[go: up one dir, main page]

JPS6149774A - Outside surface welding method of weld pipe - Google Patents

Outside surface welding method of weld pipe

Info

Publication number
JPS6149774A
JPS6149774A JP16877584A JP16877584A JPS6149774A JP S6149774 A JPS6149774 A JP S6149774A JP 16877584 A JP16877584 A JP 16877584A JP 16877584 A JP16877584 A JP 16877584A JP S6149774 A JPS6149774 A JP S6149774A
Authority
JP
Japan
Prior art keywords
groove
shape
groove shape
center position
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16877584A
Other languages
Japanese (ja)
Inventor
Motohito Shiozumi
塩住 基仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16877584A priority Critical patent/JPS6149774A/en
Publication of JPS6149774A publication Critical patent/JPS6149774A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q35/00Control systems or devices for copying directly from a pattern or a master model; Devices for use in copying manually
    • B23Q35/04Control systems or devices for copying directly from a pattern or a master model; Devices for use in copying manually using a feeler or the like travelling along the outline of the pattern, model or drawing; Feelers, patterns, or models therefor
    • B23Q35/08Means for transforming movement of the feeler or the like into feed movement of tool or work
    • B23Q35/12Means for transforming movement of the feeler or the like into feed movement of tool or work involving electrical means
    • B23Q35/127Means for transforming movement of the feeler or the like into feed movement of tool or work involving electrical means using non-mechanical sensing
    • B23Q35/128Sensing by using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/127Means for tracking lines during arc welding or cutting
    • B23K9/1272Geometry oriented, e.g. beam optical trading
    • B23K9/1274Using non-contact, optical means, e.g. laser means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/47Tracing, tracking
    • G05B2219/4701Edge detector, project line, inclined camera detects discontinuity

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Plasma & Fusion (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PURPOSE:To execute welding with a high accuracy by deriving exactly a groove center position extending over the overall length of a seaming part, and controlling a weld position by a welding torch based on the groove center position. CONSTITUTION:A groove shape image 14 by a slit light 13 projected vertically toward a groove surface of a seaming part of a weld pipe 11 from a light source 12, and in a state orthogonal to the longitudinal direction of a groove part is brought to image pickup by an image pickup machine 15 and transferred to an arithmetic unit 18 through a memory 17. The arithmetic unit 18 converts its groove shape image 16 to a coordinate, an inclination value of each very small section of the groove shape converted to a coordinate is derived, a position of a groove end point of the groove shape is derived by comparing said inclination value with a reference inclination value of each reference shape, and a groove center position from the position of the right and the left groove end points of the groove shape is derived and transferred to a servo-mechanism part 19. The servo-mechanism 19 controls a welding torch 20 based on said groove center position.

Description

【発明の詳細な説明】 [技術分野] 本発明は溶接管の外面溶接方法に関する。[Detailed description of the invention] [Technical field] The present invention relates to a method for welding the outer surface of a welded pipe.

[背景技術] 従来、被溶接材の縫合部の開先中心位置を検出し、該開
先中心位置に基づいて溶接トーチによる溶接位置を制御
する方法として、例えば特開昭58−181478号に
示される方法が提案されている。
[Background Art] Conventionally, a method of detecting the groove center position of a seam part of a material to be welded and controlling the welding position by a welding torch based on the groove center position is disclosed in, for example, Japanese Patent Laid-Open No. 181478/1983. A method has been proposed.

このすでに提案されている方法は、単一の左右対称形状
の基準開先形状を予め定め、実際に溶接される被溶接材
の縫合部の現実の開先形状を撮像し、該撮像された開先
形状の開先端点等の開先部情報を求め、この開先部情報
を前記基準開先形状の情報と比較し、被溶接材の開先中
心位置を求めることを可能としている。
This method, which has already been proposed, predetermines a single symmetrical standard groove shape, images the actual groove shape of the seam of the welded material to be actually welded, and It is possible to determine the groove center position of the material to be welded by obtaining groove information such as the groove tip point of the tip shape and comparing this groove information with information on the reference groove shape.

