[go: up one dir, main page]

JPS6148381B2 - - Google Patents

Info

Publication number
JPS6148381B2
JPS6148381B2 JP56072915A JP7291581A JPS6148381B2 JP S6148381 B2 JPS6148381 B2 JP S6148381B2 JP 56072915 A JP56072915 A JP 56072915A JP 7291581 A JP7291581 A JP 7291581A JP S6148381 B2 JPS6148381 B2 JP S6148381B2
Authority
JP
Japan
Prior art keywords
ventilation
needle
puncture
sintered body
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56072915A
Other languages
Japanese (ja)
Other versions
JPS57188262A (en
Inventor
Yoshiaki Kanda
Katsuhiko Myaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP56072915A priority Critical patent/JPS57188262A/en
Publication of JPS57188262A publication Critical patent/JPS57188262A/en
Publication of JPS6148381B2 publication Critical patent/JPS6148381B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 本発明は輸液瓶等に用いられる通気針に関する
ものである。 〔先行技術およびその問題点〕 輸液瓶等により点滴を行う際には液の減少に応
じて瓶内に空気を供給する必要があり、このため
一般に通気針と称されている通気用の針を輸液瓶
等のゴム栓に刺通して円滑な点滴を行うようにし
ている。しかし、通気針を通して瓶内に入る空気
は清浄であることが必要であるから、通気針のハ
ブ内に綿を充填してフイルタとしている。このフ
イルタとしての重要な条件は、液が針を経て浸出
してくることがあつてもぬれないこと、空気を清
浄にする能力を有すること、である。液に濡れな
いためには、綿としては脱脂をしていない原綿を
用いるのが良いのであるが、原綿ではパイロジエ
ン、溶血毒性物の除去処理が必要であるから一般
には脱脂綿が使用されている。このように脱脂綿
をフイルタとして用いている通気針を特にリード
管のない輸液瓶等について使用すると脱脂綿が濡
れてしまい、その結果通気量が減少し、点滴速度
が変化するという問題が生ずる。さらに困ること
は、濡れた綿を経て輸液等が菌により汚染される
危険性が高くなることである。 〔発明の目的〕 従つて、本発明は通気針のフイルタとして綿類
を使用せずに、菌による汚染の危険度がなく、通
気量が変わらず点滴量を安定化させることができ
る通気針を提供することを目的とする。 〔発明の具体的構成〕 本発明によれば、通気用のハブ部分をプラスチ
ツク粉末の焼結体で構成される通気部材と、この
通気部材に針等の刺通部材を植設し、空気は焼結
体のマイクロポーラスマスを経て流通しうるよう
にし、空気通路の濡れ防止および口過作用を行
う。空気が定常的に供給されるようにするため
に、刺通部材の中空針の通気部材への埋設部分に
スリツトまたは孔を形成したり、通気部材の針埋
設部内部に空気溜を形成しておくのが好適であ
る。また、刺通部材は必ずしも中空針を用いる必
要はなく、刺通の役を果すための無垢の棒材また
はチツプとし、空気は通気部材を経て瓶内に供給
されるよう構成することもできる。いずれにして
も、プラスチツク材料としては撥水性のあるもの
を使用するのが好適である。 次に、本発明の輸液瓶等に用いられる通気針を
添付図面に示す好適実施例につき詳細に説明す
る。 第1図には現在用いられている通気針1を示
す。この通気針1は中空管体であるカヌラ2、こ
のカヌラの基端に被着されたプラスチツクハブ3
およびこのハブ内に充填されたフイルタ作用をす
る綿4で構成されている。このような構成の通気
針は後述する試験結果からも明らかになるように
種々の問題点を有しているのは明細書の冒頭に記
載されている通りである。 本発明による通気針10は、穿刺部材11の末
端を後に詳述するプラスチツク粉体による通気部
材12内に埋設してなるものであり、安全上およ
び衛生上プロテクタ13を装着するのが普通であ
る。焼結体のマイクロポーラスマスを経て穿刺部
材11の中空部14より空気が輸液瓶等内に供給
される。空気がマイクロポーラスな焼結体からな
る通気部材12を通過する際に空気中の塵埃はも
とより細菌をも焼結体により除去される。従つ
て、焼結体の空孔率および厚さは輸液瓶等に所要
量の点滴等が行われる程度の空気が供給されるよ
うなものであつて、かつ、空気中の細菌が充分に
過される程度のものでなければならない。この
ような程度のマイクロポーラスな焼結体で構成さ
れる通気部材を形成すると、仮に穿刺部材11の
中空部14より輸液等の液体が逆流するようなこ
とがあつても焼結体の微少孔の抵抗により液体が
漏出することはない。さらに、焼結体からなる通
気部材を構成するプラスチツク粉末は撥水性のあ
る材料を使用するのが良い。これにより、現行の
綿フイルタを使用している通気針におけるように
綿が濡れて過作用が低下して点滴が不安定にな
つたり、細菌感染をしたりすることは完全に防止
される(後記実施例参照)。 通気部材12を経て十分な空気が供給されるよ
うにするには種々の方法がある。通気部材の孔径
が大きすぎると細菌汚染の慮れがあるから、通気
部材の孔径は細菌の通過を許さない程度十分に小
さくしておき、空気が通気部材のマイクロポーラ
スマス内を通つて穿刺部材11に至る径路(焼結
体の厚さ)も十分にしておくのが良い。そして、
例えば、通気部材12内部に穿刺部材止め15を
形成し、穿刺部材11の中空孔14下端部に空気
溜16を設けておく。他の方法として、穿刺部材
11自体に、第3図に示すようなスリツト17ま
たは第4図に示すような側孔18をカヌラの中空
部14に連通するように形成することもできる。
これにより、穿刺部材11の中空部14に至る焼
結体からなる通気部材の内表面積を大きくし、穿
刺部材11を経て所要量の空気を供給することが
できる。また、穿刺部材11のスリツト17また
は側孔18と通気部材12の空気溜16を併用す
ることができることは勿論のことである。 通気部材12を形成するプラスチツク粉末材料
としては、ポリエチレン、ポリプロピレン等の安
価なものが好適であるが、撥水性がある他のプラ
スチツク材料でもさしつかえない。プラスチツク
の種類、プラスチツク粉末の粒径、焼結条件、焼
結体の空隙率、穿刺部材11に至る空気通路の長
さ(焼結体の厚さ)等を適切に選択して通気部材
12が上述したようなフイルタ機能を果すよう構
