JPS614892A - Two cylinder rotary compressor - Google Patents
Two cylinder rotary compressorInfo
- Publication number
- JPS614892A JPS614892A JP12554284A JP12554284A JPS614892A JP S614892 A JPS614892 A JP S614892A JP 12554284 A JP12554284 A JP 12554284A JP 12554284 A JP12554284 A JP 12554284A JP S614892 A JPS614892 A JP S614892A
- Authority
- JP
- Japan
- Prior art keywords
- suction
- cylinder
- bypass
- rotary compressor
- compression element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は、容量制御形の2気筒回転式圧縮機に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a capacity-controlled two-cylinder rotary compressor.
第1図は、従来の2気筒回転式圧縮機を示す縦断面図で
、第2図はその吸入通路とその周辺を示す縦断面であり
、図において1は偏心部1a、1bを有する駆動機構た
る駆動軸、12.13は駆動軸1で駆動される圧縮要素
であり、圧縮要素12゜13は1〜14の各部から構成
されている。すなわち、28t2bは駆動軸1と同心の
圧縮室3a。FIG. 1 is a vertical cross-sectional view showing a conventional two-cylinder rotary compressor, and FIG. 2 is a vertical cross-sectional view showing the suction passage and its surroundings. In the figure, 1 is a drive mechanism having eccentric parts 1a and 1b. A barrel drive shaft 12.13 is a compression element driven by the drive shaft 1, and the compression elements 12 and 13 are composed of parts 1 to 14. That is, 28t2b is the compression chamber 3a concentric with the drive shaft 1.
3bを内部に有する筐体たるシリンダ、4a、4bは駆
動軸1の偏心部1a、1bで駆動されてシリンダ2a
l 2bの内壁に沿って転動されるローリングピストン
、5a、5bはり一リングピストン4a l 4bの外
周部に圧接されて圧縮室3a 、 3bが低圧室と高圧
室に区分されるベーン、6a、6bはシリンダ2a、2
b内に装着され上記ベーン5a、5bが押圧されるベー
ンスプリング、7,8は、圧縮室3a、3bの一端が閉
止されると共に駆動軸1が軸支される軸受(図示されず
)が設けられた端板、9は2個のシリンダ2a 、2b
間に介在されて圧縮室3a、3bが隔離形成される中間
仕切板である。また10は2個の圧縮要素12゜13が
収納された収納容器、11は圧縮要素12゜13の低圧
室に低圧冷媒ガスが収納容器10から導かれる吸入管、
118t11bはシリンダ、2a、2bに設けられて圧
縮要素12.13の吸入部たる吸入ボー)14a、14
bと連通される吸入通路で、中間仕切板9に設けられた
連通孔9aで互に連通され、吸入通路11aが吸入管1
1と連通されている。The cylinder 4a and 4b are driven by the eccentric parts 1a and 1b of the drive shaft 1 to form the cylinder 2a.
A rolling piston, 5a, 5b, which rolls along the inner wall of the ring piston 4a, 5b, and a vane, 6a, which is pressed against the outer circumference of the ring piston 4a, 4b, and divides the compression chambers 3a, 3b into a low pressure chamber and a high pressure chamber. 6b is the cylinder 2a, 2
The vane springs 7 and 8, which are mounted in the interior of the vane springs 7 and 8 and press the vanes 5a and 5b, have one end of the compression chambers 3a and 3b closed, and are provided with bearings (not shown) on which the drive shaft 1 is supported. 9 is the two cylinders 2a, 2b
This is an intermediate partition plate that is interposed between them to separate the compression chambers 3a and 3b. In addition, 10 is a storage container in which two compression elements 12.degree.
118t11b is a suction bow (14a, 14) provided in the cylinder 2a, 2b and serving as a suction part of the compression element 12.13.
The suction passage 11a communicates with the suction pipe 1 and the suction passage 11a communicates with the suction pipe 1 through a communication hole 9a provided in the intermediate partition plate 9.
