[go: up one dir, main page]

JPS6149273B2 - - Google Patents

Info

Publication number
JPS6149273B2
JPS6149273B2 JP2113579A JP2113579A JPS6149273B2 JP S6149273 B2 JPS6149273 B2 JP S6149273B2 JP 2113579 A JP2113579 A JP 2113579A JP 2113579 A JP2113579 A JP 2113579A JP S6149273 B2 JPS6149273 B2 JP S6149273B2
Authority
JP
Japan
Prior art keywords
weight
parts
water
approximately
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2113579A
Other languages
Japanese (ja)
Other versions
JPS55113654A (en
Inventor
Hideo Motoki
Ryuji Nakamura
Shigehiro Nagashitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Kaken Co Ltd
Original Assignee
Shikoku Kaken Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Kaken Industry Co Ltd filed Critical Shikoku Kaken Industry Co Ltd
Priority to JP2113579A priority Critical patent/JPS55113654A/en
Publication of JPS55113654A publication Critical patent/JPS55113654A/en
Publication of JPS6149273B2 publication Critical patent/JPS6149273B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新しい無機断熱材の製造方法に係り、
詳しくは単に原料物質をペースト状に混合するだ
けで発泡及び硬化が起り何等加熱操作を要するこ
となく短時間内に均一な気泡を有する断熱性、機
械的強度、耐水性、耐湿性並びに耐候性の優れた
部分的に有機質物質を複合した無機台熱材を安定
して収得し得る新規にして且つ有用な方法に関す
る。 従来より無機断熱材は種々提案されている。例
えばアルカリ金属珪酸塩水溶液を主とするものは
何れも必らず加熱操作(通常200〜900℃)が必要
であり、本質的に耐水性、耐湿性等に劣り水分と
の接触により容易に該アルカリ金属の溶出が起
り、発泡断熱材の機械的強度を著しく低下させる
などの欠点があり、断熱材等としての実用性はほ
とんどない。またポルトランドセメントを結合材
とする軽量コンクリート、軽量モルタル等の無機
質軽量体が知られているが、比重が大きく(1.0
前後)断熱材としての実用性に欠ける。更にオー
トクレーブ養生された軽量気泡コンクリートは操
作が煩雑で、しかも軽量な発泡体は得難く最も軽
量なものでもそのかさ比重は0.5以上に及ぶ。 本発明はこれら従来の無機軽量断熱材の性能就
中軽量にして機械的強度、化学的抵抗並びに耐久
性の点で著しく改善された有機物質複合型の有用
な無機断熱材組成物を提供するものである。 即ち本発明は実質的に(A)水可溶性アルカリ金属
珪酸塩、(B)セメント物質、(C)金属系発泡剤、(D)発
泡安定剤、および(E)電熱や金により副生されるシ
リカダスト並びに合成樹脂又は合成ゴムの粉体、
粒状体、もしくは水分散体より成ることを特徴と
する無機断熱材組成物の製法に係る。 本発明無機断熱材の製造方法は上記6成分を単
に混合、ペースト状にするだけで常温常圧下で容
易に発泡断熱材となるもので、硬化時間が短かく
複雑な形状にも成形でき気象条件に左右されるこ
となく均一なかさ比重となる。発泡硬化後の断熱
材は殊にかさ比重が従来優れた機械的強度を有す
るものとして公知の軽量気泡コンクリートでは不
可能な0.1〜0.3g/cm3程度の極めて低密度にも調
整でき、熱伝導率も軽量気泡コンクリートの約1/
3〜1/2にも低下できるものであるばかりでなく均
一な気泡構造を有しており、その気泡構造は緻密
で極めて強固である。従つて本発明断熱材は断熱
性、機械的強度、耐水性、耐湿性並びに耐候性が
非常に優れており価値多い。とりわけ顕著な効果
として機械的強度の向上並びに耐候性の向上が掲
げられる。即ち、(E)成分である電熱や金により副
生されるシリカダストと合成樹脂又は合成ゴムの
配合なくしては発泡断熱材中の遊離アルカリが固
層内移動によつて徐々に該発泡体表面もしくは内
部に分離して白い粉をふく現象を十分に制止する
ことができず、かかる現象は断熱材の美観を損う
ばかりでなく機械的強度をも低下させるものであ
つたが、本発明者らはこれを防止することに着眼
点を置き鋭意研究に取り組んだ結果、上述の発明
を完成するに至つたものである。本発明者らの推
定によると、電熱や金により副生される特異なシ
リカダストと合成樹脂又は合成ゴムの粉体、粒状
体もしくは水分散体が該発泡断熱材中に均一に分
散されており、殊に発泡硬化の過程で発生する熱
の助力を得て遊離アルカリ分が見掛け上固定さ
れ、乾燥後はこれが一層強固になるものと思料さ
れる。と同時に固定された誘離アルカリ分を含有
した断熱材は降雨、紫外線照射、寒暖変化等の諸
環境条件を包含する耐候性の試験で非常に良い結
果を示すものである。 本発明において、(A)成分としては水可溶性アル
カリ金属珪酸塩を用いることを必須とし、これを
構成するものとしては例えばリチウム、ナトリウ
ム、カリウム等アルカリ金属の水可溶性珪酸塩が
掲げられ、また該(A)成分は水可溶性である限り、
その組成やモル比には制限されないが、sio2とア
ルカリ金属とのモル比1.5〜4.0程度とするのが好
ましい。上記(A)成分は、その1種を単独で又は2
種以上を併用して、粉末の形態でもまた水溶液の
形態でも有利に用い得るがペースト状に調整され
る時点で固形分濃度が約10〜60重量%になるよう
にし、もし水溶液で用いる時は予め固形分濃度を
20%以上、通常20〜60%程度のアルカリ金属珪酸
塩水溶液の形態とするのが望ましい。以下単に(A)
成分という。 次に(B)成分とするセメント物質とは、化学工業
界で通常セメントと称呼されているものを総括す
るものであり、気硬性セメント、水硬性セメント
並びに特殊セメントがこれに該当する。気硬性セ
メントとしては生石灰、消石灰、苦土質石灰、ド
ロマイトプラスター等の石灰、焼石こう、キーン
スセメント、パリアンセメント、マルチンセメン
ト等の石こうである単味セメント並びに、マグネ
シアセメントが例示できる。ま、水硬性セメント
としては、水硬性石灰、天然セメント、ポルトラ
ンドセメント、アルミナセメント、等の単味セメ
ント、石灰混合セメント、高炉セメント、シリカ
セメント、フライアツシユセメント、メーソンリ
ーセメント、高硫酸塩セメント等の混合セメント
が例示できる。更にまた特殊セメントとしては耐
火セメント、耐酸セメント等を例示できる。この
内、特に望ましいものは水硬性セメントである
が、単にセメント物質が上述のものから単独のみ
の形態で用いられるばかりでなく、水硬性セメン
トと気硬性セメントの併用も効果があり、あるい
は同じ水硬性セメントであつても2種以上の混合
