should be noted here is that the apertures 5a and 5b corresponding to the light sources 1a and 1b are not located in the same direction as the light sources 1a and 1b, but are provided perpendicularly to each other and are formed by prisms 6a and 6b shown in FIG. This means that the light beam is two-dimensionally deflected and directed toward the array 7ab.
もし、開口5a,5bが光源1a,1bと同方
向に配置されると結像主光線は光軸Xに対し斜め
の角度を為して、最早テレセントリツク系を構成
しないからワーキングデイスタンスが変わると測
定誤差を生ずる。これが開口5a,5bを光源1
a,1b方向と直交させる理由である。 If the apertures 5a and 5b are arranged in the same direction as the light sources 1a and 1b, the imaging chief ray will form an oblique angle with respect to the optical axis X, and will no longer form a telecentric system, resulting in a change in working distance. This results in measurement errors. This connects the apertures 5a and 5b to the light source 1.
This is the reason for making it orthogonal to the directions a and 1b.
ここで光源像2a′からの光束は、開口5aを通
過してプリズム6aによりアレイ7ab上に偏向
されるが、光源像2a′からの光速のうち、開口5
bを通過してプリズム6bにより偏向される光束
はアレイ7abの配列方向有効範囲外へ向かい、
開口5c,5d,5e,5fを通過して各々プリ
ズム6c,6d,6e,6fにより偏向される光
束は、アレイ7abの配列方向と大幅に異なる方
向へ向かい、結局、開口5aを通過する光束のみ
が測定に寄与する。同様に光源像2b′からの光束
は、開口5bを通過する光束のみが測定に寄与す
る。更に光源像2c′,2d′,2e′,2f′からの光
束は各々開口5c,5d,5e,5fを通過する
光束のみが測定に寄与する。ここで開口5a,5
bに対応するプリズム6a,6bは、斜上方へ2
次元的に光を偏向するよう構成される。すなわち
開口5a,5bを通過した光束は、各々プリズム
6a,6bによりアレイ7abの配列方向の所定
点に向けて偏向される。 Here, the light beam from the light source image 2a' passes through the aperture 5a and is deflected onto the array 7ab by the prism 6a.
The light beam that passes through b and is deflected by the prism 6b heads out of the effective range in the arrangement direction of the array 7ab,
The light fluxes that pass through the apertures 5c, 5d, 5e, and 5f and are respectively deflected by the prisms 6c, 6d, 6e, and 6f head in a direction that is significantly different from the arrangement direction of the array 7ab, and in the end, only the light flux that passes through the aperture 5a. contributes to the measurement. Similarly, of the light flux from the light source image 2b', only the light flux passing through the aperture 5b contributes to the measurement. Further, among the light beams from the light source images 2c', 2d', 2e', and 2f', only the beams passing through the apertures 5c, 5d, 5e, and 5f, respectively, contribute to the measurement. Here, the openings 5a, 5
The prisms 6a and 6b corresponding to b move diagonally upward by 2
Configured to dimensionally deflect light. That is, the light beams passing through the apertures 5a and 5b are deflected by prisms 6a and 6b, respectively, toward a predetermined point in the arrangement direction of the array 7ab.
同様に他のプリズム6cと6d,6eと6fも
各々アレイ7cd,7efに向けて2次元的に光を偏
向する。 Similarly, other prisms 6c and 6d, 6e and 6f deflect light two-dimensionally toward arrays 7cd and 7ef, respectively.
以上、要約するに光源像2a′,2b′からの光束
は、各々開口5a,5b,5c,5d,5e,5
fの全てを通過するものであり、何もしない光源
の再投影像は重なり検出不能となるが、プリズム
6を第5図に示されるように六分割して構成し光
束を各々偏向することにより、光源像2a′からの
光束は開口5aを通過したもののみ、また光源像
2b′からの光束は開口5bを通過したもののみ、
第1図に示されるようにアレイ7ab上に各々2
a″,2b″として分離して結像される。 In summary, the light beams from the light source images 2a', 2b' are respectively apertures 5a, 5b, 5c, 5d, 5e, 5
The re-projected images of the light source that do nothing overlap and cannot be detected, but by configuring the prism 6 into six parts as shown in Figure 5 and deflecting each of the light beams, , only the light flux from the light source image 2a' passes through the aperture 5a, and only the light flux from the light source image 2b' passes through the aperture 5b,
As shown in FIG.
They are imaged separately as a″ and 2b″.
