[go: up one dir, main page]

JPS6148587A - Method of adding hydrochloric acid to electrolytic cell - Google Patents

Method of adding hydrochloric acid to electrolytic cell

Info

Publication number
JPS6148587A
JPS6148587A JP59168881A JP16888184A JPS6148587A JP S6148587 A JPS6148587 A JP S6148587A JP 59168881 A JP59168881 A JP 59168881A JP 16888184 A JP16888184 A JP 16888184A JP S6148587 A JPS6148587 A JP S6148587A
Authority
JP
Japan
Prior art keywords
hydrochloric acid
salt water
piping
electrolytic cell
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59168881A
Other languages
Japanese (ja)
Other versions
JPS6147914B2 (en
Inventor
Hidenori Shibata
英則 柴田
Hisao Gondo
権藤 肥佐男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP59168881A priority Critical patent/JPS6148587A/en
Publication of JPS6148587A publication Critical patent/JPS6148587A/en
Publication of JPS6147914B2 publication Critical patent/JPS6147914B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To decrease acid-resistant pipings for the purpose of hydrochloric acid addition in the stage of adding hydrochloric acid to the anode chamber of an ion exchange membrane method alkali electrolytic cell by providing a diffusing pipe for outflow of the hydrochloric acid to the center of a salt water piping and adding the hydrochloric acid together with the salt water to the anode chamber. CONSTITUTION:OH<-> diffuses in the anode chamber of the ion exchange membrane type salt water electrolytic cell through the ion exchange membrane from the cathode chamber and therefore the hydrochloric acid is added to an anolyte to maintain the pH thereof at a normal value. The hydrochloric acid diffusing pipe consisting of an acid resistant material is disposed to the central part of the piping for the salt water to the anode chamber in the stage of adding the hydrochloric acid to the salt water. Many small holes are provided to the side face of the hydrochloric acid diffusing pipe and the concd. hydrochloric acid is supplied together with the salt water and is added to the salt water flowing in the salt water piping through the small holes. The sectional area of the small holes is so adjusted that the flow rate of the hydrochloric acid flowing out of said holes attains the flow rate of the salt water in the salt water piping or below and the small holes are made straight without bending within at least 0.2m from the top end of the hydrochloric acid diffusing pipe. The direct contact of the hydrochloric acid with the salt water piping is averted and the need for costly acid resistant materials is eliminated except for the hydrochloric acid piping.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電解槽への塩酸添加方法に関するものであって
、具体的には食塩等の塩化アルカリ水溶液の電解に際し
て、陽極液pHを下げるために行われる塩酸添加の方法
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for adding hydrochloric acid to an electrolytic cell, and specifically for lowering the pH of an anolyte during electrolysis of an aqueous alkali chloride solution such as common salt. This relates to a method of adding hydrochloric acid to

[従来の技術] 食塩等のアルカリ電解の技術分野において、種々の利点
から、隔膜に陽イオン交換膜を用いるいわゆるイオン交
換膜性アルカリ電解が主流になりつつあるが、電解中、
陰極室からイオン交換膜を通って陽極室に拡散してくる
水酸イオン(OH−)を速やかに中和することが必要で
あり、そのためζこ酸添加して陽極液のpHを下げるこ
とかよく行なわれている。酸として一般的に用いられる
のは塩酸であるが、この塩酸を具体的に陽極液に添加す
る手段としてはいろいろな方法か考えられている。その
主なものとして、電解槽から排出される陽極液の気液分
離器に塩酸を供給する方法や、陽極室に塩水を供給する
配管中に、細いパイプから直接に塩酸を投入する方法等
がある。
[Prior Art] In the technical field of alkaline electrolysis of salt, etc., so-called ion exchange membrane alkaline electrolysis, which uses a cation exchange membrane as a diaphragm, is becoming mainstream due to various advantages.
It is necessary to quickly neutralize the hydroxide ions (OH-) that diffuse from the cathode chamber through the ion exchange membrane to the anode chamber, and therefore it is necessary to lower the pH of the anolyte by adding ζphosphoric acid. It's well done. Although hydrochloric acid is generally used as an acid, various methods have been considered for specifically adding this hydrochloric acid to the anolyte. The main methods include a method of supplying hydrochloric acid to a gas-liquid separator for the anolyte discharged from the electrolytic cell, and a method of directly injecting hydrochloric acid from a thin pipe into the piping that supplies salt water to the anode chamber. be.

