JPS6147981B2 - - Google Patents
Info
- Publication number
- JPS6147981B2 JPS6147981B2 JP52107447A JP10744777A JPS6147981B2 JP S6147981 B2 JPS6147981 B2 JP S6147981B2 JP 52107447 A JP52107447 A JP 52107447A JP 10744777 A JP10744777 A JP 10744777A JP S6147981 B2 JPS6147981 B2 JP S6147981B2
- Authority
- JP
- Japan
- Prior art keywords
- pump
- turbine
- closing
- turbines
- water pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 70
- 230000007423 decrease Effects 0.000 claims description 43
- 238000000034 method Methods 0.000 claims description 18
- 238000011144 upstream manufacturing Methods 0.000 claims description 10
- 230000003247 decreasing effect Effects 0.000 claims description 3
- 238000010248 power generation Methods 0.000 claims description 2
- 230000000630 rising effect Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B15/00—Controlling
- F03B15/02—Controlling by varying liquid flow
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Water Turbines (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はポンプ水車、特に水車領域においてS
字特性が必至とされる高落差ポンプ水車の案内羽
根閉鎖方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to pump-turbines, particularly in the area of water turbines.
This paper relates to a guide vane closing method for a high-head pump-turbine, which requires the following characteristics.
一般的に、ポンプ水車、特に高揚程ポンプ水車
のランナーその他の機器は、ポンプ運転時に高揚
程を得る為に、充分なる遠心ポンプ作用を発揮す
るべく設計される。
In general, the runners and other equipment of pump turbines, particularly high head pump turbines, are designed to provide sufficient centrifugal pumping action to obtain high head during pump operation.
しかしながら、この設計は、ポンプ水車の水車
運転に悪影響を与える。特に後述のS字特性と呼
ばれる特性を伴うことが必至と考えられている。
この設計に採用されるポンプ水車の特性を、所定
案内羽根開度の下における単位落差当り回転数
(N1)と単位落差当り流量(Q1)との関係を表わす
特性曲線により示した場合、この特性曲線は、水
車運転領域において、N1の値の増加に伴つてQ1
の値が減少する第1の部分と、N1の値の減少に
伴つてQ1の値が減少する第2の部分とを有す
る。説明の便宜上、本明細書においては、前記第
2の部分を、S字特性部分と称する。更に、S字
特性部分におけるポンプ水車の特性を、以後、S
字特性と称する。S字特性部分における水車運転
にあつては、単位落差当りトルク(T1)もまた、
単位落差当り回転数(N1)の減少に伴い、減少す
る。 However, this design adversely affects the turbine operation of the pump turbine. In particular, it is considered inevitable that a characteristic called the S-shaped characteristic, which will be described later, is accompanied.
When the characteristics of the pump-turbine adopted in this design are shown by a characteristic curve representing the relationship between the number of revolutions per unit head (N 1 ) and the flow rate per unit head (Q 1 ) under a predetermined guide vane opening, This characteristic curve shows that in the turbine operation region, Q 1 increases with increasing value of N 1
has a first part in which the value of Q1 decreases, and a second part in which the value of Q1 decreases as the value of N1 decreases. For convenience of explanation, the second portion is referred to as an S-shaped characteristic portion in this specification. Furthermore, the characteristics of the pump turbine in the S-shaped characteristic part are hereinafter referred to as S.
These are called character characteristics. When operating a water turbine in an S-shaped characteristic section, the torque per unit head (T 1 ) is also
It decreases as the number of revolutions per unit head (N 1 ) decreases.