成する。 通気部材の形状は従来よく用いられる通気針と
同様のハブ形状としても良いが、このような形状
に限られず、球形、惰円形、その他の三次元構造
体で構成できる。 本発明の通気針は、空気通路を焼結体および中
空穿刺部材で形成しているが、必ずしもこれに限
定されることはない。すなわち、焼結体をも輸液
瓶等の内部に刺通して焼結体のマイクロポーラス
マスを経て空気が供給されるようにすることがで
きる。その場合、穿刺部材は中空管とする必要は
なく、無垢の金属棒または線材で構成して刺通の
作用だけを果すようにすることもできる。あるい
は、焼結体の先端に刺通用チツプを被着または成
形することもできる。 〔集塵効率試験〕 本発明の通気針に適用する通気部材である焼結
体の性能を確認するために、第1図に示すような
現行の通気針から綿を除去し、平均粒径110〜120
メツシユのポリエチレン粉末より作成した第5図
に示すような凸状焼結フイルタ20(R=3.6
mm、H=7.2mm、平均ポアサイズ50μ)を綿の代
りに嵌合し、リオン社製パーテイクルカウンタ
KC―01型を用いて1の大気を、大気は50ec/
minの割合で、フイルタは30c.c./minの割合で流
して焼結フイルタの集塵効率を検査した。その結
果を第1表に示す。下表から明らかなように、本
発明の通気針に用いる通気部材(フイルタ)は1
μ除去率は約99%以上であり、5μのものは完全
に除去されることがわかつた。 大気中の常在菌は、1μ内外の大きさのものが
ほとんどであり、最小の菌で0.5μ程度といわれ
ている。球菌は1μ内外、桿菌は2〜4μ(長方
向)、0.5〜1.0μ(短方向)、真菌(菌子など)は
1μ以上であり、0.5μの粒子除去能が90%以上
あることを考えると、この焼結体は相当の精度で
菌を除去することが可能である。
[Technical Field] The present invention relates to a ventilation needle used for infusion bottles and the like. [Prior art and its problems] When administering an infusion using an infusion bottle, etc., it is necessary to supply air into the bottle as the amount of liquid decreases. It is used to pierce the rubber stopper of an infusion bottle, etc. to ensure smooth infusion. However, since the air that enters the bottle through the ventilation needle needs to be clean, the hub of the ventilation needle is filled with cotton to serve as a filter. The important requirements for this filter are that it does not get wet even if liquid leaks through the needles, and that it has the ability to purify the air. In order to avoid getting wet with liquid, it is best to use raw cotton that has not been degreased, but since raw cotton requires treatment to remove pyrogen and hemolytic toxic substances, absorbent cotton is generally used. When a ventilation needle using absorbent cotton as a filter is used in an infusion bottle or the like without a lead tube, the absorbent cotton becomes wet, resulting in a decrease in the amount of ventilation and a change in the drip rate. What is even more troubling is that there is an increased risk that the infusion solution or the like will be contaminated by bacteria via the wet cotton. [Object of the Invention] Therefore, the present invention provides a ventilation needle that does not use cotton as a filter for the ventilation needle, has no risk of bacterial contamination, and can stabilize the drip volume without changing the ventilation volume. The purpose is to provide. [Specific Structure of the Invention] According to the present invention, the ventilation hub portion includes a ventilation member made of a sintered body of plastic powder, and a piercing member such as a needle is implanted in this ventilation member, so that air can be It allows air to flow through the microporous mass of the sintered body, thereby preventing wetting of the air passages and acting as a mouthwash. In order to ensure a constant supply of air, a slit or hole is formed in the part of the piercing member where the hollow needle is embedded in the ventilation member, or an air pocket is formed inside the needle-embedded part of the ventilation member. It is preferable to leave it there. Further, the piercing member does not