ここに用いられる塩酸は、通常濃塩酸であって、」二記
いずれの場合も気液分離器や配管を腐食させやすいとい
う欠点がある。
The hydrochloric acid used here is usually concentrated hydrochloric acid, which has the disadvantage that it tends to corrode gas-liquid separators and piping in both cases.

[本発明が解決しようとする問題点] 本発明は、電解槽に塩酸を添加する際に従来問題となっ
ていた塩酸による装置材料の腐食を防止しうる方法を提
供するものである。
[Problems to be Solved by the Present Invention] The present invention provides a method that can prevent corrosion of equipment materials due to hydrochloric acid, which has conventionally been a problem when adding hydrochloric acid to an electrolytic cell.

[問題を解決するための手段] 木発明者等は、塩水供給配管中に塩酸を供給する場合に
、上述の如き塩酸による腐食の問題が生じないような具
体的方法について種々検討した結果本発明を見出したも
ので、本発明は、塩水配管中の電解用塩水に塩酸を供給
して電解[槽にihaを添加する方法において、塩酸の
細流を流出しうる細孔を有する分散管を塩水配管のほぼ
中心線に沿って配置し、該分散管に塩酸を法を要旨とす
るものである。
[Means for Solving the Problem] The inventors of the present invention have conducted various studies on specific methods to avoid the above-mentioned corrosion problem caused by hydrochloric acid when supplying hydrochloric acid into salt water supply piping, and have developed the present invention. The present invention provides a method for adding iha to an electrolysis tank by supplying hydrochloric acid to brine for electrolysis in a brine pipe, in which a dispersion pipe having pores through which a trickle of hydrochloric acid can flow out is connected to the brine pipe. The dispersion tube is placed approximately along the center line of the dispersion tube, and hydrochloric acid is poured into the dispersion tube.

以下、図面をもとに本発明を説明する。第1図は、本発
明に好適に用いられうる分散管の1例を示す見取図であ
る。第2図は、第1図の分1攻管を塩水配?t・に配置
した時の塩酸の流水の状i魚を示す断面図である。
The present invention will be explained below based on the drawings. FIG. 1 is a sketch showing one example of a dispersion tube that can be suitably used in the present invention. Figure 2 shows the salt water distribution for the 1st attack pipe in Figure 1? FIG. 3 is a cross-sectional view showing the state of the i-fish under running water of hydrochloric acid when the fish is placed in the water.

第1図に示される分散管は、先端が円錐状に閉じられた
管の側壁の多数の細孔が設けられたものである。分散管
の上方から供給される塩酸は細孔を通じて四囲に流出す
る。その流出の状態を示すものが第2図である。塩水配
管のほぼ中心線に沿って配置された分散管には上方より
塩酸か、一方、塩水配管と分散管の間には塩水か供給さ
れる。分散管に供給される塩酸は、その側壁に設けられ
た細孔を通って塩水配管を流れている塩水中に流出する
。塩水中に流出した塩酸は、分散管の外側面に沿いつつ
、分散管のド方へ行くにつれてややふくらみを増しなが
らも、塩水配管の内壁とは接触しないように、はぼ塩水
配管の中心線上を流下していくわかぐして、本発明方法
によれば、材料的には少量の分散!6・にのみ耐塩酸性
の材料を用いれば、大量の材料を要する塩水配管には、
耐塩酸性を要求されない安価な材質ものが使用可能とな
る。
The dispersion tube shown in FIG. 1 is a tube with a closed conical tip and a large number of pores in the side wall. Hydrochloric acid supplied from above the dispersion tube flows out to the surrounding area through the pores. FIG. 2 shows the state of the outflow. Hydrochloric acid is supplied from above to the dispersion pipe arranged approximately along the center line of the salt water pipe, while salt water is supplied between the salt water pipe and the dispersion pipe. Hydrochloric acid supplied to the dispersion tube flows out through pores provided in its side wall into the salt water flowing through the salt water piping. The hydrochloric acid that has flowed into the salt water flows along the outer surface of the dispersion pipe, increasing its bulge slightly as it goes towards the end of the dispersion pipe, but it is kept on the center line of the salt water pipe so as not to come into contact with the inner wall of the salt water pipe. According to the method of the present invention, a small amount of material is dispersed! If a hydrochloric acid resistant material is used only for 6., salt water piping that requires a large amount of material will be possible.
It becomes possible to use inexpensive materials that do not require hydrochloric acid resistance.