しかしながら、上記従来の方法は基準開先形状が単一で
、かつ左右対称形状のものに限られていることから、縫
合部に仮付ビードが施される等により、開先形状が非対
称であったり、開先形状が溶接線に沿って変化する場合
には、被溶接材の開先中心位置を正確に求めることが困
難ないしは不可能となり、実際の溶接位置が開先中心位
置からずれるオフシーム等の溶接不良を生ずるおそれが
ある。
However, the conventional method described above is limited to a single reference groove shape and a symmetrical shape, so the groove shape may be asymmetrical due to tack beads being applied to the sutured portion, etc. Or, if the groove shape changes along the weld line, it becomes difficult or impossible to accurately determine the groove center position of the welded material, resulting in off-seams, etc. where the actual welding position deviates from the groove center position. There is a risk of welding defects.

[発明の目的コ 本発明は縫合部の全長にわたって正確に開先中心位置を
求め、高精度に溶接を行なうことを可能とする溶接管の
外面溶接方法を提供することを目的とする。
[Purpose of the Invention] An object of the present invention is to provide a method for welding the outer surface of a welded pipe, which makes it possible to accurately determine the groove center position over the entire length of the seam and to perform welding with high precision.

〔発明の構成] 上記目的を達成するために、本発明に係る溶接管の外面
溶接方法は、溶接管の縫合部の開先形状を予め複数の基
準形状に分類し、各基準形状の開先端点の基準傾き値を
定めるとともに、実際に溶接される溶接管の縫合部の現
実の開先形状を撮像し、該撮像された開先形状を座標化
し、該座標化された開先形状の8微小区間の#4き値を
求め、この傾き値を前記各基準形状の基準傾き値と比較
することにより、該開先形状の開先端点の位置を求め、
該開先形状の左右の開先端点の位置から開先中心位置を
求め、該開先中心位置に基づいて溶接トーチによる溶接
位置を制御するようにしたものである。
[Structure of the Invention] In order to achieve the above object, the method for welding the outer surface of a welded pipe according to the present invention classifies the groove shape of the seam part of the welded pipe into a plurality of reference shapes in advance, and In addition to determining the standard slope value of the point, the actual groove shape of the seam of the welded pipe to be actually welded is imaged, the imaged groove shape is converted into coordinates, and the 8 of the coordinated groove shape is By determining the #4 value of the minute section and comparing this inclination value with the reference inclination value of each of the reference shapes, the position of the groove tip point of the groove shape is determined,
The groove center position is determined from the positions of the left and right groove tip points of the groove shape, and the welding position by the welding torch is controlled based on the groove center position.

C発明の詳細な説明] 第1図は本発明の実施に用いられる溶接装置の一例を示
す斜視図であり、11は被溶接材としての溶接管、12
は光源、13は光源12から投射されるスリット光、1
4はスリット光13によるる開先形状像、15は開先形
状像14を撮像する撮像機、16は撮像機15の視野、
17は撮像機15の撮像した開先形状像14を記憶する
メモリ、18は後に詳述する演算装置、19はサーボ機
構部、20は溶接トーチである。
C Detailed Description of the Invention] FIG. 1 is a perspective view showing an example of a welding apparatus used for carrying out the present invention, in which 11 is a welded pipe as a material to be welded, 12
is a light source, 13 is a slit light projected from the light source 12, 1
4 is a groove shape image obtained by the slit light 13; 15 is an imager for capturing the groove shape image 14; 16 is a field of view of the imager 15;
Reference numeral 17 designates a memory for storing the groove shape image 14 captured by the image pickup device 15, 18 a calculation device which will be described in detail later, 19 a servo mechanism section, and 20 a welding torch.

ここで、溶接管11の仮付ビードを施されている縫合部
の開先形状は、第2図(A)〜(D)に示す4種類の基
準形状A−Dに分類可能である。
Here, the groove shape of the sutured portion of the welded pipe 11 to which the temporary bead is applied can be classified into four types of standard shapes A to D shown in FIGS. 2(A) to 2(D).