necessarily need to be a hollow needle, but may be a solid bar or a tip for the purpose of piercing, and air may be supplied into the bottle through the ventilation member. In any case, it is preferable to use a water-repellent plastic material. Next, a preferred embodiment of the ventilation needle used in the infusion bottle and the like of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows a ventilation needle 1 currently in use. This ventilation needle 1 includes a cannula 2 which is a hollow tube body, and a plastic hub 3 attached to the proximal end of this cannula.
The hub is filled with cotton 4 which acts as a filter. As stated at the beginning of the specification, ventilation needles with such a configuration have various problems, as will become clear from the test results described below. The ventilation needle 10 according to the present invention has the distal end of the puncture member 11 embedded in a ventilation member 12 made of plastic powder, which will be described in detail later, and is normally fitted with a protector 13 for safety and hygiene reasons. . Air is supplied into the infusion bottle or the like from the hollow part 14 of the puncture member 11 through the microporous mass of the sintered body. When air passes through the ventilation member 12 made of a microporous sintered body, not only dust but also bacteria in the air are removed by the sintered body. Therefore, the porosity and thickness of the sintered body should be such that the required amount of air is supplied to the infusion bottle, etc., and that bacteria in the air are sufficiently removed. It must be to the extent that By forming a ventilation member made of such a microporous sintered body, even if a liquid such as an infusion were to flow back from the hollow part 14 of the puncture member 11, the minute pores of the sintered body would The liquid will not leak out due to the resistance. Furthermore, it is preferable to use a water-repellent material as the plastic powder constituting the ventilation member made of a sintered body. This completely prevents the cotton from getting wet and over-effecting, resulting in unstable drips and bacterial infections, which is the case with current ventilation needles that use cotton filters (see below). (See Examples). There are various ways to ensure that sufficient air is supplied through the ventilation member 12. If the pore size of the ventilation member is too large, there is a risk of bacterial contamination, so the pore size of the ventilation member should be made small enough to prevent bacteria from passing through, so that air can pass through the microporous mass of the ventilation member to the puncture member. The path leading to point 11 (thickness of the sintered body) should also be made sufficient. and,
For example, a puncture member stop 15 is formed inside the ventilation member 12, and an air reservoir 16 is provided at the lower end of the hollow hole 14 of the puncture member 11. Alternatively, a slit 17 as shown in FIG. 3 or a side hole 18 as shown in FIG. 4 may be formed in the puncture member 11 itself so as to communicate with the hollow portion 14 of the cannula.