が十分にできる。以下単に(B)成分と称する。 本発明において(C)成分とする金属系発泡剤とし
ては各種の金属元素及び金属合金乃至金属間化合
物が使用できる。金属元素としては周期律表
1B、2A、2B、3A、3B、4A、4B、5A、5B、
6B、7B及び8族に属するものが何れも使用で
き、その内第3〜5周期に属するのが好ましい。
尚、本発明ではホウ素、珪素等の半金属元素も使
用可能である。本発明ではまた上記金属の合金乃
至金属化合物(金属相互間もしくは金属と非金属
との化学結合体)も上記金属と同様に使用でき
る。該合金乃至金属間化合物の代表的なものを例
示すれば、Al−Si、Al−Ti、Al−Mn、Al−Cu、
Zn−S、Zn−Sn、Sn−Fe、Cu−Sn、Cu−Si、
Cu−Pb、Cu−NiFe−Ni、Fe−Mn、Fe−Cr、
Fe−Si、Mn−P、Mn−Ag、Si−Ni、Co−Sb等
が掲げられる。上記(C)成分は通常その1種又は2
種以上を微粉末の形態で用いるのが良く、特に
150μ以下の粒度で用いるのが好ましい。以下単
に(C)成分と称する。 更に本発明において(D)成分とする発泡安定剤と
してはシリカゲル、ゼオライト、人工ゼオライ
ト、カーボンブラツク、活性炭、タルク(滑石)
及びマイカ(雲母)から選ばれる無機物質及び従
来よりセメント系の起泡剤として公知の動物蛋白
質、ジメチルシリコン誘導体等の有機物質を使用
できる。これら(D)成分は(C)成分の系内への分散状
態を均一にし発泡反応を安定化する作用を有し、
微細均一気泡の生成に有効である。該(D)成分が無
機物質の時には通常200μ以下の粒度の粉末状で
用いるのが好ましい。以下単に(D)成分という。 更にまた、本発明において(E)成分とする電熱や
金により副生されるシリカダストとは次のものを
いう。電熱や金法では通常2000〜3000℃あるいは
それ以上の高温を発生せしめ珪石あるいは1又は
金属元素単体もしくはその原鉱石を熱処理せし
め、係る際酸化性雰囲気を避けるため還元性能の
高いコークスや水素ガス、一酸化炭素等を通過せ
しめるもので、任意の金属や金を行うと粗原料で
ある該金属原鉱石中のシリカ分(Sio2)、アルミ
ナ分(Al2O3)などのごとき酸化物物は蒸気とな
り多くが分解して反応性の高金属元素となるが、
空気中の酸素と結合したり、シリカ、アルミナの
まま残存している蒸気は空気中で急冷を受け粉末
状を呈する。係る際原鉱石中に含まれている硫
黄、リン、炭素などの不純物も共に含有されてい
ることが多いが、その量は相対的に微量でこの為
副生される微粉末はシリカ分の高いものとなり殊
に珪素合金の製造の場合にはシリカ分の純度が顕
著に高く、それらを総称してシリカダストとい
う。この内、本発明に用いるシリカダストとして
望ましいものは、粒子径約0.1〜1.0μ、比表面積
約10〜50m2/g並びにかさ比重約0.1〜0.3のもの
であり、純度としてシリカ分約80重量%以上のも
のを例示できる。以下単に(E)成分という。 最後に本発明に配合される合成樹脂又は合成ゴ
ムは種類に特に限定されることなく、酢酸ビニ
ル、アクリル酸エステル、エチレン、メタクリル
酸メチル、塩化ビニル、スチレン、プロピオン酸
ビニル、エポキシ、メラミン、ウレタン、ブタジ
エン、クロロプレン、イソプレン、SBR、
NBR、塩化ビニリデン、ジアリルフタレート、
ジアリルマレエート、ジブチルマレート、ポリエ
ステル、プロピレン等の単独重合体又は2以上の
共重合体の粉体、粒状体もしくは水分散液の形態
で使用できる。この内望ましいものとしては熱可
塑性のもので水分散体、粉体及び粒状体の場合は
粒径が直径2mm以下のものを例示できる。以下、
これらを単に(F)成分と称する。 上記(A)成分〜(F)成分の配合割合は、これら各成
分とする物質、特に(A)成分を水溶液の形態で使用
する時にはその濃度及び所望製品のかさ比重、強
度条件により一定しないが、通常次のごとくとす
ればよい。即ち(A)成分固形分を基準にして、その
100重量部に対し(B)成分を固形分として約10〜100
重量部好ましくは約15〜90重量部とし、(C)成分を
約2〜30重量部とし、(D)成分を、これが無機物質
の場合は約5〜50重量部、有機物質である場合は
固形分で約0.1〜3重量部とし、(E)成分を約5〜
70重量部とし、(F)成分を固形分で約3〜50重量部
用いる。一般に(A)成分が過剰にあると気泡やかさ
比重が安定せず発泡状態が不均一でしかも耐水性
のよくないものとなり、(B)成分が多い時はペース
ト調整時に該ペーストの粘度が高くなり過ぎ、作
業性が悪くなる。また(C)成分が少ないと発泡は悪
くなり製品のかさ比重が重く、逆に多過ぎると製
品中の気泡が大きくなり発泡過剰となつて所望の
強度が得難い。(D)成分が無機物質の場合少な過ぎ
ると発泡が不均一となり多過ぎるとペースト調整
が困難になる。(D)成分が有機物質の場合は多過ぎ
ると連通気泡が増えて断熱性低下に繋がり、少な
い時は安定性効果が保てない。(E)成分はこれが多
くなると発泡体形成時に収縮が大きくなりクラツ
チの原因を誘導する一方少ない時は断熱性、耐候
性、機械的強度が低下する。(F)成分は少ない場合
は本発明で特筆しているごとき耐水性、耐湿性の
みならず耐候性の改善ができず、多量になると耐
火性等無機質特有の性能が著しく低下し、ペース
ト状態で練り難く作業上支障を来たす。 かくして調整される本発明無機断熱材は更に必
要に応じて例えば発泡シリカ、パーライト、ひる
石等通常1000℃以上で焼成された軽量骨材を添加
混合することができ、これにより製品のかさ比重
を調整することができる。更にまた増量、補強等
を目的として石こう、溶融石英、焼成クリストバ
ライト、シリコンカーバイド、窒化ほう素、珪
石、アルミナ、ガラス繊維等公知の各種充てん材
を添加することもあるが、これら充てん材の種類
及び添加量は必須成分とする(A)〜(F)成分の反応形
態を妨げなよう注意する必要がある。 このような配合により通常0.5〜10mm程度の範
囲の均一な気泡を有し、低比重にして高強度でし
かも低級水率、耐水性、耐湿性、耐薬品性、断熱
性、耐熱性、耐候性等に優れた無機発泡断熱材が
得られる。 以下本発明の実施態様を詳細に説明する。 実施例 1 次の組成より成る無機断熱材を調整した。 (A) 珪酸ソーダ水溶液(sio2/Na2oモル比2.0、
濃度20%) 100重量部 (B) アルミナセメント(Al2O3/Caoモル比0.7)
100重量部 (C) 金属珪素 5重量部 (D) 活性炭(5〜50μ) 8重量部 (E) フエロシリコン製造時に副生されたシリカダ
スト(sio2含有率95wt) 9重量部 (F) エチレン酢酸ビニル樹脂パウダー 5重量部 上記混合物をよく撹拌してポリ容器中で常温常
圧下にて発泡させ、発泡断熱材を得た。このもの
物性は、かさ比重が0.33、圧縮強度11.5Kg/cm2
あつた。このものを温度50℃、湿度80±20RH%
で且つ炭酸ガスの充満する高湿雰囲気にて72時間
放置しておいたところ、該発泡体の表面及び内部
の粉化はみられなかつた。また、このものをサン
シヤイン型促進耐候試験機中で250時間経過した
後外観を観察したところ、表面及び内部の粉化は
みられなかつた。 実施例 2〜7 実施例1の方法に基づいて第1表の配合割合を
定め発泡断熱材を得た。これらの発泡断熱材につ
いて次の試験を行い第2表に示す結果を得た。尚
耐湿性及び耐候性及び耐候性試験は実施例1に従
い、他は次の方法で試験した。 1 かさ比重:JlS A1161による。 2 圧縮強度:JIS A1161による。 3 耐水性:水中(20℃)に24時間浸漬した後空
気中に24時間放置し粉化の状態をみる。 4 耐アルカリ性:飽和Ca(OH)2溶液に24時間