基準形状Aは、正常な開先形状であり開先加工時の開先
端点の傾きがそのまま残っているものである。基準形状
Bは、手直し溶接により、開先端点の傾きが開先加工時
の傾きより大なる値に変化しているものである。基準形
状Cは、手直し溶接により、開先端点の傾きが小なる値
に変化しているものである。基準形状りは、仮付ビード
が開先部から張り出しているものである。すなわち、演
算装置18は、上記4種類の基準形状A−Dを予め定め
、それら基準形状A−Dの開先端点の傾き値αA〜αD
を定めている。なお、基準形状A−Cの傾きは負、基準
形状りの傾きは正であり、αB〉αA〉αCなる関係が
ある。
The reference shape A is a normal groove shape, and the slope of the groove tip point during the groove processing remains as it is. In the reference shape B, the slope of the groove tip point has changed to a larger value than the slope at the time of groove processing due to rework welding. In the reference shape C, the slope of the groove point has changed to a smaller value due to rework welding. The standard shape is such that the tack bead protrudes from the groove. That is, the arithmetic device 18 predetermines the four types of reference shapes A-D, and calculates the slope values αA to αD of the opening points of these reference shapes A-D.
has been established. Note that the slope of the reference shape AC is negative, the slope of the reference shape is positive, and there is a relationship αB>αA>αC.

第3図は左右非対称の開先形状を示すものであり、この
開先形状は上記基準形状A−Dの組み合わせによって形
成されるものである。
FIG. 3 shows a left-right asymmetrical groove shape, and this groove shape is formed by a combination of the reference shapes A-D.

第4図は本発明の制御手順を示す流れ図であり、第5図
は演算装置18の演算手順を示す流れ図である。
FIG. 4 is a flowchart showing the control procedure of the present invention, and FIG. 5 is a flowchart showing the calculation procedure of the calculation device 18.

すなわち、本発明の実施においては、光源12から溶接
管11の縫合部の開先部に向けて垂直にかつ開先部の長
手方向に対して略直交する状態で投射されるスリット光
13による開先形状像14が、スリット光13に対して
一定の角度(例えば60度)と距離を成して配置されて
いる撮像機15によって撮像され、第6図に示すように
、撮像機15の映像画面21内に映像14Aとして捕え
られる。映像画面21内の映像14Aはメモリ17を経
て演算装置18に伝達される。
That is, in the practice of the present invention, the slit beam 13 is projected vertically from the light source 12 toward the groove of the sutured portion of the welded pipe 11 and substantially perpendicular to the longitudinal direction of the groove. The tip shape image 14 is captured by an image pickup device 15 arranged at a certain angle (for example, 60 degrees) and a distance from the slit light 13, and as shown in FIG. The image is captured within the screen 21 as an image 14A. The image 14A on the image screen 21 is transmitted to the arithmetic unit 18 via the memory 17.

演算装置18は、映像画面21内の適当な位置に原点を
有する座標系において映像14Aを座標化、すなわち映
像14Aを第7図に示すようにXY座標に2値化した状
態で取り込む、第7図において、al、blは開先形状
の左右の端点、a2.b2は映像14Aの左右の始点で
ある。
The arithmetic unit 18 coordinates the image 14A in a coordinate system having an origin at an appropriate position within the image screen 21, that is, captures the image 14A in a state in which it is binarized into XY coordinates as shown in FIG. In the figure, al, bl are the left and right end points of the groove shape, a2. b2 is the left and right starting point of the image 14A.

演算装置18は上記2値化画像に基づいて、まず一方の
開先端点a1を求める。
The arithmetic unit 18 first determines one of the bevel points a1 based on the binarized image.

そこで、演算装置18は、まず、2値化画像の一方の始
点a2から始まるX方向の各微小区間DELTAの傾き
(fiS(xi)を下記(1)式によって求める。
Therefore, the calculation device 18 first calculates the slope (fiS(xi)) of each minute section DELTA in the X direction starting from one starting point a2 of the binarized image using the following equation (1).