It is connected to 1.
以上のように構成された2気筒回転式圧縮機では駆動軸
1が回転されると、シリンダ2a 、 2bの内壁に沿
ってローリングピストン4a、4bが転動され、第2図
矢印に示されるように低圧冷媒ガスが吸入管11から吸
入通路11a、11bおよび吸入ポー)14a?14b
を通されて圧縮室3 a t 3 bで吸入され、吸入
された低圧冷媒ガスは、圧縮室3 a + 3 bで圧
縮されて高温高圧の冷媒ガスとなり、吐出管(図示され
ず)から収納容器10の外部に連結された冷凍回路(図
示されず)K供給される。そして、上記冷凍回路におい
て高温高圧の冷凍ガスによって要冷却負荷が冷却される
0
しかし、このような従来の2気筒回転式圧縮機は、例え
ば自動車用などで駆動軸の回転が可変速である場合にこ
の駆動軸の回転数が高くされると、単位時間当たりの冷
媒吐出量が増大して過冷房となったり、また駆動軸の回
転数が一定の場合でも、気温が比較的低いときは過冷房
となり、余分な動力が消費され、あるいは圧縮機のオン
・オフの頻度が増加され、冷房の快適性が損なわれると
いう欠点があった。In the two-cylinder rotary compressor configured as described above, when the drive shaft 1 is rotated, the rolling pistons 4a and 4b roll along the inner walls of the cylinders 2a and 2b, as shown by the arrows in FIG. Low pressure refrigerant gas flows from the suction pipe 11 to the suction passages 11a, 11b and the suction port) 14a? 14b
The low-pressure refrigerant gas is passed through the compression chambers 3a and 3b, and the sucked low-pressure refrigerant gas is compressed in the compression chambers 3a + 3b to become high-temperature and high-pressure refrigerant gas, which is then stored through a discharge pipe (not shown). A refrigeration circuit (not shown) connected to the outside of the container 10 is supplied. In the above-mentioned refrigeration circuit, the load that needs to be cooled is cooled by high-temperature, high-pressure refrigeration gas. However, such conventional two-cylinder rotary compressors are not suitable for applications where the rotation speed of the drive shaft is variable, such as in automobiles. If the rotation speed of this drive shaft is increased, the amount of refrigerant discharged per unit time will increase, resulting in overcooling.Also, even if the rotation speed of the drive shaft is constant, when the temperature is relatively low, overcooling will occur. This has the disadvantage that extra power is consumed or the frequency of turning the compressor on and off increases, which impairs the comfort of air conditioning.
本発明は、上述したような従来の2気筒回転式圧縮機の
欠点を除去させることを目的とし、2個の圧縮要素のう
ち、一方の圧縮要素については圧縮ガスバイパス方式、
他方の圧縮要素については低圧冷媒ガス吸入遮断方式と
、それぞれ独自の容量制御機構が設けられたことで、そ
れらが組み合せられた運転により、冷房負荷に応じて、
吐出能力を4段階に変えられることにより、冷房の快適
性が損なわれずに消費エネルギーの節約が可能とされる
2気筒回転式圧縮機が提供されるものである。The present invention aims to eliminate the drawbacks of the conventional two-cylinder rotary compressor as described above, and has a compressed gas bypass system for one of the two compression elements,
The other compression element is equipped with a low-pressure refrigerant gas suction cutoff system and its own capacity control mechanism, so the combined operation allows for
A two-cylinder rotary compressor is provided in which the discharge capacity can be changed in four stages, thereby making it possible to save energy consumption without sacrificing cooling comfort.