第6図は光軸Xを中心とし、光源像2a′,2
b′の位置を通る仮想円がアレイ面面に投影される
ときの模式図である。 FIG. 6 shows light source images 2a', 2 with the optical axis X as the center.
FIG. 7 is a schematic diagram when a virtual circle passing through the position b' is projected onto the array surface.
光源像2a′,2b′を通る仮想円は、各々プリズ
ム6a,6bの所定の偏向作用により各々8a,
8bなる円としてアレイ7abに投影される。他
の光源像2c′,2d′,2e′,2f′についても同様
である。 The virtual circles passing through the light source images 2a' and 2b' become 8a and 8a, respectively, due to the predetermined deflection action of the prisms 6a and 6b, respectively.
It is projected onto array 7ab as a circle 8b. The same applies to the other light source images 2c', 2d', 2e', and 2f'.
第7図は各アレイ上の測定点を示す。 FIG. 7 shows the measurement points on each array.
これは第6図における仮想円の投影像8a,8
bとアレイ7abが交差した点である。アレイ7
cd,7efについても同様である。アレイ7abで、
各フオトダイオードを走査し、順次信号を取出す
と、実像2a″と2b″の素子には光分布のピーク
が在るから、それに相当する電気信号列が得られ
る。この信号列から不図示の処理回路でピーク間
の間隔を検出し、それを経線R1方向の曲率半径
に変換する。同様に他のアレイ7cdと7efから得
られた信号から別の経線R2とR3方向の曲率半径
を採集することができるから、各経線の基準位置
からの角度及び値が決定されることになる。 This is the projected image 8a, 8 of the virtual circle in FIG.
This is the point where b and array 7ab intersect. array 7
The same applies to CD and 7EF. In array 7ab,
When each photodiode is scanned and signals are taken out sequentially, since there is a peak in the light distribution in the elements of real images 2a'' and 2b'', an electric signal train corresponding to the peak is obtained. From this signal train, a processing circuit (not shown) detects the interval between peaks and converts it into a radius of curvature in the meridian R1 direction. Similarly, since the radii of curvature in the other meridian R 2 and R 3 directions can be collected from the signals obtained from the other arrays 7cd and 7ef, the angle and value of each meridian from the reference position can be determined. Become.
ここで、アライメントが十分でない場合、再結
像される実像がアレイ7abの走査面からずれて
も走査面に誘導して、設定誤差を許容するように
アレイ7abの手前にシリンドリカルレンズ8ab
を設けると良い。シリンドリカルレンズ8abの
母線とアレイ7abの走査方向は一致されて設け
られる。アレイ7abの走査方向より眺めた系
(平面図)は後述する第12図に記載される。ア
レイ7ab,7cd,7efによる3経線方向の座標測
定により角膜曲率、角膜乱視度、角膜乱視軸が求
まる。 Here, if the alignment is not sufficient, a cylindrical lens 8ab is placed in front of the array 7ab to guide the re-formed real image to the scanning plane even if it deviates from the scanning plane of the array 7ab, and to allow a setting error.
It is good to set up The generatrix of the cylindrical lens 8ab and the scanning direction of the array 7ab are arranged to match. A system (plan view) viewed from the scanning direction of array 7ab is shown in FIG. 12, which will be described later. Corneal curvature, degree of corneal astigmatism, and corneal astigmatism axis are determined by coordinate measurement in three meridian directions using arrays 7ab, 7cd, and 7ef.
さて、次に視度測定に関し説明する。これは本
件出願人の先願である特願昭55―64443号に示さ
れるものである。既述したように視度を測定する
場合、被検眼が乱視であることも多いため、視度
が極値になる様な経線方向の視度即ち球面視度
と、経線方向の変化に伴う視度の変化即ち乱視
度、及び視度が極値になるときの経線の方向即ち
乱視軸の3要素もしくはこれらと等価なデータを
測定する必要がある。 Next, diopter measurement will be explained. This is shown in Japanese Patent Application No. 55-64443, which is the applicant's earlier application. As mentioned above, when measuring diopter, the eye to be examined often has astigmatism, so the diopter in the meridian direction, that is, the spherical diopter, where the diopter reaches its extreme value, and the diopter that accompanies changes in the meridian direction. It is necessary to measure three elements: the change in power, that is, the degree of astigmatism, and the direction of the meridian, that is, the axis of astigmatism when the diopter reaches its extreme value, or data equivalent to these.