本発明において、分散管の開孔は、そこから流出する塩
酸の流速が電解用塩水の流速と同しか、それ以下となる
ような断面積を有するものであることか好ましい。ここ
で、分散管から流出する塩酸の流速とは、分散管に供給
される塩酸の体積速度を開孔の総面積で除したものを意
味する。
In the present invention, the openings of the dispersion tube preferably have a cross-sectional area such that the flow rate of hydrochloric acid flowing out from the openings is equal to or lower than the flow rate of the electrolytic salt water. Here, the flow rate of hydrochloric acid flowing out from the dispersion tube means the volumetric velocity of hydrochloric acid supplied to the dispersion tube divided by the total area of the openings.

また。電解用塩水の流速とは、塩水配管を流れる塩水の
体積速度を、塩水配管の断面積と分散管の断面積の差で
除したものを意味する。
Also. The flow rate of salt water for electrolysis means the volumetric velocity of salt water flowing through the salt water pipe divided by the difference between the cross-sectional area of the salt water pipe and the cross-sectional area of the dispersion pipe.

分散ft・に設けられる開孔の断面積が上記限定を満足
する場合には、流出塩酸が配管と接触する可能性が少な
いため、より好ましいものである。
It is more preferable if the cross-sectional area of the opening provided in the dispersion ft. satisfies the above limitations, since there is less possibility that the effluent hydrochloric acid will come into contact with the piping.

=ρらに1本発明においては、分散管から流出した塩酸
は、前述の如く、塩水配管のほぼ中心線に沿って流動し
ていき、徐々に四囲の塩水中に拡散していくものである
ため、中心線付近の′塩酸濃度がまだ高い状態での流路
変更、即ち、塩水配管にベント、ブランチ等かあること
は好ましくなく、分散管の先端からある距離は塩水配管
は真直ぐであることが好ましい。
=ρ et al. 1 In the present invention, as mentioned above, the hydrochloric acid flowing out of the dispersion pipe flows approximately along the center line of the salt water pipe and gradually diffuses into the surrounding salt water. Therefore, it is undesirable to change the flow path while the hydrochloric acid concentration near the center line is still high, that is, to have vents, branches, etc. in the salt water pipe, and the salt water pipe must be straight for a certain distance from the tip of the dispersion pipe. is preferred.

この範囲は、前述の分散管に設けられる開孔の断面積及
び塩水の体積速度と塩酸の体積速度の比にもよるが、最
低0.2mあることが好ましい。
This range is preferably at least 0.2 m, although it depends on the cross-sectional area of the openings provided in the above-mentioned dispersion tube and the ratio of the volume velocity of salt water to the volume velocity of hydrochloric acid.

また、分散管先端から電解槽までの塩水配管の長さがさ
して長くないような場合には、塩水配管の電解槽直前の
部分にディストリビュータ−用の程合羽根を設けるのか
安全である。
Furthermore, if the length of the salt water piping from the tip of the dispersion tube to the electrolytic cell is not very long, it is safe to install a splitter blade for a distributor in the portion of the salt water piping immediately in front of the electrolytic cell.

また、本発明では、塩酸は分散管に供給され、そこから
塩酸配管に供給されるものであるが、分散管には塩酸と
共に一部の塩水も同時に供給するのが、分散管中で塩酸
のプレミックスか行われるこ□とから好ましい方法であ
る。
Furthermore, in the present invention, hydrochloric acid is supplied to the dispersion tube and from there to the hydrochloric acid piping. This is a preferred method because a premix is performed.