通常は、ポンプ水車の水車運転は、上記第1の
部分において行われる。しかしながら、負荷しや
断又は負荷減少等により、単位落差当りの回転数
(N1)が急激に大きく増加する場合は、ポンプ水
車は、S字特性部分において運転されることにな
る。S字特性部分における運転が開始されると、
ポンプ水車の運転点はS字特性部分を一端から他
端へとたどりつつ、まず単位落差当りの流量
(Q1)と単位落差当りの回転数(N1)は減少する。
その後、今度は振子が振返すようにS字特性部分
を逆方向にたどりつつ、Q1とN1は増加する。S
字特性部分におけるこの往復運動は、案内羽根開
度が所定値以上に留まる限りほぼ永続的に継続
し、特別な手段を講じない限り終了しない。この
間、単位落差当りのトルク(T1)も、減少と増加
をくり返す。 Normally, the operation of the pump-turbine is carried out in the first part. However, if the number of revolutions per unit head (N 1 ) suddenly increases greatly due to load interruption or load reduction, the pump-turbine will be operated in the S-shaped characteristic portion. When operation in the S-shaped characteristic part starts,
The operating point of the pump-turbine follows the S-shaped characteristic part from one end to the other, and first the flow rate per unit head (Q 1 ) and the number of rotations per unit head (N 1 ) decrease.
After that, Q 1 and N 1 increase while tracing the S-shaped characteristic part in the opposite direction, like a pendulum swinging back. S
This reciprocating motion in the character characteristic portion continues almost permanently as long as the guide vane opening remains above a predetermined value, and will not end unless special measures are taken. During this period, the torque per unit head (T 1 ) also repeatedly decreases and increases.
ポンプ水車の運転は、できるだけS字特性部分
を避けて行われることが望ましい。なぜならば、
S字特性部分における運転は、ポンプ水車本体に
おけると同様に、水圧鉄管やドラフトチユーブ内
に大きな水圧上昇と大きな水圧降下を含めて異常
な水圧変動をひき起こし、その結果として時には
水柱分離さえ招く可能性があることしかもS字特
性部への突入のタイミングが水路や水路を共有す
る他号機の影響等もあり事前につかみ難いためで
ある。上述した負荷しや断は、例えばポンプ水車
に結合される発電機が、しや断器を開かれた場合
や変圧器等発電機と電力系統間にある機器に事故
が起き発電機がその負荷を失つた場合などに生ず
る。またウオーターハンマーは、水圧鉄管又はド
ラフトチユーブ、又はその両方が長い場合には、
特に激烈であることに注意を払う必要がある。 It is desirable to operate the pump-turbine to avoid the S-shaped characteristic part as much as possible. because,
Operation in the S-shaped characteristic section can cause abnormal water pressure fluctuations, including large water pressure rises and large water pressure drops, in the penstock and draft tube, as well as in the pump turbine itself, and may even result in water column separation. This is because the timing of entry into the S-shaped characteristic part is difficult to predict in advance due to the influence of the waterway and other units sharing the waterway. The above-mentioned load disconnection can occur, for example, when a generator connected to a pump-turbine is opened, or when an accident occurs in a device such as a transformer between the generator and the power grid, causing the generator to lose its load. This occurs when you lose your body. Water hammers can also be used when the penstock or draft tube, or both, are long.
Particular attention should be paid to intenseness.
水車運転領域においてS字特性を有するポンプ
水車の特性を、第1図Aおよび第1図Bに示す。
第1図Aにおいては、ポンプ水車の特性が、案内
羽根開度をパラメーターにとり、単位落差当りの
回転数(N1)と単位落差当りの流量(Q1)との関
係として示されている。一方、第1図Bにおいて
は、ポンプ水車の特性が、同じパラメーターによ
り、単位落差当りの回転数(N1)と単位落差当り
のトルク(T1)との関係として示されている。
N1,Q1およびT1は次の式により表現される。 The characteristics of a pump water turbine having S-shaped characteristics in the water turbine operation region are shown in FIGS. 1A and 1B.
In FIG. 1A, the characteristics of the pump-turbine are shown as the relationship between the number of revolutions per unit head (N 1 ) and the flow rate per unit head (Q 1 ), using the guide vane opening as a parameter. On the other hand, in FIG. 1B, the characteristics of the pump-turbine are shown as the relationship between the number of rotations per unit head (N 1 ) and the torque per unit head (T 1 ) using the same parameters.