Thereby, the inner surface area of the ventilation member made of the sintered body reaching the hollow portion 14 of the puncture member 11 can be increased, and a required amount of air can be supplied through the puncture member 11. Furthermore, it goes without saying that the slit 17 or side hole 18 of the puncturing member 11 and the air reservoir 16 of the ventilation member 12 can be used together. The plastic powder material forming the ventilation member 12 is preferably an inexpensive material such as polyethylene or polypropylene, but other water-repellent plastic materials may also be used. The ventilation member 12 is made by appropriately selecting the type of plastic, the particle size of the plastic powder, the sintering conditions, the porosity of the sintered body, the length of the air passage leading to the puncture member 11 (thickness of the sintered body), etc. It is configured to perform the filter function as described above. The shape of the ventilation member may be a hub shape similar to the ventilation needle commonly used in the past, but is not limited to such a shape, and may be configured in a spherical shape, a circular shape, or other three-dimensional structures. Although the ventilation needle of the present invention has an air passage formed of a sintered body and a hollow piercing member, the invention is not necessarily limited thereto. That is, the sintered body can also be penetrated into the interior of an infusion bottle or the like so that air can be supplied through the microporous mass of the sintered body. In this case, the piercing member does not need to be a hollow tube, but can also be constructed of a solid metal rod or wire so that it only performs the piercing function. Alternatively, a piercing tip may be attached or molded to the tip of the sintered body. [Dust Collection Efficiency Test] In order to confirm the performance of the sintered body which is the ventilation member applied to the ventilation needle of the present invention, cotton was removed from the current ventilation needle as shown in Figure 1, and the average particle size was 110. ~120
A convex sintered filter 20 (R=3.6
mm, H = 7.2 mm, average pore size 50 μ) was fitted instead of cotton, and part take counter counter manufactured by Rion Co., Ltd.
1 atmosphere using the KC-01 model, the atmosphere is 50ec/
The dust collection efficiency of the sintered filter was tested by flowing the filter at a rate of 30 c.c./min. The results are shown in Table 1. As is clear from the table below, the ventilation member (filter) used in the ventilation needle of the present invention is 1
It was found that the μ removal rate was about 99% or more, and that 5μ was completely removed. Most of the bacteria that normally exist in the atmosphere are around 1μ in size, and the smallest bacteria is said to be around 0.5μ. Considering that cocci are around 1μ, rods are 2 to 4μ (long direction), 0.5 to 1.0μ (short direction), and fungi (mycelium, etc.) are 1μ or more, and the ability to remove 0.5μ particles is over 90%. , this sintered body can remove bacteria with considerable precision.