浸漬した後空気中に24時間放置し粉化の状態を
みる。 5 耐水性試験後の圧縮強度:耐水性試験後JIS
A1161による。
The present invention relates to a new method for producing an inorganic heat insulating material,
In detail, foaming and curing occur simply by mixing the raw materials into a paste form, and the foaming and curing occurs within a short period of time without the need for any heating operation.It has excellent heat insulation properties, mechanical strength, water resistance, moisture resistance, and weather resistance. The present invention relates to a novel and useful method for stably obtaining an excellent inorganic heat material partially composited with an organic substance. Various inorganic heat insulating materials have been proposed so far. For example, any aqueous alkali metal silicate solution necessarily requires heating (usually at 200 to 900°C), and is inherently inferior in water resistance and moisture resistance, making it easily susceptible to contact with moisture. There are drawbacks such as the elution of alkali metals, which significantly reduces the mechanical strength of the foamed heat insulating material, and it has almost no practical use as a heat insulating material. Inorganic lightweight materials such as lightweight concrete and lightweight mortar that use Portland cement as a binding material are also known, but they have a large specific gravity (1.0
Front and back) Lacks practicality as a heat insulating material. Furthermore, lightweight aerated concrete cured in an autoclave is complicated to operate, and lightweight foams are difficult to obtain, with the bulk specific gravity of even the lightest concrete reaching 0.5 or more. The present invention provides a useful inorganic heat insulating composition of an organic material composite type that has significantly improved performance over conventional inorganic lightweight heat insulating materials, particularly in terms of light weight, mechanical strength, chemical resistance, and durability. It is. That is, the present invention essentially comprises (A) a water-soluble alkali metal silicate, (B) a cement substance, (C) a metal foaming agent, (D) a foaming stabilizer, and (E) a by-product produced by electric heating or gold. Silica dust and synthetic resin or synthetic rubber powder,
The present invention relates to a method for producing an inorganic heat insulating material composition characterized by comprising granules or an aqueous dispersion. The method for manufacturing the inorganic heat insulating material of the present invention is such that it can easily be made into a foamed heat insulating material at room temperature and pressure by simply mixing the above six components and making it into a paste.The curing time is short and it can be molded into complex shapes depending on the weather conditions. It has a uniform bulk specific gravity regardless of the The heat insulating material after foam hardening can be adjusted to an extremely low bulk density of 0.1 to 0.3 g/ cm3 , which is impossible with lightweight aerated concrete, which is known to have excellent mechanical strength, and has excellent thermal conductivity. The ratio is also about 1/1 that of lightweight aerated concrete.