[発明の効果] かくして、本発明を採用する場合には、塩酸による配管
の腐食問題は生じなく、充分に目的を達成できるもので
ある。
[Effects of the Invention] Thus, when the present invention is employed, the problem of corrosion of piping due to hydrochloric acid does not occur, and the objective can be fully achieved.

以下、実施例により1本発明を更に詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 第3I)!5は1本実施例に使用した電解プラントの塩
水供給部分の拡大断面図である。精製された飽和食塩水
溶液は、ブラインボックスに4m″ハで供給される。一
方、塩酸(濃度1ON)はブラインボックスの上部から
、分散管に接続する内径15mmのPTFE製パイプに
25文/hで供給される、塩水供給配管(Ti製、内径
125mm)は図示の如くブラインボックスの底部に取
りつけられ、その対端は電解槽下部にその側方から接!
     続されている。
Example 1 Part 3 I)! 5 is an enlarged sectional view of the salt water supply portion of the electrolysis plant used in this example. The purified saturated salt aqueous solution is supplied to the brine box at a rate of 4 m''. On the other hand, hydrochloric acid (concentration 1ON) is supplied from the top of the brine box to a PTFE pipe with an inner diameter of 15 mm connected to the dispersion tube at a rate of 25 g/h. The brine supply pipe (made of Ti, inner diameter 125 mm) is attached to the bottom of the brine box as shown in the figure, and its opposite end connects to the bottom of the electrolytic cell from the side!
It is continued.

一方、分散管は外径60vm、内径50mmのPTFE
製パイプの先端が閉じられたもので。
On the other hand, the dispersion tube is made of PTFE with an outer diameter of 60v and an inner diameter of 50mm.
A made pipe with a closed end.

七の側面に均一に直鎮Omm及び直径20+nmの開孔
各々16個及び4個が分散管の長手方向150mmにわ
たって設けられている。また、分散管下端から塩水配管
のベント部までの距離は 600mmである。
On each side of the dispersion tube, 16 holes and 4 holes each having a diameter of 0 mm and a diameter of 20+ nm were uniformly provided over a length of 150 mm in the longitudinal direction of the dispersion tube. Furthermore, the distance from the lower end of the dispersion tube to the vent part of the salt water piping is 600 mm.

また、電解槽から排出される淡塩水がブラインボックス
に15m’/h及び塩水配管の、電解槽に供給される直
前の水平部分に、循環塩水として15m゛ハで供給され
る。従って、分散管のある塩水配?i↑部分を流れる塩
水速度は18m゛ハであるが、用水の1部は分散管にも
流入するため分散管に外側を流れる塩水の流速は約0.
55m/seeである。また、分散管の上記開孔から流
出する希釈された塩酸の流速は約0.05m/secで
ある。
In addition, fresh salt water discharged from the electrolytic cell is supplied to the brine box at a rate of 15 m/h and to the horizontal portion of the salt water piping just before being supplied to the electrolytic cell as circulating salt water at a rate of 15 m/h. Therefore, a saltwater distribution system with a dispersion pipe? The velocity of the salt water flowing through the part i↑ is 18 m゛ha, but since a portion of the water also flows into the dispersion pipe, the flow velocity of the salt water flowing outside the dispersion pipe is approximately 0.
It is 55m/see. Further, the flow rate of diluted hydrochloric acid flowing out from the opening of the dispersion tube is about 0.05 m/sec.

以」−の装置、条件で電解を実施した所、電解槽にはp
H1,7の電解用塩水が供給され、図示された塩水配管
は塩酸による腐食は全く生じず、安全に長期間電解が実
施できた。
When electrolysis was carried out using the following equipment and conditions, the electrolytic tank contained p.
Salt water for electrolysis of H1 and 7 was supplied, and the salt water piping shown in the figure was not corroded by hydrochloric acid at all, and electrolysis could be carried out safely for a long period of time.