第3図は、この発明の一実施例の2気筒回転式圧縮機の
低圧冷媒ガス流の上流側の圧縮要素を示す横断面図であ
り、1〜14は、上記従来の2気1v回転式圧縮機と全
く同一のものである。15はシリンダ2aの内周面に設
けられたバイパス手段たるバイパス孔であり、このバイ
パス孔15はバイパス通路16によりシリンダ吸入通路
11aと連通されている。上記バイパス孔15とバイパ
ス通路16はバイパス通路開閉孔17により、連通され
、バイパス通路開閉孔17内には、第4図に示されるよ
うに、バイパス通路開閉孔17の壁面と微小な間隙をも
って、バイパス通路開閉孔1Tの長手方向に摺動が可能
で、外周面の一部が切り欠かれた摺動部材たる滑り千1
8と、この滑り子1Bに端板7の方向から、仕切部材た
る中間仕切板9の方向に力が作用されるように1滑り子
18と端板7との間に、弾発部材たるはね19とが収容
されている。また、滑り子18は、バイパス通M開閉孔
17で摺動され、バイパス通M@16が開閉されるとい
うバイパス通路開閉手段により、バイパス通路とバイパ
ス孔15とが、すなわち、シリンダ2aの圧縮室3a内
とシリンダ吸入通路11aとが連絡または閉塞されるよ
うに、外周部に一部切欠きが設けられている。さらに、
通路開閉孔17のばね19が取り付けられている側とは
反対側が、高圧パイプ20によって高圧側と連通されて
いる。FIG. 3 is a cross-sectional view showing compression elements on the upstream side of the low-pressure refrigerant gas flow of a two-cylinder rotary compressor according to an embodiment of the present invention, and 1 to 14 are the conventional 2-air 1v rotary compressor. It is exactly the same as a compressor. Reference numeral 15 denotes a bypass hole serving as a bypass means provided on the inner peripheral surface of the cylinder 2a, and this bypass hole 15 is communicated with the cylinder suction passage 11a through a bypass passage 16. The bypass hole 15 and the bypass passage 16 are communicated with each other by a bypass passage opening/closing hole 17, and as shown in FIG. A sliding member that can slide in the longitudinal direction of the bypass passage opening/closing hole 1T and has a part of its outer circumferential surface cut out.
8, and a resilient member is provided between the slider 18 and the end plate 7 so that a force is applied to the slider 1B from the direction of the end plate 7 toward the intermediate partition plate 9, which is the partition member. 19 is accommodated. Further, the slider 18 is slid in the bypass passage M opening/closing hole 17, and the bypass passage opening/closing means opens and closes the bypass passage M@16, so that the bypass passage and the bypass hole 15 are connected to each other, that is, the compression chamber of the cylinder 2a. A partial notch is provided on the outer periphery so that the inside of the cylinder 3a and the cylinder suction passage 11a are communicated or closed. moreover,
A side of the passage opening/closing hole 17 opposite to the side to which the spring 19 is attached is communicated with the high pressure side through a high pressure pipe 20.
第5図は、低圧冷媒ガス流の下流側の圧縮要素が制御さ
れる方法が示されている図で、(イ)は吸入ボート開放
状着 (ロ)は低圧冷媒ガス流の下流側の圧縮要素の吸
入ポートが閉塞されている状態が示されており、2気筒
回転式圧縮機に吸入される低圧冷媒ガス流の下流側の圧
縮要素13の吸入通路11b内に、吸入通路11bの壁
面と微小な間隙をもって、吸入通路11bの長手方向に
摺動が可能である滑り子21と、この滑り子21に中間
仕切板9の方向、すなわち、冷媒ガスが吸入される方向
から端板8の方向に力が作用されるように、滑り子21
と中間仕切板9との間に、ばね22が収容されている。Figure 5 shows how the compression elements downstream of the low pressure refrigerant gas stream are controlled, with (a) the suction boat open and (b) the downstream compression element of the low pressure refrigerant gas stream being controlled. The suction port of the element is shown in a closed state, and there is a wall surface of the suction passage 11b in the suction passage 11b of the compression element 13 on the downstream side of the low-pressure refrigerant gas flow taken into the two-cylinder rotary compressor. A slider 21 that is capable of sliding in the longitudinal direction of the suction passage 11b with a small gap, and a slider 21 that moves from the direction of the intermediate partition plate 9, that is, from the direction in which refrigerant gas is sucked, to the end plate 8. slider 21 so that force is applied to
A spring 22 is housed between the intermediate partition plate 9 and the intermediate partition plate 9.