【表】 次に、本発明の通気部材内に穿刺部材を埋設し
た通気針(第6図参照)と、現行の通気部材内に
綿を充填した通気針(第7図参照)とを下記のよ
うな寸法に作成したもの、第5図に示すような凸
焼結体を取り付けた場合、綿栓付の現行通気針に
ついて、輪液瓶(ガードル瓶)に適用し、70cmの
高さから各通気針の流出量と時間の関係を測定し
た。第6および7図において各寸法は以下の通り
である。なお、xは空気溜16の長さ、穿刺部材
の孔径は0.5mmである。 a=4mm、b=6mm、c=7mm、d=10mm、e
=6mm、f=4mm、g=8mm、a′=4.3mm、b′=
5.7mm、c′=6mm、d′=14mm、f′=4.3mm、g′=7mm また、通気部材である焼結体12のポアサイズ
は25および50μの例について示す。 試験結果を第2表に示す。本発明におけるよう
に、焼結体の通気部材を用いることにより、綿栓
付の現行通気針に比べて単位時間当りの流出量を
安定させることができることがわかる。また、通
気部材の内部に設ける空気溜の大きさは下表の試
験結果から適当な長さを選択するのが良いことも
判明した。この試験は全て通気部が水濡れしない
状態であり、現実には水濡れする場合があるか
ら、通気部の耐水性を確認しておく必要がある。
[Table] Next, we compared the ventilation needle of the present invention with a puncturing member embedded in the ventilation member (see Figure 6) and the current ventilation needle with cotton filled inside the ventilation member (see Figure 7) as shown below. If the convex sintered body shown in Figure 5 is installed, the current ventilation needle with a cotton plug is applied to a girdle bottle, and each The relationship between the amount of outflow from the ventilation needle and time was measured. In FIGS. 6 and 7, the dimensions are as follows. Note that x is the length of the air reservoir 16, and the hole diameter of the puncture member is 0.5 mm. a=4mm, b=6mm, c=7mm, d=10mm, e
=6mm, f=4mm, g=8mm, a'=4.3mm, b'=
5.7 mm, c' = 6 mm, d' = 14 mm, f' = 4.3 mm, g' = 7 mm. Examples of pore sizes of the sintered body 12, which is a ventilation member, are 25 and 50μ. The test results are shown in Table 2. It can be seen that by using the sintered body ventilation member as in the present invention, the amount of outflow per unit time can be stabilized compared to the current ventilation needle with a cotton plug. It has also been found that the size of the air pocket provided inside the ventilation member is best selected from the test results shown in the table below. All of these tests were performed with the vents not getting wet, but in reality they may get wet, so it is necessary to check the water resistance of the vents.