実施例2 第3図の電解プラントにおいて、実施例1と同様にブラ
インボックス底部二カj塩水供給配管(Ti′M、内f
1125am)←こ外径25mm 、内径15mm(7
)PTFE製パイプを入れ分散管の上部に挿入する。分
散管は外径80mm、内径70mmのPTFE製パイプ
で先端部が円錐状に閉じられたもので、その側面に直径
10■の開孔24個が分散管の長手方向 200mmに
千鳥配列に設けられている。また、分散管下端から塩水
配管のベント部までの距離は550mmである。飽和塩
水及び淡塩水の供給の仕方及び量は実施例1と同じであ
る。塩水の流速は約0.7m1secである。一方塩酸
は濃度1ONで30文/hで内径15mmのPTFE製
パイプから分散省を経由して供給される。また、希釈さ
れた塩酸の流速は約0.16m/se cである。
Example 2 In the electrolysis plant shown in Fig. 3, as in Example 1, two salt water supply pipes (Ti'M, inner
1125am)←Outer diameter 25mm, inner diameter 15mm (7
) Insert the PTFE pipe into the top of the dispersion tube. The dispersion tube is a PTFE pipe with an outer diameter of 80 mm and an inner diameter of 70 mm, with the tip closed in a conical shape, and 24 holes with a diameter of 10 cm are provided on the side of the tube in a staggered arrangement 200 mm in the longitudinal direction of the dispersion tube. ing. Further, the distance from the lower end of the dispersion pipe to the vent part of the salt water piping was 550 mm. The method and amount of supply of saturated salt water and fresh salt water are the same as in Example 1. The flow rate of the salt water is about 0.7 ml sec. On the other hand, hydrochloric acid is supplied at a concentration of 1ON at a rate of 30 g/h from a PTFE pipe with an inner diameter of 15 mm via a dispersion station. Further, the flow rate of diluted hydrochloric acid is about 0.16 m/sec.

v上の装置、条件で電解を実施したところ、電解槽には
pHL、Sの電解用塩水か供給され、図示された塩水配
管は塩酸による腐食は全く見られず、安定的に長期間電
解が実施できた。
When electrolysis was carried out using the equipment and conditions shown above, the electrolytic cell was supplied with pHL and S salt water for electrolysis, and the salt water piping shown in the diagram showed no corrosion due to hydrochloric acid, and electrolysis was carried out stably for a long period of time. I was able to implement it.

比較例1 実施例1において、分散管を用いず内径15mmのノと
4身から偵接塩酸を塩水配管に供給すること以外は、実
施例1と同様にして電解実験を行なった。
Comparative Example 1 An electrolysis experiment was carried out in the same manner as in Example 1, except that the dispersion tube was not used and hydrochloric acid was supplied to the salt water piping from a pipe with an inner diameter of 15 mm.

結果は、塩酸供給端から、らせん状に塩水配管の内面に
腐食跡がみられた。
The results showed that corrosion marks were observed on the inner surface of the salt water pipe in a spiral pattern starting from the hydrochloric acid supply end.