N 1 , Q 1 and T 1 are expressed by the following equations.
N1=N/√,Q1=Q/√,T1=T/H
上式において、符号N,Q,HおよびTは、そ
れぞれ、ポンプ水車の回転数、流量、有効落差お
よびトルクを示す。 N 1 = N/√, Q 1 = Q/√, T 1 = T/H In the above equation, the symbols N, Q, H, and T indicate the rotation speed, flow rate, effective head, and torque of the pump-turbine, respectively. .
特性曲線1および1′は、所定の比較的大きな
案内羽根開度の下で得られる。特性曲線2および
2′は、それよりも小さな案内羽根開度の下で得
られる。特性曲線3および3′は更にそれよりも
小さい案内羽根開度の下で得られる。 Characteristic curves 1 and 1' are obtained under certain relatively large guide vane openings. Characteristic curves 2 and 2' are obtained under smaller guide vane openings. Characteristic curves 3 and 3' are also obtained at smaller guide vane openings.
特性曲線1のa―d―h部分においては、Q1
の値は、N1の減少に伴い減少する。上述の様
に、この曲線部分a―d―hを、本明細書におい
ては、S字特性部分と称する。同様に、曲線部分
b―e―iは、特性曲線2のS字特性部分であ
り、曲線部分c―f―jは、特性曲線3のS字特
性部分である。一見して明らかなように、特性曲
線1のS字特性部分a―d―hは、特性曲線2の
S字特性部分b―e―iより長く、特性曲線2の
S字特性部分b―e―iは、特性曲線3のS字特
性部分c―f―jよりも長い。このことは、案内
羽根開度が小さくなるとS字特性部分の長さが短
くなることを意味する。 In the a-d-h portion of characteristic curve 1, Q 1
The value of decreases as N1 decreases. As mentioned above, this curved portion a-d-h is referred to as an S-shaped characteristic portion in this specification. Similarly, curve portion bei is an S-shaped characteristic portion of characteristic curve 2, and curve portion cfj is an S-shaped characteristic portion of characteristic curve 3. As is clear at first glance, the S-shaped characteristic portions a-d-h of the characteristic curve 1 are longer than the S-shaped characteristic portions b-e-i of the characteristic curve 2; -i is longer than the S-shaped characteristic portion cfj of characteristic curve 3. This means that as the guide vane opening becomes smaller, the length of the S-shaped characteristic portion becomes shorter.
第1図Aにおけると同様に、第1図Bにおいて
も、曲線部分a′―d′―h′,b′―e′―i′およびc′
―
f′―j′は、それぞれ特性曲線1′,2′および3′の
S字特性部分である。 As in FIG. 1A, in FIG. 1B the curved sections a′-d′-h′, b′-e′-i′ and
―
f'-j' are the S-shaped characteristic portions of characteristic curves 1', 2' and 3', respectively.
第1図Bは、第1図Aと密接な関係がある。例
えば、第1図Aの曲線3上のQ1=Q1x,N1=N1x
を満たす点xは、第1図Bの曲線3′上の点x′に
対応している。点x′は、T1=T1x′,N1=N1x
′(=N1x)を満たす点である。同様に、第1図
Aにおける点a,b,c,d,e,f,h,iお
よびjはそれぞれ第1図Bにおける点a′,b′,
c′,d′,e′,f′,h′,i′およびj′に対応してい
る。 FIG. 1B is closely related to FIG. 1A. For example, Q 1 =Q 1x , N 1 =N 1x on curve 3 in Figure 1A
The point x that satisfies the above corresponds to the point x' on the curve 3' in FIG. 1B. Point x' is T 1 = T 1x ', N 1 = N 1x
'(=N 1x ). Similarly, points a, b, c, d, e, f, h, i and j in FIG. 1A correspond to points a', b', b', and j in FIG. 1B, respectively.