【表】【table】

〔耐水性試験〕[Water resistance test]

上端が開放し、下端にゴム栓をつけたガラス管
を用いて、ゴム栓に下部より垂直に、本発明によ
る通気針(第6図参照)および第7図に示す通気
針(綿栓付および第5図の凸型焼結体装着)を刺
通し、ガラス管上部より水を注入していき、通気
針から液漏れを生ずる時の水柱の高さHを求め
た。その結果を第3表に示す。
Using a glass tube with an open upper end and a rubber plug attached to the lower end, insert the ventilation needle according to the present invention (see Figure 6) and the ventilation needle (with cotton plug and The convex sintered body shown in Fig. 5 was pierced, water was injected from the top of the glass tube, and the height H of the water column when liquid leaked from the ventilation needle was determined. The results are shown in Table 3.

〔除菌効果試験〕[Elimination effect test]

次に、本発明の通気針と現行の通気針につき微
生物透過性(除菌効果)の試験を第8図に示す系
を用いて行つた。第8図の系において、21は培
地入試験管、22は導管、23は流量計、24は
水入瓶、25は流量調節器付排水導管、26は導
管、導管26の上部に塩化ビニルチユーブ27を
付加してこれに試料通気針28を装着することが
できる。 (試験方法) 排水管25を径て排水することにより供試通気
針28を径て空気を導入した。供試通気針28へ
の導入空気は1当り微生物約4個を含み(洗浄
室にてピンホールサンプラーにより測定)、これ
を130〜150ml/mmの流速にて、1試料につき4.5
導入した。培地は普通ブイヨンを用い、試験終
了後、37℃で7日間培養観察し判定を行つた。各
試料はエチレンオキサイドガスで滅菌し、試験
管、導管等はオートクレーブ滅菌したものを使用
した。 (結果) 培養の結果は下記第4表の通りである。
Next, a microbial permeability (sterilization effect) test was conducted using the system shown in FIG. 8 for the ventilation needle of the present invention and the current ventilation needle. In the system shown in Fig. 8, 21 is a test tube containing a culture medium, 22 is a conduit, 23 is a flow meter, 24 is a water bottle, 25 is a drainage conduit with a flow rate regulator, 26 is a conduit, and a vinyl chloride tube is attached to the top of the conduit 26. 27 can be added and a sample ventilation needle 28 can be attached to this. (Test Method) Air was introduced through the test vent needle 28 by draining water through the drain pipe 25. The air introduced into the test ventilation needle 28 contains approximately 4 microorganisms per unit (measured using a pinhole sampler in the cleaning room), and at a flow rate of 130 to 150 ml/mm, each sample contains 4.5 microorganisms.
Introduced. Normal broth was used as the medium, and after the test, the culture was observed at 37°C for 7 days and judgments were made. Each sample was sterilized with ethylene oxide gas, and test tubes, conduits, etc. were sterilized in an autoclave. (Results) The culture results are shown in Table 4 below.