S (xi)=  [Y (xi  + DELTA)
−Y (xi)]/DELTA・・・・・・(1) ここで、Y (xi)はxi座標に対応するY座標であ
る。
S (xi) = [Y (xi + DELTA)
−Y (xi)]/DELTA (1) Here, Y (xi) is the Y coordinate corresponding to the xi coordinate.

次に、演算装置18は、各微小区間の傾き値S (xi
)の正負により、該微小区間の形状が前記基準形状A−
Cのいずれかに相当するものであるか、または前記基準
形状りに相当するものであるかを判別する。すなわち、
5(xi)が負であれば開先形状は基準形状A−Cのい
ずれかに相当し、S (xi)が正であれば開先形状は
基準形状りに相当することが判別される。
Next, the calculation device 18 calculates the slope value S (xi
), the shape of the minute section becomes the reference shape A-
It is determined whether the shape corresponds to either C or the reference shape. That is,
If S (xi) is negative, it is determined that the groove shape corresponds to one of the standard shapes A to C, and if S (xi) is positive, it is determined that the groove shape corresponds to the standard shape.

開先形状が基準形状A−Cのいずれかに相当するもので
あると判別された微小区間については、該形状が基準形
状Bに相当するものであるか、基準形状Aに相当するも
のであるか、基準形状Cに相当するものであるかを順次
判別し、更にその開先端点a1の位置を求める。
For a minute section whose groove shape is determined to correspond to one of standard shapes A to C, the shape corresponds to standard shape B or standard shape A. It is sequentially determined whether the shape corresponds to the reference shape C or the reference shape C, and the position of the opening point a1 is determined.

まず、演算装置18は、S (xi)と前記基準傾き値
αBとを比較し、 l S (Xi) l≧aB−=(2)の条件を満たし
た時、その形状を基準形状Bに相当するものであると判
別し、同時にそのxiをその開先形状の一方の開先端点
a1として検出し、該端点a1を記憶する。
First, the arithmetic unit 18 compares S (xi) with the reference slope value αB, and when the condition of l S (Xi) l≧aB−=(2) is satisfied, the arithmetic unit 18 determines that the shape corresponds to the reference shape B. At the same time, the xi is detected as one of the groove tip points a1 of the groove shape, and the edge points a1 are stored.

演算装置18は、上記(2)式の条件を満たさ表い時、
S (xi)と前記基準傾き値αAとを比較し。
When the arithmetic unit 18 satisfies the condition of the above equation (2),
Compare S (xi) with the reference slope value αA.

I  S (Xi) I  ≧aA=(3)の条件を満
たした時、その形状を基準形状Aに相当するものと判別
し、同時にそのxiをその開先形状の一方の開先端点a
1として検出し、該端点a1を記憶する。
When the condition of I S (Xi) I ≧aA=(3) is satisfied, the shape is determined to be equivalent to the reference shape A, and at the same time, the xi is set as the groove tip point a of one of the groove shapes.
1, and the end point a1 is stored.

演算装置18は、上記(3)式の条件を満たさない時、
S (xi)と前記基準傾き値αCとを比較し、 I  S (xi) I  ≧ac−(4)の条件を満
たした時、その形状を基準形状Cに相当するものと判別
し、同時にそのxiをその開先形状の一方の開先端点a
1として検出し、該端点alを記憶する。
When the arithmetic unit 18 does not satisfy the condition of the above equation (3),
S (xi) is compared with the reference slope value αC, and when the condition of I S (xi) I ≧ac-(4) is satisfied, the shape is determined to be equivalent to the reference shape C, and at the same time xi is one groove tip point a of the groove shape
1, and the end point al is stored.

また、演算装置18は、開先形状が前述のように基準形
状りに相当するものと判別された微小区間については、
S (xi)と前記基準傾き値αDとを比較し、 I S (Xi) I≧a D ”−・−(5)の条件
を満たした時、そのXIをその開先形状の一方の開先端
点a1として検出し、該端点alを記憶する。
In addition, the calculation device 18 calculates, for a minute section whose groove shape is determined to correspond to the reference shape as described above,
S (xi) is compared with the reference slope value αD, and when the condition of I S (Xi) I≧a D ”-・- (5) is satisfied, XI is determined as one of the groove edges of the groove shape. It is detected as point a1, and the end point al is stored.