ここで3経線方向の屈折力を測定すれば必要な
情報がすべて得られる理由を説明する。まず乱視
におけ経線方向による視度の変化を正弦波的に変
化するものとみなすと、視度は経線方向の角度の
関数として例えば次の様に表わし得る。 Here, we will explain why all the necessary information can be obtained by measuring the refractive power in the three meridian directions. First, if the change in diopter in the meridian direction in astigmatism is regarded as changing sinusoidally, the diopter can be expressed as a function of the angle in the meridian direction, for example, as follows.
D=Asin(2θ+α)+B
ただし、Dは視度を、θは経線方向の角度を表
わすものとし、定数A・B・αは各々乱視度、平
均視度、乱視方向に相当する。 D=Asin(2θ+α)+B However, D represents the diopter, θ represents the angle in the meridian direction, and the constants A, B, and α correspond to the degree of astigmatism, the average diopter, and the astigmatism direction, respectively.
ここで3つの定数を決定することを要求されて
いるのであるから、少なくとも3つの経線方向の
測定値を与えれば良いことになる。 Since three constants are required to be determined here, it is sufficient to provide at least three measured values in the meridian direction.
第8図において、眼屈折計としての系を説明す
る。ここで第8図は第1図の視度測定の系と等価
なものである。照明光源9を点燈すると、光源9
を発した赤外線は集光レンズ10の作用でリレー
レンズ13上に収束する様な形態で投影用マスク
11を照明する。マスク11の第9図に示される
ようなスリツト11a,11b,11cを発した
光束は開口板12で絞られた後、リレーレンズ1
3で結像作用を受け、スポツトミラー14で反射
して、F上に一旦チヤート像を形成し、その後、
対物レンズ4でコリメートされて瞳孔の所定領域
から眼底Erへ向い、そこにチヤート像を結像す
る。眼底Erで散乱反射した光束は被検眼を射出
し、対物レンズ4で結像された後、リレーレンズ
15で結像作用を受け第10図に示されるような
六孔絞り板16の開口を通過し、第11図に示さ
れるようなプリズム17a,17bで偏向され、
シリンドリカルレンズ8abを介して、アレイ7
ab上にチヤート像を形成する。ここで開口16
a,16bの中心を結ぶ方向はアレイ7abの配
列方向と同方向であり、プリズム17a,17b
は一次元的に光束を偏向し、アレイ7abの有効
領域へ向ける。17c,17d,17e,17f
も同様である。シリンドリカルレンズ8abは、
第12図に示されるように絞り板16の開口位置
を、アレイ7ab上に略結像するような位置にア
レイ7abの配列方向に沿つて設けられ、設定誤
差を許容し更に光量を増大させるために役立つ。 In FIG. 8, a system as an eye refractometer will be explained. Here, FIG. 8 is equivalent to the diopter measurement system shown in FIG. 1. When the illumination light source 9 is turned on, the light source 9
The emitted infrared rays illuminate the projection mask 11 in such a manner that they are converged onto the relay lens 13 by the action of the condensing lens 10. The light beams emitted from the slits 11a, 11b, and 11c of the mask 11 as shown in FIG.
3, it is reflected by the spot mirror 14, and a chart image is formed on F, and then,
It is collimated by the objective lens 4 and is directed from a predetermined region of the pupil toward the fundus Er, where a chart image is formed. The light beam scattered and reflected by the fundus Er exits the subject's eye, is imaged by the objective lens 4, is then imaged by the relay lens 15, and passes through the aperture of the six-hole diaphragm plate 16 as shown in FIG. and is deflected by prisms 17a and 17b as shown in FIG.
Array 7 via cylindrical lens 8ab
Form a chart image on ab. Here opening 16
The direction connecting the centers of prisms a and 16b is the same as the arrangement direction of array 7ab, and prisms 17a and 17b
deflects the light beam one-dimensionally and directs it to the effective area of array 7ab. 17c, 17d, 17e, 17f
The same is true. Cylindrical lens 8ab is
As shown in FIG. 12, the aperture position of the diaphragm plate 16 is provided along the arrangement direction of the array 7ab at a position where an image is approximately formed on the array 7ab, allowing for setting errors and further increasing the amount of light. useful for.