また、滑り子21が、吸入通路11bで摺動さね、吸入
通路が開閉されるという吸入通路開閉手段により、吸入
部たる吸入キード14bが開閉されるように、吸入ボー
N 4bおよび滑り子21の位置が決められる寸法と形
状寸法が設定されている。さらに滑り子21の、冷媒ガ
スが吸入される側とは反対の側が、高圧パイプ23によ
り高圧側と連通されている。Further, the suction bow N 4b and the slider 21 are arranged so that the suction key 14b serving as the suction part is opened and closed by the suction passage opening/closing means in which the slider 21 slides on the suction passage 11b and the suction passage is opened and closed. Dimensions and shape dimensions are set for determining the position of. Further, the side of the slider 21 opposite to the side where the refrigerant gas is sucked is communicated with the high pressure side through a high pressure pipe 23.
第6図は、各圧縮要素の制御用に設けられた制御弁を示
す図で、低圧冷媒ガス流の上流側の圧縮要素12の制御
用には高圧パイプ20の一端に制御弁24が、低圧冷媒
ガス流の下流側の圧縮要素130制御には高圧パイプ2
3の一端に制御弁25が、それぞれ独立に設けられ、高
圧ガスが、これらの高圧パイプ20.23から供給され
、各圧縮要素12.13が、制御弁24.25の動作に
よって制御されるようになつCいる。この高圧ガスは、
冷凍回路の高圧側、たとえば圧縮機の吐出ホースや吐出
側のサービスバルブ等から供給される。FIG. 6 is a diagram showing control valves provided for controlling each compression element. A control valve 24 is provided at one end of the high pressure pipe 20 for controlling the compression element 12 on the upstream side of the low pressure refrigerant gas flow, and a control valve 24 is provided at one end of the high pressure pipe 20. A high pressure pipe 2 is used to control the compression element 130 on the downstream side of the refrigerant gas flow.
Control valves 25 are independently provided at one end of 3, high pressure gas is supplied from these high pressure pipes 20.23, and each compression element 12.13 is controlled by the operation of the control valve 24.25. Natsu C is here. This high pressure gas is
It is supplied from the high-pressure side of the refrigeration circuit, such as the discharge hose of the compressor or the service valve on the discharge side.
次に1以上のように構成されたこの発明の一実施例の2
気筒回転式圧縮機の動作について説明する。低圧冷媒ガ
ス流の上流側の圧縮要素12においては、制御弁24が
閉止状態では第4図の(イ)に示されるように滑り子1
8はばね19の弾発力で、バイパス孔15とバイパス通
路16の間は閉塞されている。この状態では、駆動軸1
が回転されると、圧縮要素12は正常に動作され、吐出
能力100%の運転状態とされる。制御弁24が開かれ
ると、高圧ガスが、高圧パイプ20を通って、バイパス
通路開閉孔17内にみちびかれ、第4図の(→に示され
るように、滑り子18がばね19の弾発力に抗して端板
7側に移動され、バイパス孔15とバイパス通路16の
間が連絡される。この状態では、駆動軸1が回転される
と圧縮要素12は、ローリングピストン4aがシリンダ
2aの内周に設けられたバイパス孔15の位置までは、
シリンダ2a内の冷媒ガスはバイパス孔15とバイブぐ
入通路16を通って吸入通路118に戻されるため圧縮
が行なわれず、ローリングピストン4aがバイパス孔1
5を通過してはじめて圧縮が開始される容量制御運転と
なる。この容量制御の率はバイパス孔15が設けられる
位置によって異なるが、ベーン5aの位Uを0°とした
場合、クランクM1の回転角が約220°の位置で、そ
の圧縮要素では制御率が50%となることが実験によっ
て確認されている。Next, 2 of an embodiment of the present invention configured as described in 1 or more.