このようにして、開先形状の一方の端点a1の検出が完
了すると、演算装置18は、他方の端点b1を検出する
。すなわち演算装置18は、上記一方の端点a1の検出
と同様に、2値化画像の他方の始点b2から始まる各微
小区間の傾き値を求め、求めた傾き値の正負、基準傾き
値αA〜αDとの比較により、他方の端点b1を検出す
る。
When the detection of one end point a1 of the groove shape is completed in this way, the calculation device 18 detects the other end point b1. That is, the calculation device 18 calculates the slope value of each minute section starting from the other starting point b2 of the binarized image in the same way as detecting the one end point a1, and calculates the sign of the calculated slope value and the reference slope values αA to αD. The other end point b1 is detected by comparison with .

演算装置18は、開先形状の両方の端点a1、blの検
出が完了すると、それらの平均値[al+bl]/2を
開先中心位置として求める。演算装置18は、更に、上
記開先中心位置情報に基づいて現在のトーチ位置と開先
中心位置との差を零にするような制御信号をサーボ機構
部19に出力として与えサーボ機構部19を駆動し、溶
接装置20による溶接位置を制御する。
When the calculation device 18 completes the detection of both end points a1 and bl of the groove shape, the calculation device 18 determines their average value [al+bl]/2 as the groove center position. The arithmetic device 18 further outputs a control signal to the servo mechanism section 19 to make the difference between the current torch position and the groove center position zero based on the groove center position information. and controls the welding position by the welding device 20.

なお、開先形状が第3図に示すように左右非対称な場合
にも、左右の形状およびそれらの開先端点a1、blを
それぞれ独立して求めることができ、それらの端点a1
、blの平均値[a1+b 11 /2を求める等それ
らの端点a1、blに基づいて開先中心位置を求めるこ
とが可能である。
Note that even if the groove shape is asymmetrical as shown in FIG. 3, the left and right shapes and their groove tip points a1 and bl can be determined independently, and their edge points a1
, bl can be used to determine the groove center position based on the end points a1 and bl, such as by determining the average value [a1+b 11 /2].

第8図(A)、(B)は、縫合部に2種類以上の開先形
状を宥している試料A、Bに本発明を適用して求めた開
先中心位置と、実際の開先中心位置との差を示す線図で
ある。この第8図(A>、(B)によれば、異る開先形
状が存在する被溶接材の開先中心位置を±0.5 mm
の高精度・で検出可能であることが認められる。したが
って、本発明によれば、オフシーム等の欠陥のない安定
した品質の溶接部を得ることが可能となる。
Figures 8 (A) and (B) show the groove center position determined by applying the present invention to samples A and B, which have two or more types of groove shapes in the sutured portion, and the actual groove shape. FIG. 3 is a diagram showing the difference from the center position. According to FIG. 8 (A>, (B)), the groove center position of the welded material with different groove shapes is ±0.5 mm.
It is recognized that it can be detected with high accuracy. Therefore, according to the present invention, it is possible to obtain a welded part of stable quality without defects such as off-seams.