アレイ7abを作動させてフオトダイオードを
順次走査すると、光強度に応じた電気信号列が出
力されるから、この信号列にピークPとQの位置
を検出する電気処理を施して、このピークの幅
を取出し、その幅から屈折力を算出する。そ
してもし、被検者が近視であれば開口を通過した
光束は収斂しており、2光束のピーク位置は接近
するから、正視眼の場合のピーク幅より減少して
いる点から近視であることが識別され、減少の度
合から屈折力異常の程度が測定できるわけであ
る。遠視であれば逆傾向となる。 When the array 7ab is activated and the photodiodes are sequentially scanned, an electrical signal train corresponding to the light intensity is output.This signal train is subjected to electrical processing to detect the positions of peaks P and Q, and the width of this peak is determined. and calculate the refractive power from its width. If the subject is myopic, the light beams passing through the aperture are convergent, and the peak positions of the two light beams are close to each other, so the peak width is smaller than that of an emmetropic eye, indicating that the subject is myopic. is identified, and the degree of refractive error can be measured from the degree of reduction. The opposite is true if you are farsighted.
次に角膜形状測定と、視度測定を選択的に用い
る場合を詳述する。 Next, a case where corneal shape measurement and diopter measurement are selectively used will be described in detail.
まず眼屈、折計として用いる場合は第1図で光
源9を発した赤外光が集光レンズ10、投影用マ
スク11、開口板12、リレーレンズ13を介
し、スポツトミラー14で反射しミラー18、光
路選択部材19で更に反射し、対物レンズ4によ
つて被検眼Eの眼底Erに入射し、マスク11の
像が眼底Erに投影される。光源9が指向性の高
いものであれば集光レンズ10、、リレーレンズ
13及びマスク11が省略でき、眼底Erに光源
9の像が投影され、視度測定の際の指標となり得
る。 First, when used as an eye refractometer or refractometer, the infrared light emitted from the light source 9 in FIG. 18, the light is further reflected by the optical path selection member 19 and enters the fundus Er of the eye E to be examined through the objective lens 4, and the image of the mask 11 is projected onto the fundus Er. If the light source 9 is highly directional, the condenser lens 10, relay lens 13, and mask 11 can be omitted, and the image of the light source 9 is projected onto the fundus Er, which can serve as an index when measuring diopter.
眼底Erから反射した光は、往路を戻つてスポ
ツトミラー14の外側を通り、被検眼の瞳Epと
共役な位置に設けられるリレーレンズ15、六孔
絞り板16の開口16a,16b、プリズム17
a,17bを介し、ミラー20、光路選択部材2
1で反射され、シリンドリカルレンズ8abを介
して、アレイ7abに結像される。 The light reflected from the fundus Er returns to the outside of the spot mirror 14 and passes through the relay lens 15 provided at a position conjugate with the pupil Ep of the eye to be examined, the apertures 16a and 16b of the six-hole diaphragm plate 16, and the prism 17.
a, 17b, mirror 20, optical path selection member 2
1 and is imaged onto array 7ab via cylindrical lens 8ab.
一方、角膜形状を測定する場合、光源1a,1
bを発した光束は、円周方向のスリツト2a,2
b、コリメーテイングレンズ3a,3b(若しく
は円環状レンズ)を介して角膜Eeにより像2
a′,2b′を結ぶ。角膜で反射される光は、あたか
も像2a′,2b′から発するように対物レンズ4に
向かい、光路選択部材19を透過し、絞り板5、
プリズム6を介し、更に光路選択部材21を透過
しシリンドリカルレンズ8abを通つてアレイ7
ab上に結像される。 On the other hand, when measuring the corneal shape, the light sources 1a, 1
The luminous flux emitted from b passes through slits 2a, 2 in the circumferential direction.
b, Image 2 is captured by the cornea Ee through the collimating lenses 3a and 3b (or toric lens).
Connect a′ and 2b′. The light reflected by the cornea heads toward the objective lens 4 as if it were emitted from the images 2a' and 2b', passes through the optical path selection member 19, and passes through the aperture plate 5,
The array 7 passes through the prism 6, passes through the optical path selection member 21, and passes through the cylindrical lens 8ab.
imaged on ab.
ここで光路選択部材19,21をダイクロイツ
クミラーとすることにより光源9と、光源1a,
2a(若しくは円環状光源)からの光束を効率良
く分離できる。 By using dichroic mirrors as the optical path selection members 19 and 21, the light source 9, the light source 1a,
The light flux from 2a (or the annular light source) can be efficiently separated.
例えば光路選択部材19,21として赤色域の
光を反射し、青色域の光を透過するようなダイク
ロイツクミラーを用い、更に光源9として赤色域
の光を発するもの、光源1a,2a(若しくは円
環状光源)として青色域の光を発するものを用い
れば、視度測定の系と、角膜形状測定の系をダイ
クロイツクミラーでの反射、透過によつて分離で
きる。 For example, as the optical path selection members 19 and 21, dichroic mirrors that reflect light in the red range and transmit light in the blue range are used, and as the light source 9, one that emits light in the red range, and the light sources 1a and 2a (or circular If a ring-shaped light source that emits light in the blue region is used, the diopter measurement system and the corneal shape measurement system can be separated by reflection and transmission from a dichroic mirror.