Not only can it be reduced by 3 to 1/2, but it also has a uniform cell structure, and the cell structure is dense and extremely strong. Therefore, the heat insulating material of the present invention has excellent heat insulating properties, mechanical strength, water resistance, moisture resistance, and weather resistance, and is therefore of great value. Particularly notable effects include improvements in mechanical strength and weather resistance. In other words, without blending the silica dust produced by electric heating and gold as component (E) with synthetic resin or synthetic rubber, the free alkali in the foamed insulation material will gradually degrade to the surface of the foamed material as it moves within the solid phase. Otherwise, it was not possible to sufficiently prevent the phenomenon of white powder separating inside the material, and this phenomenon not only damaged the aesthetic appearance of the insulation material but also reduced the mechanical strength. As a result of intensive research focused on preventing this, the above-mentioned invention was completed. According to the inventors' estimation, unique silica dust produced by electric heating and gold, and powder, granules, or water dispersion of synthetic resin or synthetic rubber are uniformly dispersed in the foam insulation material. It is believed that the free alkali content is apparently fixed, especially with the aid of the heat generated during the foam curing process, and becomes even stronger after drying. At the same time, heat insulating materials containing fixed dilute alkali content show very good results in weather resistance tests that include various environmental conditions such as rainfall, ultraviolet irradiation, and changes in temperature and temperature. In the present invention, it is essential to use a water-soluble alkali metal silicate as component (A), and constituents thereof include, for example, water-soluble silicates of alkali metals such as lithium, sodium, and potassium; As long as component (A) is water soluble,
Although there are no restrictions on the composition or molar ratio, it is preferable that the molar ratio of sio 2 to the alkali metal is about 1.5 to 4.0. The above component (A) may be used alone or in combination.
It can be advantageously used in the form of a powder or an aqueous solution by using a combination of two or more species, but the solid content concentration should be about 10 to 60% by weight when prepared into a paste, and if used in an aqueous solution, Set the solid content concentration in advance.
It is preferably in the form of an aqueous alkali metal silicate solution of 20% or more, usually about 20 to 60%. Below simply (A)
It is called an ingredient. Next, the cement substance used as component (B) includes what is commonly called cement in the chemical industry, and includes air-hardening cement, hydraulic cement, and special cement. Examples of air-hardening cements include lime such as quicklime, slaked lime, magnesia lime, and dolomite plaster; simple cements such as calcined gypsum, Keens cement, Parian cement, and martin cement; and magnesia cement. Hydraulic cements include single cements such as hydraulic lime, natural cement, Portland cement, alumina cement, lime mixed cement, blast furnace cement, silica cement, fly ash cement, masonry cement, high sulfate cement, etc. An example of this is mixed cement. Furthermore, examples of the special cement include fire-resistant cement and acid-resistant cement. Of these, hydraulic cement is