The operation of the cylinder rotary compressor will be explained. In the compression element 12 on the upstream side of the low-pressure refrigerant gas flow, when the control valve 24 is in the closed state, the slider 1 is closed as shown in FIG.
8 is a resilient force of a spring 19, and the space between the bypass hole 15 and the bypass passage 16 is closed. In this state, drive shaft 1
When the compressor element 12 is rotated, the compression element 12 is operated normally and is in an operating state with a discharge capacity of 100%. When the control valve 24 is opened, high pressure gas is guided into the bypass passage opening/closing hole 17 through the high pressure pipe 20, and as shown in FIG. It is moved toward the end plate 7 side against the force, and the bypass hole 15 and the bypass passage 16 are communicated with each other.In this state, when the drive shaft 1 is rotated, the compression element 12 is moved so that the rolling piston 4a is moved toward the cylinder 2a. Up to the position of the bypass hole 15 provided on the inner periphery of the
The refrigerant gas in the cylinder 2a is returned to the suction passage 118 through the bypass hole 15 and the vibe entry passage 16, so it is not compressed, and the rolling piston 4a moves through the bypass hole 16.
Capacity control operation is started in which compression is started only after passing step 5. The rate of this capacity control varies depending on the position where the bypass hole 15 is provided, but if the position U of the vane 5a is 0°, the control rate is 50° at the position where the rotation angle of the crank M1 is approximately 220°. It has been confirmed through experiments that %.
次に、低圧冷媒ガス流の下流側の圧縮要素13において
は、制御弁25が閉止されている状態では、第5図の(
イ)に示されるように、?目り子21がばね22の弾発
力で吸入通路11bと連通されるように、吸入ポーN
4bが開放されている。この状では、圧縮要素13は正
常の動作が行なわれる。Next, in the compression element 13 on the downstream side of the low-pressure refrigerant gas flow, when the control valve 25 is closed, (
As shown in b), ? The suction port N is arranged so that the eyelet 21 is communicated with the suction passage 11b by the elastic force of the spring 22.
4b is open. In this state, the compression element 13 operates normally.
制御弁25が間かれると、高圧パイプ23より高圧ガス
がみちびかれ、このため第5図の(11)に示されるよ
うに、滑り子21がばね22の弾発力に抗して中間仕切
板9側に移動され、圧縮要素13の吸入ボート14bが
閉塞され、シリンダ2b内には低圧冷媒ガスがみちびか
れず、圧縮要素13は運転されない体筒運転とされる。When the control valve 25 is opened, high-pressure gas is guided from the high-pressure pipe 23, so that the slider 21 resists the elastic force of the spring 22 and closes the intermediate partition plate, as shown in (11) in FIG. 9 side, the suction boat 14b of the compression element 13 is closed, low-pressure refrigerant gas is not led into the cylinder 2b, and the compression element 13 is in cylinder operation in which it is not operated.
以上のように2個の圧縮要素12.13にそれぞれ独立
して容量制御機構が設4−jられているため、制御弁2
4と制御弁25が、いずれも閉止された状態で4J10
0%の吐出能力が符られる。制御弁24がLl」放され
、制御弁25が閉止されると、低圧冷媒ガス流の上流側
の圧絃要素12では50%の運転しか行なわれないため
、全吐出能力の75%に相当する吐出能力が得られる。As described above, since the two compression elements 12 and 13 are each independently provided with a capacity control mechanism 4-j, the control valve 2
4 and control valve 25 are both closed.
A discharge capacity of 0% is indicated. When the control valve 24 is released and the control valve 25 is closed, only 50% of the operation is performed in the compressor element 12 on the upstream side of the low-pressure refrigerant gas flow, which corresponds to 75% of the total discharge capacity. Discharge ability can be obtained.