ここでダイクロイツクミラーとして赤外域で2
色分解するものを用いれば、角膜形状測定、視度
測定共に照明光として赤外光を用いることがで
き、被検者のまばたき等による測定の際の間題が
なくなる。 Here, as a dichroic mirror, 2
If a color-separating device is used, infrared light can be used as illumination light for both corneal shape measurement and diopter measurement, eliminating problems during measurement due to blinking of the subject's eyes, etc.
また光路選択部材19,21として通常のミラ
ーを用い、これを光路中に挿入し、又は光路外に
離脱させるといういわゆるクイツク・リターン方
式によつて視度測定の系と、角膜形状測定の系を
分離することもできる。 In addition, the diopter measurement system and the corneal shape measurement system can be adjusted by using a so-called quick return method in which normal mirrors are used as the optical path selection members 19 and 21 and are inserted into the optical path or removed from the optical path. It can also be separated.
ここで角膜形状測定用の光源と、視度測定用の
光源を共に点燈しておくと、アレイ上で角膜像と
眼底像が重複してしまうので、角膜形状測定、視
度測定に応じて選択的に点燈するものとする。但
し、クイツク・リターン方式の場合、例えば第1
図で光路選択部材19,21が光路内に挿入され
る系を考えると、角膜による反射光は光路選択部
材19,21で反射されアレイ7abに向かう
が、光学設計によつてはデフオーカスされること
により又は、スポツトミラー14、絞り板16に
よつてケラれることにより実質上、角膜形状測定
の系が無視できることにより、角膜形状測定用の
光源と、視度測定用の光源を選択的に点燈しなく
とも共に常時点燈させておくことが可能となる。 If the light source for corneal topography measurement and the light source for diopter measurement are both turned on here, the corneal image and fundus image will overlap on the array, so depending on the corneal topography measurement and diopter measurement, It shall be turned on selectively. However, in the case of the quick return method, for example, the first
Considering the system in which the optical path selection members 19 and 21 are inserted into the optical path in the figure, the light reflected by the cornea is reflected by the optical path selection members 19 and 21 and goes toward the array 7ab, but depending on the optical design, it may be defocused. Alternatively, the corneal shape measurement system can be virtually ignored due to the vignetting caused by the spot mirror 14 and the aperture plate 16, so that the light source for corneal shape measurement and the light source for diopter measurement can be selectively turned on. It is possible to keep both lights on at all times even if the lights are not turned on.
なお、本発明において、角膜形状測定の系と、
視度測定の系を分離する手段は本実施例に限られ
ず、他の手段、例えば偏光特性を用いて分離する
ものであつても良い。 In addition, in the present invention, a corneal topography measurement system,
The means for separating the diopter measurement system is not limited to this embodiment, and may be other means such as one using polarization characteristics.
以上、本発明によれば、被険眼の角膜形状と視
度を同一の装置で選択的に測定できる。 As described above, according to the present invention, the corneal shape and diopter of the eye to be examined can be selectively measured using the same device.
更には短時間のうちに測定できる簡便な眼科測
定装置を提供できる。 Furthermore, it is possible to provide a simple ophthalmological measuring device that can perform measurements in a short period of time.
また本発明によれば角膜形状と視度を殆んど連
続して測定できるから、それぞれ独立して測定す
る場合に避け難い被検眼の変化(周囲の環境、眼
の緊張度等、時間の経過に伴う様々の変化)の要
素を殆んど除去できるもので両測定値の相関性を
信頼できる効果がある。 In addition, according to the present invention, corneal shape and diopter can be measured almost continuously, so changes in the subject's eye that are difficult to avoid when measuring each independently (such as changes in the surrounding environment, eye strain, etc.) It is possible to remove most of the elements (various changes associated with the measurement) and has the effect of making it possible to trust the correlation between both measurement values.
一方、もし別々の測定機を用いれば被検者は、
その装置のところまで移動し、また新たにアライ
メントと作動距離調整等を行なう必要があるが、
本発明によればこの種の煩雑な操作や時間の無駄
がなくなるから殊に子供、老人、病人に対して有
効である。 On the other hand, if separate measuring devices are used, the subject will
It is necessary to move to the device and perform new alignment and working distance adjustment, etc.
The present invention eliminates this type of complicated operation and waste of time, so it is particularly effective for children, the elderly, and the sick.