これは、塩酸の流れが第4図に示すような状態になって
いることに起因するものと思われる。
This seems to be due to the flow of hydrochloric acid being in the state shown in FIG. 4.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いられうる分散管の1例を示す見取
図である。第2図は第1図の分散管を塩水配管に配管し
た時の塩酸の流れの状態を示す断面説明図である。 第3図は実施例1で使用した電解プラントの塩水供給部
分の拡大断面図である。第4図は比較例1における塩酸
の流れの状態を示す断面説明図である。 図面の浄¥!:(内容に変更なし) y42 図      発 4 @ 手糸売補正書(方式) %式% 1、事件の表示 昭和59年特許願第168881号 2、発明の名称 電解槽への塩酸添加法 3、補正をする者 事件との関係  特許出願人 住 所  東京都千代田区丸の内二丁目1番2号名称 
(004)旭硝子株式会社 4、代理人 昭和59年11月27日  (発送日)6、補正により
増加する発明の数    なし7、補正の対象   図
面 8、補正の内容   添付別紙の通り。 以上
FIG. 1 is a sketch showing one example of a dispersion tube that can be used in the present invention. FIG. 2 is a cross-sectional explanatory diagram showing the state of flow of hydrochloric acid when the dispersion pipe shown in FIG. 1 is connected to a salt water pipe. FIG. 3 is an enlarged sectional view of the salt water supply portion of the electrolysis plant used in Example 1. FIG. 4 is an explanatory cross-sectional diagram showing the state of flow of hydrochloric acid in Comparative Example 1. Purification of drawings! : (No change in content) y42 Diagram 4 @ Hand-selling amendment (method) % formula % 1. Indication of the case Patent Application No. 168881 of 1988 2. Name of the invention Method for adding hydrochloric acid to an electrolytic cell 3. Relationship with the case of the person making the amendment Patent applicant address 2-1-2 Marunouchi, Chiyoda-ku, Tokyo Name
(004) Asahi Glass Co., Ltd. 4, Agent November 27, 1980 (Date of dispatch) 6. Number of inventions increased by the amendment None 7. Subject of the amendment Drawing 8. Contents of the amendment As per the attached appendix. that's all

Claims (4)

【特許請求の範囲】[Claims] (1)塩水配管中の電解用塩水に塩酸を供給して電解槽
に塩酸を添加する方法において、塩酸の細流を流出しう
る細孔を有する分散管を塩水配管のほぼ中心線に沿って
配置し、該分散管に塩酸を供給することを特徴とする電
解槽への塩酸添加法。
(1) In a method of supplying hydrochloric acid to the electrolytic brine in the brine pipe and adding it to the electrolytic cell, a dispersion pipe with pores through which a trickle of hydrochloric acid can flow is placed approximately along the center line of the brine pipe. and supplying hydrochloric acid to the dispersion tube.
(2)塩水配管は、その中心線が、分散管の先端より少
なくとも0.2m真直ぐである特許請求の範囲第(1)
項記載の電解槽への塩酸添加法。
(2) The center line of the salt water piping is at least 0.2 m straight from the tip of the dispersion pipe.
Method of adding hydrochloric acid to the electrolytic cell described in Section 1.
(3)分散管の細孔は、そこから流出する塩酸の流速が
電解用塩水の流速と同じかそれ以下となる断面積を有す
るものである特許請求の範囲第(1)項記載の電解槽へ
の塩酸添加法。
(3) The electrolytic cell according to claim (1), wherein the pores of the dispersion tube have a cross-sectional area such that the flow rate of the hydrochloric acid flowing out from the pores is equal to or lower than the flow rate of the electrolytic brine. Hydrochloric acid addition method.
(4)分散管には、塩酸とともに、一部の塩水をも供給
するものである特許請求の範囲第(1)項記載の電解槽
への塩酸添加法。
(4) A method for adding hydrochloric acid to an electrolytic cell according to claim (1), wherein a part of salt water is also supplied to the dispersion tube along with hydrochloric acid.
JP59168881A 1984-08-14 1984-08-14 Method of adding hydrochloric acid to electrolytic cell Granted JPS6148587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59168881A JPS6148587A (en) 1984-08-14 1984-08-14 Method of adding hydrochloric acid to electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59168881A JPS6148587A (en) 1984-08-14 1984-08-14 Method of adding hydrochloric acid to electrolytic cell

Publications (2)

Publication Number Publication Date
JPS6148587A true JPS6148587A (en) 1986-03-10
JPS6147914B2 JPS6147914B2 (en) 1986-10-21

Family

ID=15876289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59168881A Granted JPS6148587A (en) 1984-08-14 1984-08-14 Method of adding hydrochloric acid to electrolytic cell

Country Status (1)