〔発明の具体的効果〕[Specific effects of the invention]

以上の通気量、耐水性および除菌試験の結果か
ら明らかなように、本発明の焼結体からなる通気
部材を有する通気針は、現在使用されている綿入
の通気針に比して以下に述べるような多くの利点
をもたらす。 (1) 現在使用されている綿入りの通気針は耐水性
が弱く液漏れの可能性が高く、その結果輸液量
も不安定であつたが、本発明の通気針では焼結
体を通気部材とした結果、このような事態を回
避できるようになつた。 (2) 焼結体の通気部材は除塵、除菌効果が大き
く、清浄性に優れる。 (3) 従来の通気針において液漏れ防止用として輸
液瓶等にリード管を設けているものがあるが、
本発明の通気針を用いればこのような必要がな
くなる。 (4) 穿刺部材を金属の管体で構成し、通気部材お
よび管体を経て空気が流通しうるようにする
と、管体が硬いので穿刺の際容易に穿刺できる
し、外圧が加わつても穿刺部材が折れたり曲つ
たりすることがなく有用である。 (5) 又穿刺部材の通気部材への埋設部分において
穿刺部材の中空部に連通するスリツトや側孔を
穿刺刺部材に形成すると、穿刺部材の中空部に
至る通気部材の内表面積を大きくし、穿部材を
経て所要量の空気を供給することができる。 (6) 更に、穿刺部材の通気部材への埋設端末部分
において、通気部材の内部に穿刺部材の中空部
に連通する空気溜を設けると、通気部材を経て
十分な空気が供給される。 (7) 穿刺部材および通気部材を焼結体で構成し、
穿刺部材の先端に穿刺用チツプを形成すると、
焼結体が輸液瓶等の内部に入り込むので焼結体
のマイクロポーラスマスを経てより十分な空気
が供給されるようにすることができる。 (8) 又、通気部材を撥水性プラスチツク材料で形
成すると、現行の綿フイルタを使用している通
気針におけるように綿が濡れて過作用が低下
して点滴が不安定になつたり、細菌感染をした
りすることは完全に防止される。
As is clear from the results of the airflow rate, water resistance, and sterilization tests described above, the ventilation needle having the ventilation member made of the sintered body of the present invention has the following characteristics compared to the cotton-filled ventilation needle currently in use: It brings many benefits as mentioned in. (1) The cotton-filled ventilation needles currently in use have poor water resistance and a high possibility of leakage, resulting in unstable infusion volume; however, the ventilation needle of the present invention uses a sintered body as a ventilation member. As a result, it became possible to avoid such situations. (2) The sintered ventilation member has a large dust removal and sterilization effect, and has excellent cleanliness. (3) Some conventional ventilation needles have a lead tube attached to the infusion bottle, etc. to prevent fluid leakage.
Using the ventilation needle of the present invention eliminates this need. (4) If the puncture member is made of a metal tube and air is allowed to flow through the ventilation member and the tube, the tube is hard and can be easily punctured, and even if external pressure is applied, the puncture will not occur. It is useful because the member does not break or bend. (5) Furthermore, if a slit or side hole communicating with the hollow part of the puncturing member is formed in the puncturing member at the part where the puncturing member is embedded in the ventilation member, the inner surface area of the ventilation member leading to the hollow part of the puncturing member is increased; The required amount of air can be supplied via the perforation. (6) Furthermore, if an air reservoir communicating with the hollow part of the puncturing member is provided inside the ventilation member at the end portion of the puncturing member embedded in the ventilation member, sufficient air can be supplied through the ventilation member. (7) The puncture member and the ventilation member are made of a sintered body,
When a puncturing tip is formed at the tip of the puncturing member,
Since the sintered body enters the inside of the infusion bottle or the like, more sufficient air can be supplied through the microporous mass of the sintered body. (8) In addition, if the ventilation member is made of water-repellent plastic material, as with the current ventilation needles that use cotton filters, the cotton gets wet and over-effect decreases, leading to unstable dripping and the risk of bacterial infection. This is completely prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は現行通気針の部分断面側面図、第2図
は本発明の焼結ハブを有する通気針の部分断面側
面図、第3および4図は本発明の通気針に用いる
カヌラの他の構成例の側面図および断面図、第5
図は本発明の通気針に用いる焼結体で構成したフ
イルタの側面図および平面図、第6および7図は
試験に用いた本発明のおよび現行の通気針の寸法
を示す側面断面図、第8図は除菌試験装置の線図
である。 符号の説明1……現行通気針、2……カヌラ、
3……ハブ、4……綿、10……本発明の通気
針、11……穿刺部材、12……通気部材、13
……プロテクタ、14……中空部、15……穿刺
部材止め、16……空気溜、17……スリツト、
18……側孔、20……焼結フイルタ、21……
培地入試験管、23……流量計、24……水入
瓶、28……供試通気針。
FIG. 1 is a partial cross-sectional side view of a current ventilation needle, FIG. 2 is a partial cross-sectional side view of a ventilation needle having a sintered hub of the present invention, and FIGS. 3 and 4 are views of other cannulas used in the ventilation needle of the present invention. Side view and sectional view of configuration example, fifth
The figures are a side view and a plan view of a filter made of a sintered body used in the ventilation needle of the present invention, Figures 6 and 7 are side sectional views showing the dimensions of the ventilation needle of the present invention and the current ventilation needle used in the test, Figure 8 is a diagram of the sterilization test device. Explanation of symbols 1...Current ventilation needle, 2...Cannula,
3... Hub, 4... Cotton, 10... Ventilation needle of the present invention, 11... Puncture member, 12... Ventilation member, 13
... protector, 14 ... hollow part, 15 ... puncture member stopper, 16 ... air reservoir, 17 ... slit,
18... side hole, 20... sintered filter, 21...
Test tube containing medium, 23...flow meter, 24...water bottle, 28...test aeration needle.