[発明の効果] 以上のように、本発明に係る溶接管の外面溶接方法は、
溶接管の縫合部の開先形状を予め複数の基準形状に分類
し、各基準形状の開先端点の基準傾き値を定めるととも
に、実際に溶接される溶接管の縫合部の現実の開先形状
を撮像し、該撮像された開先形状を座標化し、該座標化
された開先形状の各微小区間の傾き値を求め、この傾き
値を前記各基準形状の基準傾き値と比較することにより
、該開先形状の開先端点の位置を求め、該開先形状の左
右の開先端点の位置から開先中心位置を求め、該開先中
心位置に基づいて溶接トーチによる溶接位置を制御する
ようにしたものである。したがって、縫合部の全長にわ
たって正確に開先中心位置を求め、高精度に溶接を行な
い、高品質の溶接部を得ることが可能となる。
[Effects of the Invention] As described above, the method for welding the outer surface of a welded pipe according to the present invention has the following effects:
The groove shape of the seam of the welded pipe is classified in advance into multiple reference shapes, and the reference slope value of the groove tip point of each reference shape is determined, and the actual groove shape of the seam of the welded pipe to be actually welded is determined. By imaging the imaged groove shape, converting the imaged groove shape into coordinates, determining the slope value of each minute section of the coordinated groove shape, and comparing this slope value with the reference slope value of each of the reference shapes. , find the position of the groove point of the groove shape, find the groove center position from the positions of the left and right groove points of the groove shape, and control the welding position by the welding torch based on the groove center position. This is how it was done. Therefore, it is possible to accurately determine the groove center position over the entire length of the seam, perform welding with high precision, and obtain a high-quality weld.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に用いられる溶接装置の一例を示
す斜視図、第2図(A)〜(D)は複数に分類された基
準開先形状のそれぞれを示す模式図、第3図は左右非対
称な開先形状を示す模式図、第4図は本発明の制御手順
を示す流れ図、”第5図は演算装置の演算手順を示す流
れ図、fJIB図は撮像機による映像を示す模式図、第
7図は座標化された開先形状を示す模式図、第8図(A
)、CB)は本発明による開先中心位置の検出結果を下
す線図である。 11・・・溶接管、15・・・撮像機、18・・・演算
装置、19・・・サーボ機構部、20・・・溶接トーチ
。 代理人  弁理士  塩 川 修 治 ■
Fig. 1 is a perspective view showing an example of a welding device used in carrying out the present invention, Figs. 2 (A) to (D) are schematic diagrams showing each of the reference groove shapes classified into a plurality of types, and Fig. 3 4 is a flowchart showing the control procedure of the present invention, 5 is a flowchart showing the calculation procedure of the arithmetic device, and fJIB is a schematic diagram showing the image captured by the imaging device. , Fig. 7 is a schematic diagram showing the groove shape converted into coordinates, and Fig. 8 (A
), CB) are diagrams showing the detection results of the groove center position according to the present invention. DESCRIPTION OF SYMBOLS 11... Welding pipe, 15... Image pickup device, 18... Arithmetic device, 19... Servo mechanism part, 20... Welding torch. Agent Patent Attorney Osamu Shiokawa■

Claims (1)

【特許請求の範囲】[Claims] (1)溶接管の縫合部の開先形状を予め複数の基準形状
に分類し、各基準形状の開先端点の基準傾き値を定める
とともに、実際に溶接される溶接管の縫合部の現実の開
先形状を撮像し、該撮像された開先形状を座標化し、該
座標化された開先形状の各微小区間の傾き値を求め、こ
の傾き値を前記各基準形状の基準傾き値と比較すること
により、該開先形状の開先端点の位置を求め、該開先形
状の左右の開先端点の位置から開先中心位置を求め、該
開先中心位置に基づいて溶接トーチによる溶接位置を制
御する溶接管の外面溶接方法。
(1) The groove shape of the seam of the welded pipe is classified in advance into multiple reference shapes, and the reference slope value of the groove tip point of each reference shape is determined. Image the groove shape, convert the imaged groove shape into coordinates, determine the slope value of each minute section of the coordinated groove shape, and compare this slope value with the reference slope value of each of the reference shapes. By doing so, the position of the groove point of the groove shape is determined, the groove center position is determined from the positions of the left and right groove points of the groove shape, and the welding position by the welding torch is determined based on the groove center position. Control the external welding method of welded pipes.
JP16877584A 1984-08-14 1984-08-14 Outside surface welding method of weld pipe Pending JPS6149774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16877584A JPS6149774A (en) 1984-08-14 1984-08-14 Outside surface welding method of weld pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16877584A JPS6149774A (en) 1984-08-14 1984-08-14 Outside surface welding method of weld pipe

Publications (1)