次に制御弁24が閉止され、制御弁25が開放されると
、低圧冷媒ガス流の下流側の圧縮要素13が休部運転に
されるため、全吐出能力の50%に相当する吐出能力と
される。Next, when the control valve 24 is closed and the control valve 25 is opened, the compression element 13 on the downstream side of the low-pressure refrigerant gas flow is put into rest operation, so that the discharge capacity corresponds to 50% of the total discharge capacity. Ru.
さらに、制御弁24.25が、いずれも開放されると、
圧縮要素12が50%の運転で、圧縮要素13は体筒運
転とされるため、全吐出能力の25%に相当する吐出能
力とされる。これらのことは、下表によると、さらにわ
かり易い。この表の中で、V24.V25が、それぞれ
制御ヰ24,25で示され、これらの開放、閉止が、そ
れぞれ○−2■の記号で示されている。Furthermore, when both control valves 24, 25 are opened,
Since the compression element 12 is operated at 50% and the compression element 13 is operated in the cylinder mode, the discharge capacity is equivalent to 25% of the total discharge capacity. These things are easier to understand according to the table below. In this table, V24. V25 is indicated by controls 24 and 25, respectively, and their opening and closing are indicated by symbols ○-2■, respectively.
この上うに1この発明の一実施例の2気筒回転式圧縮機
では、2つの制御弁が切り替えられることにより、全吐
出能力の100%、75%、50%、25%に相当する
吐出能力において、4段階の容量制御運転ができるよう
に、低圧冷媒ガス流の上流側の圧縮要素の制御率が50
%とされたが、バイパス孔の位置が変えられると、任意
の制御率が得られる。たとえば、上記FE、縮要素の吐
出能力の制御率75%にすると、全吐出能力の100%
、85%、50兎35%に相当する吐出能力が得られる
4段階の容量制御M’NAかでさることになることはい
うまでもない。Furthermore, in the two-cylinder rotary compressor of one embodiment of the present invention, by switching the two control valves, the discharge capacity corresponds to 100%, 75%, 50%, and 25% of the total discharge capacity. , the control rate of the compression element on the upstream side of the low-pressure refrigerant gas flow is 50 to enable four-stage capacity control operation.
%, but if the position of the bypass hole is changed, an arbitrary control rate can be obtained. For example, if the control rate of the discharge capacity of the above FE and compression element is set to 75%, the total discharge capacity will be 100%.
Needless to say, it depends on whether the four-stage capacity control M'NA provides a discharge capacity corresponding to , 85%, 50% or 35%.
この発明は、以上説明したとおり、2個の圧縮要素のう
ち、上流側の圧縮要素の筐体にバイパス手段が設けられ
、このバイパス手段と圧、縮機吸入通路が結ばれるバイ
パス通路に、バイパス通路開閉手段が設けられ、下流側
の圧縮要素の吸入部が連通される吸入通路に吸入通路開
閉手段が設けられることKより、容量制御運転ができ、
冷却負荷に応じた運転が可能とされ、消費エネルギの節
減ができ、また圧縮機が制御されるためのオンΦオフ操
作の頻度が減少でき、冷房の快適性が向上されるという
効果がある。As explained above, the present invention includes a bypass means provided in the housing of the upstream compression element of the two compression elements, and a bypass passage connecting the bypass means and the compressor suction passage. Since the passage opening/closing means is provided in the suction passage with which the suction part of the compression element on the downstream side communicates, capacity control operation is possible.
Operation according to the cooling load is possible, energy consumption can be reduced, and the frequency of on/off operations for controlling the compressor can be reduced, leading to improved cooling comfort.