Corresponds to c′, d′, e′, f′, h′, i′ and j′.
曲線nrは、無負荷流量曲線である。曲線1,
2,3と曲線nrとの交点α,β,γは、それぞ
れ、曲線1′,2′,3′と直線T1=0との交点
α′,β′,γ′に対応している。 Curve nr is a no-load flow rate curve. curve 1,
The intersection points α, β, and γ between curves 2 and 3 and the curve nr correspond to the intersections α′, β′, and γ′ between the curves 1′, 2′, and 3′, and the straight line T 1 =0, respectively.
次に、特性曲線1と1′を参照しながらポンプ
水車の水車運転(発電運転)について説明を行
う。上述したように特性曲線1を1′に対応する
特性は、案内羽根開度を比較的大きな値にした時
に得られる。通常は、ポンプ水車の水車運転は、
特性曲線1の上部、すなわち、S字特性部分a―
d―hより上部の曲線部分において行われる。し
かしながら、もし例えばポンプ水車に加わつてい
る負荷が突然失われた場合は、ポンプ水車の回転
数(N)が急激に増加するので、N1の値も急激
に増加する。こうして、ポンプ水車は、S字特性
部分において運転され始まる。S字特性部分にお
ける運転の間は、ポンプ水車の回転数(N)の減
少によりN1の値が減少すると、Q1の値もまた減
少する。Hの値が一定であると仮定すれば、Q1
の値の減少は、それに対応してポンプ水車流量
(Q)が減少することを意味する。現実には、H
の値、すなわち水圧鉄管に結合するポンプ水車入
口とドラフトチユーブに結合するポンプ水車出口
との水頭差は、流量Qの減少と同時に増加する。
このようにして一旦N1の値が減少すると、流量
Qが減少し、流量Qの減少は、ポンプ水車の有効
落差Hの増加をもたらす。この有効落差Hの増加
は、更にN1の減少をもたらし、N1の減少は、更
にQ1の減少をもたらす。このようにして、一旦
S字特性部分における運転が始まると、Q1とN1
は、S字特性部分をQ1減少方向、すなわち点a
から点dの方向にたどりつつ、加速度的に、しか
も連続的に減少する。Q1とN1は、正帰還制御回
路におけると同様に、加速度的に、しかも連続的
に減少することが理解できる。 Next, referring to characteristic curves 1 and 1', the operation of the pump turbine (power generation operation) will be explained. As mentioned above, the characteristic corresponding to characteristic curve 1 1' is obtained when the guide vane opening degree is set to a relatively large value. Normally, the operation of a pump-turbine is as follows:
The upper part of the characteristic curve 1, that is, the S-shaped characteristic part a-
This is done in the curved section above dh. However, if, for example, the load applied to the pump-turbine is suddenly lost, the number of revolutions (N) of the pump-turbine increases rapidly, and the value of N 1 also increases rapidly. Thus, the pump turbine begins to operate in the S-characteristic section. During operation in the S-characteristic section, when the value of N 1 decreases due to a decrease in the rotation speed (N) of the pump-turbine, the value of Q 1 also decreases. Assuming that the value of H is constant, Q 1
A decrease in the value of Q means a corresponding decrease in the pump turbine flow rate (Q). In reality, H
The value of , that is, the head difference between the pump-turbine inlet connected to the penstock and the pump-turbine outlet connected to the draft tube, increases simultaneously with a decrease in the flow rate Q.
In this way, once the value of N 1 decreases, the flow rate Q decreases, and a decrease in the flow rate Q results in an increase in the effective head H of the pump-turbine. This increase in effective head H results in a further decrease in N 1 , which in turn results in a further decrease in Q 1 . In this way, once the operation in the S-shaped characteristic section begins, Q 1 and N 1
is the S-shaped characteristic part in the Q1 decreasing direction, that is, point a
While tracing the direction from point d to point d, the acceleration decreases continuously. It can be seen that Q 1 and N 1 decrease at an accelerated rate and continuously, as in the positive feedback control circuit.