particularly desirable, but it is also effective not only to use the above-mentioned cement substances alone, but also to use a combination of hydraulic cement and air-hard cement, or to use the same Even with hard cement, two or more types can be sufficiently mixed. Hereinafter, it will simply be referred to as component (B). In the present invention, various metal elements, metal alloys, and intermetallic compounds can be used as the metallic foaming agent as component (C). Periodic table for metal elements
1B, 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B,
Any of those belonging to Groups 6B, 7B and 8 can be used, and among them, those belonging to the 3rd to 5th period are preferred.
Note that semimetallic elements such as boron and silicon can also be used in the present invention. In the present invention, alloys or metal compounds of the above metals (chemical combinations between metals or between metals and non-metals) can also be used in the same manner as the above metals. Representative examples of the alloy or intermetallic compound include Al-Si, Al-Ti, Al-Mn, Al-Cu,
Zn-S, Zn-Sn, Sn-Fe, Cu-Sn, Cu-Si,
Cu-Pb, Cu-NiFe-Ni, Fe-Mn, Fe-Cr,
Fe-Si, Mn-P, Mn-Ag, Si-Ni, Co-Sb, etc. are listed. The above (C) component is usually one or two of them.
It is better to use seeds or more in the form of fine powder, especially
It is preferable to use a particle size of 150μ or less. Hereinafter, it will simply be referred to as component (C). Further, in the present invention, the foaming stabilizer used as component (D) includes silica gel, zeolite, artificial zeolite, carbon black, activated carbon, and talc.
and mica (mica), and organic substances such as animal proteins and dimethyl silicon derivatives, which are conventionally known as foaming agents for cement systems, can be used. These (D) components have the effect of uniformly dispersing the (C) component in the system and stabilizing the foaming reaction.
Effective in generating fine, uniform bubbles. When the component (D) is an inorganic substance, it is usually preferably used in the form of a powder with a particle size of 200 μm or less. Hereinafter, it will simply be referred to as component (D). Furthermore, in the present invention, the silica dust produced by electric heating or gold as component (E) refers to the following. In electric heating and metallurgical methods, high temperatures of 2,000 to 3,000°C or higher are usually generated to heat-treat silica stone, a single metal element, or its raw ore, and in order to avoid an oxidizing atmosphere, coke or hydrogen gas with high reducing performance is used. It allows carbon monoxide, etc. to pass through, and when it is used with any metal or gold, oxides such as silica (Sio 2 ) and alumina (Al 2 O 3 ) in the raw metal ore, which is the crude raw material, are removed. Most of it becomes vapor and decomposes into highly reactive metal elements, but