第1図は、従来の2気筒回転式圧縮機を示す縦断面図、
第2図は、第1図の2気筒回転式圧縮1の吸入通路およ
び吸入通路の周辺を示す縦断面図である。第3図は、こ
の発明の一実施例の2気筒回転式圧縮機の低圧冷媒ガス
流の上流側の圧縮要素を示す横断面図、第4図は第3図
のA−A線に沿って裁断された断面図で、(イ)がバイ
パス通路閉塞状態、(→がバイパス通路開放状態を示す
。第5図14この発明の一実施例の2気筒回転式圧縮機
の吸入通路および吸入通路の周辺を示すM断面図で(f
)は低圧冷媒ガス流の下流側の圧縮要素の吸入ポートの
開放状態、(ロ)が同吸入ボートの閉塞状態を示す。第
6図は上流側と下流側の圧縮要素の容量開側用制御弁を
示す図1である。
図において1はffJIIJ軸、2はシリンダ、9は中
間仕切板、11は吸入管、11a、11bに吸入通路、
12は圧縮要素、13は圧縮要素、14a。
14bl↑吸メボート、15はバイパス孔、16はバイ
パス通路、17はバイパス通路開閉孔、18は滑り子、
19はばね、20は高圧パイプ、21は滑り子、22は
ばね、23け高圧バイブ、24は制御弁、25は制御弁
である。
なお各図中、同一符号は同一または相当部分を示すもの
である。FIG. 1 is a vertical cross-sectional view showing a conventional two-cylinder rotary compressor;
FIG. 2 is a longitudinal sectional view showing the suction passage and the vicinity of the suction passage of the two-cylinder rotary compressor 1 shown in FIG. FIG. 3 is a cross-sectional view showing a compression element on the upstream side of a low-pressure refrigerant gas flow of a two-cylinder rotary compressor according to an embodiment of the present invention, and FIG. 4 is a cross-sectional view taken along line A-A in FIG. In the cut sectional views, (a) shows the bypass passage closed state, and (→ shows the bypass passage open state. In the M cross-sectional view showing the surrounding area (f
) shows the open state of the suction port of the compression element on the downstream side of the low-pressure refrigerant gas flow, and (b) shows the closed state of the suction port. FIG. 6 is FIG. 1 showing the capacity opening control valves of the upstream and downstream compression elements. In the figure, 1 is the ffJIIJ axis, 2 is the cylinder, 9 is the intermediate partition plate, 11 is the suction pipe, 11a and 11b are suction passages,
12 is a compression element, 13 is a compression element, and 14a. 14bl↑Suction boat, 15 is a bypass hole, 16 is a bypass passage, 17 is a bypass passage opening/closing hole, 18 is a slider,
19 is a spring, 20 is a high pressure pipe, 21 is a slider, 22 is a spring, 23 is a high pressure vibrator, 24 is a control valve, and 25 is a control valve. In each figure, the same reference numerals indicate the same or corresponding parts.
Claims (1)
素が、縦列に配置され、一つの駆動機構によつて駆動さ
れ、上記2個の圧縮要素の吸入部が、被圧縮ガスの吸入
通路を経て、吸入管に連通され、上記上流側の圧縮要素
の筐体の圧縮工程の途中の部位にバイパス手段が設けら
れ、このバイパス手段と圧縮機の吸入通路が結ばれるバ
イパス通路が設けられ、このバイパス通路に、バイパス
通路開閉手段が設けられるとともに、上記下流側の圧縮
要素の吸入部が連通される吸入通路に、吸入通路開閉手
段が設けられたことを特徴とする2気筒回転式圧縮機。 2)バイパス通路開閉手段が、摺動部材と弾発部材が用
いられたものであることを特徴とする2気筒回転式圧縮
機。 3)吸入通路開閉手段が、摺動部材と弾発部材が用いら
れたものであることを特徴とする2気筒回転式圧縮機。[Claims] 1) A compression element on the upstream side and a compression element on the downstream side of the gas flow to be compressed are arranged in series and driven by one drive mechanism, and the suction portion of the two compression elements is is communicated with the suction pipe via the suction passage for the compressed gas, and a bypass means is provided in the middle of the compression process of the housing of the upstream compression element, and the bypass means and the suction passage of the compressor are connected to each other. A bypass passage is provided, the bypass passage is provided with a bypass passage opening/closing means, and a suction passage opening/closing means is provided in the suction passage through which the suction portion of the downstream compression element is communicated. A two-cylinder rotary compressor. 2) A two-cylinder rotary compressor, characterized in that the bypass passage opening/closing means uses a sliding member and a resilient member. 3) A two-cylinder rotary compressor, characterized in that the suction passage opening/closing means uses a sliding member and a resilient member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12554284A JPS614892A (en) | 1984-06-19 | 1984-06-19 | Two cylinder rotary compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12554284A JPS614892A (en) | 1984-06-19 | 1984-06-19 | Two cylinder rotary compressor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS614892A true JPS614892A (en) | 1986-01-10 |