また本発明は光電検出器その他を共用する構成
としたから、単純に両測定機を重畳させたものと
異なり、コンパクトで簡単な装置となる。 Furthermore, since the present invention has a structure in which the photoelectric detector and other components are shared, the apparatus is compact and simple, unlike a system in which both measuring instruments are simply superimposed.
第1図は、本発明の実施例の図、第2図は、光
軸X方向から眺めた角膜形状測定用の光源の配置
図、第3図は、光軸X方向から眺めたアレイの配
置図、第4図、第5図は各々、角膜形状測定用の
絞り板、プリズムを光軸X方向から眺めた図、第
6図は、光軸Xを中心とし、各光源像の位置を通
る仮想円が各アレイに投影されるときの模式図、
第7図は各アレイ上の測定点を示す図、第8図
は、視度測定の系の説明図、第9図は、投影用マ
スクの説明図、第10図、第11図は各々、視度
測定用の絞り板、プリズムを光軸方向から眺めた
図、第12図はシリドリカルレンズの説明図、
図中1a,1bは角膜形状測定用の光源、2
a,2bはスリツト、3a,3bはコリメーテイ
ングレンズ、2a′,2b′は光源像、4は対物レン
ズ、5は絞り板、6はプリズム、7abはアレ
イ、8abはシリンドリカルレンズ、9は視度測
定用の光源、10は集光レンズ、11は投影用マ
スク、12は開口板、13はリレーレンズ、14
はスポツトミラー、15はリレーレンズ、16は
絞り板、17a,17bはプリズム、18,20
はミラー、19,21は光路選択部材である。
FIG. 1 is a diagram of an embodiment of the present invention, FIG. 2 is a layout diagram of a light source for corneal shape measurement viewed from the optical axis X direction, and FIG. 3 is an array layout diagram viewed from the optical axis X direction. Figures 4 and 5 are views of the aperture plate and prism for corneal shape measurement viewed from the optical axis X direction, and Figure 6 is a view centered on the optical axis X and passing through the position of each light source image Schematic diagram when a virtual circle is projected onto each array,
FIG. 7 is a diagram showing the measurement points on each array, FIG. 8 is an explanatory diagram of the diopter measurement system, FIG. 9 is an explanatory diagram of the projection mask, and FIGS. 10 and 11 are, respectively. Figure 12 is an explanatory diagram of the cylindrical lens. In the figure, 1a and 1b are the light sources for corneal shape measurement, and 2
a and 2b are slits, 3a and 3b are collimating lenses, 2a' and 2b' are light source images, 4 is an objective lens, 5 is a diaphragm plate, 6 is a prism, 7ab is an array, 8ab is a cylindrical lens, and 9 is a visual field. A light source for power measurement, 10 a condenser lens, 11 a projection mask, 12 an aperture plate, 13 a relay lens, 14
is a spot mirror, 15 is a relay lens, 16 is an aperture plate, 17a, 17b are prisms, 18, 20
is a mirror, and 19 and 21 are optical path selection members.
Claims (1)
と角膜反射像を投影系により所定センサ上に投影
して被検眼の視度と角膜形状を測定する眼科測定
装置において、 前記アレイへの眼底反射像、角膜反射像の投影
を選択的に行なう選択手段を備えることを特徴と
する眼科測定装置。 2 前記選択手段は眼底反射光路と角膜反射光路
を選択する特許請求の範囲第1項記載の眼科測定
装置。 3 前記選択手段は波長選択部材である特許請求
の範囲第2項記載の眼科測定装置。 4 前記波長選択部材は赤外域で2色分解するダ
イクロイツチミラーである特許請求の範囲第3項
記載の眼科測定装置。 5 眼底反射像と角膜反射像が選択的に被検眼に
形成される特許請求の範囲第1項記載の眼科測定
装置。 6 前記選択手段は光路内に挿入し又は離脱され
るミラーである特許請求の範囲第2項記載の眼科
測定装置。 7 前記アレイは少なくとも三経線方向に対応し
て設けられる1次元アレイである特許請求の範囲
第1項記載の眼科測定装置。 8 前記投影系はテレセントリツク系である特許
請求の範囲第1項記載の眼科測定装置。[Scope of Claims] 1. In an ophthalmological measurement device that measures the diopter and corneal shape of an eye to be examined by projecting a fundus reflection image and a corneal reflection image obtained by projecting an index onto the eye to be examined onto a predetermined sensor using a projection system. . An ophthalmological measuring device comprising: a selection means for selectively projecting a fundus reflection image and a corneal reflection image onto the array. 2. The ophthalmological measuring device according to claim 1, wherein the selection means selects the fundus reflection optical path and the corneal reflection optical path. 3. The ophthalmological measuring device according to claim 2, wherein the selection means is a wavelength selection member. 