The vapor that combines with oxygen in the air or remains as silica or alumina is rapidly cooled in the air and becomes powdery. In this case, impurities such as sulfur, phosphorus, and carbon contained in the raw ore are often included, but the amount is relatively small and the fine powder that is produced as a by-product has a high silica content. Especially in the case of manufacturing silicon alloys, the purity of the silica component is extremely high, and these are collectively called silica dust. Among these, the silica dust used in the present invention is preferably one with a particle diameter of about 0.1 to 1.0 μ, a specific surface area of about 10 to 50 m 2 /g, and a bulk specific gravity of about 0.1 to 0.3, and has a purity of about 80% silica by weight. % or more can be exemplified. Hereinafter, it will simply be referred to as component (E). Finally, the synthetic resin or synthetic rubber to be blended in the present invention is not particularly limited in type, and includes vinyl acetate, acrylic ester, ethylene, methyl methacrylate, vinyl chloride, styrene, vinyl propionate, epoxy, melamine, and urethane. , butadiene, chloroprene, isoprene, SBR,
NBR, vinylidene chloride, diallyl phthalate,
It can be used in the form of powder, granules, or aqueous dispersion of a homopolymer or a copolymer of two or more of diallyl maleate, dibutyl maleate, polyester, propylene, etc. Among these, thermoplastic materials are preferred, and in the case of aqueous dispersions, powders, and granules, those having a particle size of 2 mm or less are exemplified. below,
These are simply referred to as component (F). The blending ratio of the above components (A) to (F) may vary depending on the concentration, bulk specific gravity, and strength conditions of the desired product, especially when component (A) is used in the form of an aqueous solution. , usually the following can be done. That is, based on the solid content of component (A),
Approximately 10 to 100 of component (B) as a solid content per 100 parts by weight
Parts by Weight Preferably about 15 to 90 parts by weight, component (C) about 2 to 30 parts by weight, component (D) about 5 to 50 parts by weight if it is an inorganic substance, and about 5 to 50 parts by weight if it is an organic substance. The solid content is approximately 0.1 to 3 parts by weight, and the component (E) is approximately 5 to 3 parts by weight.
The solid content of component (F) is about 3 to 50 parts by weight. In general, if component (A) is present in excess, the bubbles and bulk specific gravity will not be stable, resulting in non-uniform foaming and poor water resistance.If component (B) is present in excess, the viscosity of the paste will increase when preparing the paste. Too much, and workability deteriorates. Furthermore, if the amount of component (C) is too low, foaming will be poor and the bulk specific gravity of the product will be heavy, whereas if it is too high, the air bubbles in the product will become large, resulting in excessive foaming, making it difficult to obtain the desired strength. When component (D) is an inorganic substance, too little will result in non-uniform foaming, while too much will make paste preparation difficult. When component (D) is an organic substance, if it is too large, open air bubbles will increase, leading to a decrease in insulation properties, and if it is too small, the stability effect cannot be maintained. If the amount of component (E) is too large, the shrinkage will be large during foam formation, which may cause clutching, while if it is too small, the insulation, weather resistance, and mechanical strength will be reduced. If the amount of component (F) is small, it will not be possible to improve not only water resistance and moisture resistance, but also weather