Claims (1)

【特許請求の範囲】 1 プラスチツク粉末の焼結体で構成される通気
部材と、この通気部材に一部を埋設した穿刺部材
とを備えることを特徴とする通気針。 2 前記穿刺部材を金属の管体で構成し、通気部
材および管体を経て空気が流通しうるよう構成し
たことを特徴とする特許請求の範囲第1項記載の
通気針。 3 前記穿刺部材の通気部材への埋設部分におい
て穿刺部材の中空部に連通するスリツトを穿刺部
材に形成したことを特徴とする特許請求の範囲第
2項記載の通気針。 4 前記穿刺部材の通気部材への埋設部分におい
て穿刺部材の中空部に連通する側孔を穿刺部材に
形成したことを特徴とする特許請求の範囲第2項
記載の通気針。 5 前記穿刺部材の通気部材への埋設端末部分に
おいて前記通気部材の内部に穿刺部材の中空部に
連通する空気溜を形成したことを特徴とする特許
請求の範囲第2項ないし第4項記載の通気針。 6 前記穿刺部材および通気部材を焼結体で構成
し、穿刺部材の先端に穿刺用チツプを形成したこ
とを特徴とする特許請求の範囲第1項記載の通気
針。 7 通気部材を撥水性プラスチツク材料で形成し
たことを特徴とする特許請求の範囲第1項ないし
第7項記載の通気針。
[Scope of Claims] 1. A ventilation needle comprising a ventilation member made of a sintered body of plastic powder, and a puncture member partially embedded in the ventilation member. 2. The venting needle according to claim 1, wherein the puncturing member is made of a metal tubular body, and is configured to allow air to flow through the venting member and the tubular body. 3. The venting needle according to claim 2, wherein the puncturing member is provided with a slit that communicates with the hollow portion of the puncturing member at a portion where the puncturing member is embedded in the venting member. 4. The ventilation needle according to claim 2, wherein the puncture member is provided with a side hole that communicates with the hollow portion of the puncture member at a portion where the puncture member is embedded in the ventilation member. 5. Claims 2 to 4, characterized in that an air pocket communicating with a hollow portion of the puncture member is formed inside the ventilation member at an end portion of the puncture member embedded in the ventilation member. Venting needle. 6. The ventilation needle according to claim 1, wherein the puncture member and the ventilation member are made of a sintered body, and a puncture tip is formed at the tip of the puncture member. 7. The ventilation needle according to any one of claims 1 to 7, wherein the ventilation member is made of a water-repellent plastic material.
JP56072915A 1981-05-15 1981-05-15 Air passing needle Granted JPS57188262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56072915A JPS57188262A (en) 1981-05-15 1981-05-15 Air passing needle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56072915A JPS57188262A (en) 1981-05-15 1981-05-15 Air passing needle

Publications (2)

Publication Number Publication Date
JPS57188262A JPS57188262A (en) 1982-11-19
JPS6148381B2 true JPS6148381B2 (en) 1986-10-23

Family

ID=13503117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56072915A Granted JPS57188262A (en) 1981-05-15 1981-05-15 Air passing needle

Country Status (1)

Country Link
JP (1) JPS57188262A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10127779A1 (en) 2001-06-01 2002-12-12 Vetter & Co Apotheker Twist closure for primary packaging of pharmaceuticals, comprising channels between closure parts to allow flow of sterilizing vapor to closure contact surfaces

Also Published As

Publication number Publication date
JPS57188262A (en) 1982-11-19

Similar Documents

Publication Publication Date Title
FI82383C (en) Methods to reduce the risk of particle (bacterial) contamination of body parts or fluids and instruments for introducing fluid into body parts or fluids
US20240366415A1 (en) Fluid collection assemblies including a first porous material exhibiting at least one of a fluid permeability or compressibility that is different than a second porous material
US4227527A (en) Sterile air vent
US4319573A (en) Personal liquid removal system
US4981464A (en) Plug device for a transfusible fluid container
US3429314A (en) Self-venting drainage system for body fluids
CN213787425U (en) Transfer device and transfer device assembly for isolating a blood collection of an initial collection portion
US3359977A (en) Air filter means
US4473094A (en) Air inlet
BRPI0717527A2 (en) AEROSOL FILTER VENTILATED BOTTLE ADAPTER
JPH0542220A (en) Transfusion filter
EP0226718A2 (en) Parenteral fluid administration set
CA1146090A (en) Intravenous fluid filter
WO2015160823A1 (en) Filter assemblies, intravenous therapy devices including at least one filter and related assemblies and methods
JPS6148381B2 (en)
JP3674946B2 (en) Blood collection needle
CN204092699U (en) New type auto Liquid level, from only liquid transfusion device
CN215460993U (en) Blood transfusion tube for cutting off filtered air
CN214970336U (en) Automatic stop type blood return prevention precise filtering infusion apparatus
CN217286634U (en) Special drainage device of cranium brain surgery
CN214181340U (en) Novel medical infusion apparatus with protection mechanism
CN217772908U (en) A disposable infusion set
CN212016333U (en) Droppers and Infusion Sets
CN208492862U (en) A kind of pressure measuring unit with filtration
CN100430100C (en) Medical aseptic aerator