4. The ophthalmological measuring device according to claim 3, wherein the wavelength selection member is a dichroic mirror that separates two colors in the infrared region. 5. The ophthalmological measuring device according to claim 1, wherein a fundus reflection image and a corneal reflection image are selectively formed on the subject's eye. 6. The ophthalmological measuring device according to claim 2, wherein the selection means is a mirror that is inserted into or removed from the optical path. 7. The ophthalmological measuring device according to claim 1, wherein the array is a one-dimensional array provided corresponding to at least three meridian directions. 8. The ophthalmological measuring device according to claim 1, wherein the projection system is a telecentric system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56129170A JPS5829446A (en) | 1981-08-18 | 1981-08-18 | Ophthalmic measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56129170A JPS5829446A (en) | 1981-08-18 | 1981-08-18 | Ophthalmic measuring apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5829446A JPS5829446A (en) | 1983-02-21 |
JPS6150449B2 true JPS6150449B2 (en) | 1986-11-04 |
Family
ID=15002867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56129170A Granted JPS5829446A (en) | 1981-08-18 | 1981-08-18 | Ophthalmic measuring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5829446A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63198391U (en) * | 1987-06-12 | 1988-12-21 | ||
JPH01105390U (en) * | 1987-12-28 | 1989-07-17 |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61185242A (en) * | 1985-02-09 | 1986-08-18 | キヤノン株式会社 | Ophthalmic measuring apparatus |
JPS59230535A (en) * | 1983-06-13 | 1984-12-25 | キヤノン株式会社 | Ophthalmic measuring apparatus |
US4929076A (en) * | 1983-06-13 | 1990-05-29 | Canon Kabushiki Kaisha | Ophthalmic measuring apparatus |
JPS6131146A (en) * | 1984-07-24 | 1986-02-13 | キヤノン株式会社 | Eye refraction meter |
JPS61100227A (en) * | 1984-10-23 | 1986-05-19 | キヤノン株式会社 | Ophthalmic measuring apparatus |
JPS61146229A (en) * | 1984-12-20 | 1986-07-03 | ホ−ヤ株式会社 | Cornea radius-of-curvature measuring apparatus by five-splitting |
JPS61162931A (en) * | 1985-01-10 | 1986-07-23 | キヤノン株式会社 | Ophthalmic refractometer |
JPS61168329A (en) * | 1985-01-22 | 1986-07-30 | 株式会社トプコン | Eye refractive force measuring apparatus |
JPS61185243A (en) * | 1985-02-09 | 1986-08-18 | キヤノン株式会社 | Ophthalmic measuring apparatus |
US4878750A (en) * | 1985-01-25 | 1989-11-07 | Canon Kabushiki Kaisha | Ophthalmic measuring apparatus |
JPS61170434A (en) * | 1985-01-25 | 1986-08-01 | キヤノン株式会社 | Opthalmic measuring apparatus |
JPS6257534A (en) * | 1985-09-06 | 1987-03-13 | キヤノン株式会社 | Ophthalmic measuring apparatus |
JPH0620433B2 (en) * | 1986-05-29 | 1994-03-23 | 株式会社トプコン | Corneal shape measuring device |
JPH0753151B2 (en) * | 1986-07-17 | 1995-06-07 | 株式会社トプコン | Ophthalmic measuring device |
JPS6353433A (en) * | 1986-08-23 | 1988-03-07 | Canon Inc | Lens refractivity measuring apparatus |
JP2612263B2 (en) * | 1986-12-25 | 1997-05-21 | 株式会社トプコン | Optometry device |
JPS63194634A (en) * | 1987-02-07 | 1988-08-11 | キヤノン株式会社 | Alignment apparatus of ophthalmic machinery |
JPS63212318A (en) * | 1987-02-28 | 1988-09-05 | キヤノン株式会社 | Eye measuring apparatus |
JPH069544B2 (en) * | 1987-03-31 | 1994-02-09 | キヤノン株式会社 | Eye measuring device |
JPH0363027A (en) * | 1990-03-16 | 1991-03-19 | Canon Inc | Apparatus for ophthalmic measurement |
JP3052280B2 (en) * | 1994-10-21 | 2000-06-12 | キヤノン株式会社 | Eye refraction measuring device |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1955859A1 (en) * | 1969-11-06 | 1971-05-13 | Zeiss Carl Fa | Method and device for determining the refractive state of an eye |