resistance, which is specially mentioned in the present invention. It is difficult to knead and causes trouble during work. The inorganic heat insulating material of the present invention prepared in this way can be further mixed with lightweight aggregates, such as foamed silica, pearlite, vermiculite, etc., which are usually fired at temperatures of 1000°C or higher, as needed, thereby reducing the bulk specific gravity of the product. Can be adjusted. Furthermore, various known fillers such as gypsum, fused silica, calcined cristobalite, silicon carbide, boron nitride, silica stone, alumina, and glass fiber may be added for the purpose of increasing the volume or reinforcing the material. It is necessary to be careful about the amount added so as not to interfere with the reaction form of the essential components (A) to (F). This type of formulation usually has uniform air bubbles in the range of 0.5 to 10 mm, low specific gravity, high strength, low water content, water resistance, moisture resistance, chemical resistance, heat insulation, heat resistance, and weather resistance. An inorganic foam heat insulating material with excellent properties can be obtained. Embodiments of the present invention will be described in detail below. Example 1 An inorganic heat insulating material having the following composition was prepared. (A) Sodium silicate aqueous solution (sio 2 /Na 2 o molar ratio 2.0,
Concentration 20%) 100 parts by weight (B) Alumina cement (Al 2 O 3 / Cao molar ratio 0.7)
100 parts by weight (C) Metallic silicon 5 parts by weight (D) Activated carbon (5-50μ) 8 parts by weight (E) Silica dust by-produced during ferrosilicon production (SIO 2 content 95 wt) 9 parts by weight (F) Ethylene vinyl acetate resin powder 5 parts by weight The above mixture was thoroughly stirred and foamed in a plastic container at room temperature and pressure to obtain a foamed heat insulating material. The physical properties of this product were a bulk specific gravity of 0.33 and a compressive strength of 11.5 Kg/cm 2 . The temperature is 50℃ and the humidity is 80±20RH%.
When the foam was allowed to stand for 72 hours in a high humidity atmosphere filled with carbon dioxide gas, no powdering was observed on the surface or inside of the foam. Further, when the appearance of this product was observed after 250 hours in a sunshine-type accelerated weathering tester, no powdering was observed on the surface or inside. Examples 2 to 7 Based on the method of Example 1, the blending ratios shown in Table 1 were determined to obtain foamed heat insulating materials. The following tests were conducted on these foam insulation materials, and the results shown in Table 2 were obtained. The moisture resistance, weather resistance, and weather resistance tests were conducted in accordance with Example 1, and the other tests were conducted in the following manner. 1 Bulk specific gravity: According to JlS A1161. 2 Compressive strength: According to JIS A1161. 3 Water resistance: After immersing in water (20℃) for 24 hours, leave it in the air for 24 hours and check the state of powdering. 4 Alkali resistance: After immersing in a saturated Ca(OH) 2 solution for 24 hours, leave it in the air for 24 hours and observe the state of powdering. 5 Compressive strength after water resistance test: JIS after water resistance test
According to A1161.