JPH029200B2 JPH029200B2 (en) | 1990-02-28 |
Family
ID=14912770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12554284A Granted JPS614892A (en) | 1984-06-19 | 1984-06-19 | Two cylinder rotary compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS614892A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH032323A (en) * | 1989-05-26 | 1991-01-08 | Kobe Steel Ltd | Manufacture of nonoriented silicon steel sheet having high magnetic flux density |
JPH04325629A (en) * | 1991-04-25 | 1992-11-16 | Nippon Steel Corp | Method for manufacturing non-oriented electrical steel sheet with excellent magnetic properties |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5873993U (en) * | 1981-11-12 | 1983-05-19 | 三菱電機株式会社 | 2 cylinder rotary compressor |
-
1984
- 1984-06-19 JP JP12554284A patent/JPS614892A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5873993U (en) * | 1981-11-12 | 1983-05-19 | 三菱電機株式会社 | 2 cylinder rotary compressor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH032323A (en) * | 1989-05-26 | 1991-01-08 | Kobe Steel Ltd | Manufacture of nonoriented silicon steel sheet having high magnetic flux density |
JPH04325629A (en) * | 1991-04-25 | 1992-11-16 | Nippon Steel Corp | Method for manufacturing non-oriented electrical steel sheet with excellent magnetic properties |
JPH086135B2 (en) * | 1991-04-25 | 1996-01-24 | 新日本製鐵株式会社 | Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties |
Also Published As
Publication number | Publication date |
---|---|
JPH029200B2 (en) | 1990-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0746787Y2 (en) | Variable capacity scroll compressor | |
WO2010038360A1 (en) | Refrigerating apparatus | |
JP4367567B2 (en) | Compressor and refrigeration equipment | |
JPH09151867A (en) | Capacitance control valve of scrolling compressor | |
JPH0141838B2 (en) | ||
JP3723491B2 (en) | Two-stage compression compressor | |
CN108533490B (en) | Compressor and air conditioning system | |
WO2007052510A1 (en) | Expander and heat pump using the same | |
US5240386A (en) | Multiple stage orbiting ring rotary compressor | |
JPH04166694A (en) | Multi-cylinder type rotary compressor | |
JPH0419395B2 (en) | ||
US5284426A (en) | Rotary compressor with multiple compressor stages and pumping capacity control | |
US5135368A (en) | Multiple stage orbiting ring rotary compressor | |
JP2959457B2 (en) | Scroll gas compressor | |
CN107191372B (en) | Rotary compressor and refrigerating device with same | |
JPH11324930A (en) | Variable capacity type compressor | |
JPH0364686A (en) | Scroll type compressor | |
CN212055114U (en) | Scroll compressor and air conditioner with same | |
JPS614892A (en) | Two cylinder rotary compressor | |
JPS6149189A (en) | Variable displacement type rotary compressor | |
US2812128A (en) | Rotary compressor valve | |
JPS6291680A (en) | Variable delivery type scroll compressor | |
JPS61129495A (en) | Rotary compressor | |
JPH0222599Y2 (en) | ||
US20200277955A1 (en) | Scroll compressor |