Publication Number Publication Date
JPS6149774A true JPS6149774A (en) 1986-03-11

Family

ID=15874228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16877584A Pending JPS6149774A (en) 1984-08-14 1984-08-14 Outside surface welding method of weld pipe

Country Status (1)

Country Link
JP (1) JPS6149774A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143677U (en) * 1988-03-25 1989-10-02
JPH0437476A (en) * 1990-05-31 1992-02-07 Kawasaki Steel Corp All position automatic welding equipment
US5104216A (en) * 1988-12-05 1992-04-14 Igm Industriegerate- Und Maschinenfabriksgesellschaft Mbh Process for determining the position and the geometry of workpiece surfaces
JP2017051982A (en) * 2015-09-09 2017-03-16 ジヤトコ株式会社 Inspection method for non-weld zone and inspection equipment for non-weld zone
CN110064819A (en) * 2019-05-14 2019-07-30 苏州实创德光电科技有限公司 The extraction of cylinder longitudinal seam characteristic area, welding seam tracking method and system based on structure light
JP2020509935A (en) * 2017-02-27 2020-04-02 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Manufacturing system and method for boiler tube with synchronous rotation of tube related to automatic welding

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143677U (en) * 1988-03-25 1989-10-02
US5104216A (en) * 1988-12-05 1992-04-14 Igm Industriegerate- Und Maschinenfabriksgesellschaft Mbh Process for determining the position and the geometry of workpiece surfaces
JPH0437476A (en) * 1990-05-31 1992-02-07 Kawasaki Steel Corp All position automatic welding equipment
JP2017051982A (en) * 2015-09-09 2017-03-16 ジヤトコ株式会社 Inspection method for non-weld zone and inspection equipment for non-weld zone
CN107030406A (en) * 2015-09-09 2017-08-11 加特可株式会社 The inspection method at unwelded position and the check device at unwelded position
CN107030406B (en) * 2015-09-09 2020-05-22 加特可株式会社 Method and apparatus for inspecting unwelded portion
JP2020509935A (en) * 2017-02-27 2020-04-02 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Manufacturing system and method for boiler tube with synchronous rotation of tube related to automatic welding
US11554437B2 (en) 2017-02-27 2023-01-17 General Electric Technology Gmbh System, method and apparatus for welding tubes
CN110064819A (en) * 2019-05-14 2019-07-30 苏州实创德光电科技有限公司 The extraction of cylinder longitudinal seam characteristic area, welding seam tracking method and system based on structure light
CN110064819B (en) * 2019-05-14 2021-04-30 苏州实创德光电科技有限公司 Cylindrical surface longitudinal weld characteristic region extraction and weld tracking method and system based on structured light

Similar Documents

Publication Publication Date Title
JPS6149774A (en) Outside surface welding method of weld pipe
JP3117374B2 (en) Automatic control of bead shape
JP3408749B2 (en) Automatic welding equipment
JPH05261564A (en) Manufacture of electric resistance welded tube
JP2824145B2 (en) Welding method
JPH0871750A (en) Welding equipment
JPH05337785A (en) Grinding path correcting device of grinder robot
JPH0647541A (en) Method for judging status of arc
JP2001012907A (en) Measuring method of bolt hole position of steel structure and its measuring device
JPS6039964B2 (en) Welding groove center position detection device
JPH05138354A (en) Automatic welding profiling device
JPH03161173A (en) Bevel profile control method
JPH0659545B2 (en) Automatic welding method
JP2515142B2 (en) Groove detection method by image processing
JPH01182704A (en) Weld line detecting apparatus
JPH0781835B2 (en) Width measuring device
JPH085350A (en) Weld groove position and shape measurement method
JPH09220666A (en) Welding position inspecting apparatus
JPH0929434A (en) Welding position inspecting apparatus and welding system
JPH08187577A (en) Groove detection method
JPH0120957B2 (en)
JPH03118975A (en) Welding equipment
JPH0630814B2 (en) Welding position determination method and welding method
JP2821260B2 (en) Welding method
JP3022420B2 (en) Fillet welding position sensing apparatus and method