【表】【table】

【表】 比較例 実施例1において(E)成分及び(F)成分を混合しな
いで試験を行つた結果第2表に示すようになつ
た。
[Table] Comparative Example In Example 1, a test was conducted without mixing component (E) and component (F), and the results were as shown in Table 2.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 (A) 水可溶性アルカリ金属珪酸塩、 (B) セメント物質、 (C) 金属系発泡剤、 (D) 発泡安定剤、および (E) 電熱や金により副生されるシリカダスト を水の存在下でペースト状に混合して無機断熱材
を得るに際し、合成樹脂又は合成ゴムの粉体、粒
状体もしくは水分散体を添加混合することを特徴
とする、構造的強度の優れた無機断熱材の製造方
法。 2 水可溶性アルカリ金属珪酸塩のsio2/Rエ
(但し、Rエはアルカリ金属を示す)のモル比
が、1.5〜4.0のものであることを特徴とする特許
請求の範囲第1項記載の方法。 3 ペースト状に混合される混合物が、水可溶性
アルカリ金属珪酸塩を濃度約10〜60重量%の水溶
液の形態とする量の水を含有する特許請求の範囲
第1項記載の方法。 4 電熱や金により副生されるシリカダストが粒
子径約0.1〜1.0μ、比表面積約10〜50m2/g並び
にかさ比重約0.1〜0.3で、且つ純度としてシリカ
分約80重量%以上の形態とすることを特徴とする
特許請求の範囲第1項記載の方法。 5 合成樹脂又は合成ゴムの粉体、粒状体もしく
は水分散体が、熱可塑性を有し且つ粒径が約2mm
(直径)以下であることを特徴とする特許請求の
範囲第1項記載の方法。 6 水可溶性アルカリ金属珪酸塩100重量部に対
し、全て固形分比率で、セメント物質約10〜100
重量部、金属系発泡剤約2〜30重量部、発泡安定
剤約0.1〜50重量部、電熱や金により副生される
シリカダスト約5〜70重量部、および合成樹脂又
は合成ゴムを約3〜50重量部用いることを特徴と
する特許請求の範囲第1項記載の方法。
[Scope of Claims] 1 (A) water-soluble alkali metal silicate, (B) cement material, (C) metal foaming agent, (D) foaming stabilizer, and (E) by-produced by electric heating or gold. When mixing silica dust into a paste form in the presence of water to obtain an inorganic heat insulating material, synthetic resin or synthetic rubber powder, granules, or water dispersion is added and mixed. A method for producing superior inorganic insulation materials. 2 Water-soluble alkali metal silicate sio2 / Re2O
2. The method according to claim 1, wherein the molar ratio of R (wherein R represents an alkali metal) is from 1.5 to 4.0. 3. The method of claim 1, wherein the mixture to be mixed into a paste contains an amount of water such that the water-soluble alkali metal silicate is in the form of an aqueous solution having a concentration of about 10 to 60% by weight. 4 Silica dust produced by electric heating or gold has a particle size of approximately 0.1 to 1.0 μ, a specific surface area of approximately 10 to 50 m 2 /g, a bulk specific gravity of approximately 0.1 to 0.3, and a purity of approximately 80% by weight or more of silica. The method according to claim 1, characterized in that: 5 The synthetic resin or synthetic rubber powder, granules, or water dispersion has thermoplasticity and has a particle size of approximately 2 mm.
(diameter) or less. 6 Relative to 100 parts by weight of water-soluble alkali metal silicate, approximately 10 to 100 parts of cement material is added, all as a solid content ratio.
parts by weight, about 2 to 30 parts by weight of a metallic foaming agent, about 0.1 to 50 parts by weight of a foaming stabilizer, about 5 to 70 parts by weight of silica dust produced by electric heating or gold, and about 3 parts by weight of synthetic resin or synthetic rubber. The method according to claim 1, characterized in that ~50 parts by weight are used.
JP2113579A 1979-02-23 1979-02-23 Manufacture of inorganic heat insulator Granted JPS55113654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2113579A JPS55113654A (en) 1979-02-23 1979-02-23 Manufacture of inorganic heat insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2113579A JPS55113654A (en) 1979-02-23 1979-02-23 Manufacture of inorganic heat insulator

Publications (2)

Publication Number Publication Date
JPS55113654A JPS55113654A (en) 1980-09-02
JPS6149273B2 true JPS6149273B2 (en) 1986-10-28

Family

ID=12046444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2113579A Granted JPS55113654A (en) 1979-02-23 1979-02-23 Manufacture of inorganic heat insulator

Country Status (1)

Country Link
JP (1) JPS55113654A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19909077A1 (en) * 1999-03-02 2000-09-14 Peter Niedner Mineral foam-like building and structural material and method for producing a mineral foam and device for carrying out the method
JP4572261B2 (en) * 2009-01-07 2010-11-04 サンライズ産業株式会社 Method for producing cured body containing bubbles
WO2019000585A1 (en) * 2017-06-29 2019-01-03 熊建平 Heat-preserving and thermal-insulating material for wall

Also Published As

Publication number Publication date
JPS55113654A (en) 1980-09-02

Similar Documents

Publication Publication Date Title
JP7054081B2 (en) Cement composition, cement paste, cement mortar and concrete material
US2914413A (en) Cement composition and method of preparation
SA519410075B1 (en) Inorganic Foam based on Geopolymers
US2462030A (en) Oxychloride cementatory material
US5605570A (en) Alkali-activated glassy silicate foamed concrete
JPS6149273B2 (en)
CA1153397A (en) Composition for preparing inorganic foamed bodies
CN111566070A (en) Mortar and preparation method thereof
JPH0648808A (en) Production of inorganic molded body
JPS5836965A (en) Improved lightweight aggregate and manufacture
JP3090085B2 (en) Manufacturing method of cement ceramic products
JPS6149272B2 (en)
JPH0217510B2 (en)
JP2881511B2 (en) Composition for inorganic foam
US5312486A (en) Water-containing, hardenable foam compositions with inorganic components and process for their preparation
JPS60221371A (en) Manufacture of ceramic foam
JPS5830260B2 (en) Inorganic insulation composition
JPH0137352B2 (en)
JPH11199346A (en) Floating block
JPH10130075A (en) Production of lightweight ceramic compact
JPH0335268B2 (en)
JP2864862B2 (en) Cement compositions and cement extruded products
JPS58161960A (en) Composition for manufacturing foamed body
JPS58161959A (en) Composition for manufacturing foamed body
JPH0323507B2 (en)