JPS519815A (en) * | 1974-07-16 | 1976-01-26 | Canon Kk | |
JPS51110531A (en) * | 1975-03-26 | 1976-09-30 | Eisai Co Ltd | Amijinokagobutsuno seizoho |
JPS52135597A (en) * | 1976-04-02 | 1977-11-12 | Zeiss Stiftung | Combination device for eye examination |
JPS5423560A (en) * | 1977-07-22 | 1979-02-22 | Redifon Flight Simulation Ltd | Laser device |
JPS5434592A (en) * | 1977-08-24 | 1979-03-14 | Tokyo Optical | Infrared ray refractometer |
JPS5458042A (en) * | 1977-09-23 | 1979-05-10 | Thomson Csf | Monochromatic image analyzing recorder |
JPS55110531A (en) * | 1979-02-16 | 1980-08-26 | Canon Kk | Mechanism for measuring visibility |
JPS5618837A (en) * | 1979-07-23 | 1981-02-23 | Canon Kk | Keratometer |
JPS56153233A (en) * | 1980-04-28 | 1981-11-27 | Tokyo Optical Co Ltd | Measuring device for optical characteristic of optical system |
-
1981
- 1981-08-18 JP JP56129170A patent/JPS5829446A/en active Granted
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1955859A1 (en) * | 1969-11-06 | 1971-05-13 | Zeiss Carl Fa | Method and device for determining the refractive state of an eye |
JPS519815A (en) * | 1974-07-16 | 1976-01-26 | Canon Kk | |
JPS51110531A (en) * | 1975-03-26 | 1976-09-30 | Eisai Co Ltd | Amijinokagobutsuno seizoho |
JPS52135597A (en) * | 1976-04-02 | 1977-11-12 | Zeiss Stiftung | Combination device for eye examination |
JPS5423560A (en) * | 1977-07-22 | 1979-02-22 | Redifon Flight Simulation Ltd | Laser device |
JPS5434592A (en) * | 1977-08-24 | 1979-03-14 | Tokyo Optical | Infrared ray refractometer |
JPS5458042A (en) * | 1977-09-23 | 1979-05-10 | Thomson Csf | Monochromatic image analyzing recorder |
JPS55110531A (en) * | 1979-02-16 | 1980-08-26 | Canon Kk | Mechanism for measuring visibility |
JPS5618837A (en) * | 1979-07-23 | 1981-02-23 | Canon Kk | Keratometer |
JPS56153233A (en) * | 1980-04-28 | 1981-11-27 | Tokyo Optical Co Ltd | Measuring device for optical characteristic of optical system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63198391U (en) * | 1987-06-12 | 1988-12-21 | ||
JPH01105390U (en) * | 1987-12-28 | 1989-07-17 |
Also Published As
Publication number | Publication date |
---|---|
JPS5829446A (en) | 1983-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6150449B2 (en) | ||
US6070981A (en) | Ophthalmologic characteristic measuring apparatus | |
US4944303A (en) | Noncontact type tonometer | |
JP4491663B2 (en) | Ophthalmic optical characteristic measuring device | |
JPS6216088B2 (en) | ||
US20040174498A1 (en) | Ophthalmoscope | |
JP3703310B2 (en) | Hand-held ophthalmic device | |
US4712894A (en) | Ophthalmoscopic instrument having working position detecting means | |
JP2002051982A (en) | Ophthalmic equipment | |
USRE39882E1 (en) | Ophthalmologic characteristic measuring apparatus | |
US20060279698A1 (en) | Method and device for determining movement of a human eye | |
US4929076A (en) | Ophthalmic measuring apparatus | |
JPH0810225A (en) | Ophthalmological device | |
US7275825B2 (en) | Eye refractive power measurement apparatus | |
JPS61100227A (en) | Ophthalmic measuring apparatus | |
JPH0330366B2 (en) | ||
JP3636533B2 (en) | Ophthalmic diagnostic equipment | |
JPS627852B2 (en) | ||
JP3624071B2 (en) | Ophthalmic equipment | |
JP3466423B2 (en) | Ophthalmic equipment | |
JPH0554338B2 (en) | ||
WO2025028223A1 (en) | Ophthalmologic measurement apparatus | |
JPH0342885Y2 (en) | ||
JPS59230535A (en) | Ophthalmic measuring apparatus | |
JPS61185242A (en) | Ophthalmic measuring apparatus |