Country Link
JP (1) JPS6148587A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131184A (en) * 1990-09-19 1992-05-01 Omuko:Kk Additive chemical for preparing electrolyzed bactericidal solution of hypochlorous acid
JP2008514406A (en) * 2004-09-23 2008-05-08 ジョー デイヴィッド ジョーンズ Removal of carbon dioxide from waste streams by simultaneous production of carbonate and / or bicarbonate minerals
US9968883B2 (en) 2014-01-17 2018-05-15 Carbonfree Chemicals Holdings, Llc Systems and methods for acid gas removal from a gaseous stream
US10583394B2 (en) 2015-02-23 2020-03-10 Carbonfree Chemicals Holdings, Llc Carbon dioxide sequestration with magnesium hydroxide and regeneration of magnesium hydroxide

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131184A (en) * 1990-09-19 1992-05-01 Omuko:Kk Additive chemical for preparing electrolyzed bactericidal solution of hypochlorous acid
JP2008514406A (en) * 2004-09-23 2008-05-08 ジョー デイヴィッド ジョーンズ Removal of carbon dioxide from waste streams by simultaneous production of carbonate and / or bicarbonate minerals
JP2011025241A (en) * 2004-09-23 2011-02-10 Joe David Jones Removing carbon dioxide from waste stream through co-generation of carbonate and/or bicarbonate mineral
JP4780730B2 (en) * 2004-09-23 2011-09-28 ジョー デイヴィッド ジョーンズ Removal of carbon dioxide from waste streams by simultaneous production of carbonate and / or bicarbonate minerals
US9968883B2 (en) 2014-01-17 2018-05-15 Carbonfree Chemicals Holdings, Llc Systems and methods for acid gas removal from a gaseous stream
US10583394B2 (en) 2015-02-23 2020-03-10 Carbonfree Chemicals Holdings, Llc Carbon dioxide sequestration with magnesium hydroxide and regeneration of magnesium hydroxide
US11498029B2 (en) 2015-02-23 2022-11-15 Carbonfree Chemicals Holdings, Llc Carbon dioxide sequestration with magnesium hydroxide and regeneration of magnesium hydroxide
US11772046B2 (en) 2015-02-23 2023-10-03 Carbonfree Chemicals Holdings, Llc Carbon dioxide sequestration with magnesium hydroxide and regeneration of magnesium hydroxide
US12179148B2 (en) 2015-02-23 2024-12-31 Carbonfree Chemicals Holdings, Llc Carbon dioxide sequestration with magnesium hydroxide and regeneration of magnesium hydroxide

Also Published As

Publication number Publication date
JPS6147914B2 (en) 1986-10-21

Similar Documents

Publication Publication Date Title
US5037519A (en) Electrolytic chlorine generator
CA2384088C (en) A generator for generating chlorine dioxide under vacuum eduction in a single pass
US4229272A (en) Chlorine generator and method
JPH09512861A (en) Electrolytic cell producing mixed oxidant gas
US4375400A (en) Electrolyte circulation in an electrolytic cell
AU654718B2 (en) A method of hardening water and apparatus for use thereof
JPS6148587A (en) Method of adding hydrochloric acid to electrolytic cell
CN105668710A (en) Device for removing chlorine roots and calcium and magnesium ions from industrial circulating water
US8247098B2 (en) Electrochemical cell
JPH09279376A (en) Method for producing chlorine dioxide
JP2926272B2 (en) Target electrode for corrosion prevention of electrochemical tank
AU652426B2 (en) Device for removal of gas-liquid mixtures from electrolysis cells
CN110615507A (en) Circulating cooling water treatment equipment and circulating cooling water treatment method
CN218322982U (en) Integrated water tank
US2183299A (en) Means for supplying electrolyte to electrolytic cells
CN205442736U (en) Industrial cycle water removes chlorine root, removes calcium magnesium ion device
JP3347643B2 (en) Deoxygenation deaerator
JP2002069683A (en) Apparatus for manufacturing hypochlorite
JP2002143861A (en) Slime treatment device and slime treatment method
CN108217856A (en) A kind of electro-chemical water processing system and its method for treating water
CN111306678A (en) Air humidifier with clear water dirt function
JPS621232Y2 (en)
CN215250035U (en) Drinking water softening treatment system
CN213146818U (en) Humidifier capable of automatically generating HClO
JPH05239679A (en) Electrolytic cell for production of gas