ポンプ水車の運転点がS字特性部分を点aから
点hまでたどり終えると、上記の現象は、負帰還
制御回路におけると同様に次第に緩和され、その
後、反転し、やがてS字特性部分をQ1増加方
向、すなわち点hを少し過ぎた点から点aへたど
ることになる。S字特性部分を逆方向にたどるの
も矢張り正帰還制御回路と同様の様式で行われ
る。 When the operating point of the pump-turbine finishes tracing the S-shaped characteristic part from point a to point h, the above phenomenon is gradually alleviated in the same way as in the negative feedback control circuit, and then reversed, eventually changing the S-shaped characteristic part to Q. 1, in the increasing direction, that is, from a point a little past point h to point a. Tracing the S-shaped characteristic portion in the opposite direction is also performed in the same manner as the arrow positive feedback control circuit.
ポンプ水車がS字特性部分で運転される間は、
上記の往復運動は、ほぼ永続的に繰り返される。
前で説明したように、このような運転は望ましい
ものではない。なぜならば、水力発電所各水路系
続に異常な水圧変化をもたらし、その水圧変化
は、激烈なウオーターハンマーと、時には水柱分
離現象さえもたらすからである。 While the pump turbine is operated in the S-shaped characteristic section,
The above reciprocating motion is repeated almost permanently.
As explained above, such operation is undesirable. This is because hydropower plants cause abnormal water pressure changes in each waterway system connection, and these water pressure changes result in severe water hammer and sometimes even water column separation phenomena.
S字特性部分における運転に伴うこのような悪
影響は、S字特性部分の長さが短くなれば減少す
ることに注目すべきである。例えば、もし案内羽
根開度を小さくして、より短いS字特性部分b―
e―iを有する特性曲線2に従つてポンプ水車を
運転するならば、S字特性に伴う悪影響は軽減さ
れる。 It should be noted that these adverse effects associated with driving in an S-shaped section are reduced as the length of the S-shaped section is reduced. For example, if the guide vane opening is made smaller, the S-shaped characteristic part b-
If the pump-turbine is operated according to characteristic curve 2 with ei, the negative effects associated with S-characteristics are reduced.
S字特性部分におけるポンプ水車の運転は、ポ
ンプ水車のトルクTにも悪影響を与える。S字特
性部分においてN1の値が減少すると、第1図B
に示すように、T1の値が減少する。ここで再び
第1図Aに示にされる特性曲線1上の点aとh
は、第1図Bに示される特性曲線1′上の点a′と
d′にそれぞれ対応することに注意しなければなら
ない。 The operation of the pump-turbine in the S-shaped characteristic portion also has an adverse effect on the torque T of the pump-turbine. When the value of N 1 decreases in the S-shaped characteristic part, Fig. 1B
As shown in , the value of T 1 decreases. Now again points a and h on the characteristic curve 1 shown in FIG.
is the point a' on the characteristic curve 1' shown in Figure 1B.
It must be noted that each corresponds to d′.
有効落差Hが一定であると仮定すれば、T1減
少は、ポンプ水車トルクTの減少を意味する。更
に、ポンプ水車トルクTの減少が、ポンプ水車回
転数Nの減少をもたらすことは明白である。ポン
プ水車回転数Nが減少すると、それに対応して
N1が減少し、次にT1が更に減少することにな
る。現実にはこの間に前記したように有効落差H
が増加しているのでこの加速傾向は益々強まる。
このようにして、ポンプ水車は、特性曲線1を、
Q1減少方向にたどる間、同時に特性曲線1′を点
a′から点h′へとたどつていることになる。そのた
どり方は、正帰還制御回路の場合と同様である。
その後、S字特性部分をたどる方向が逆転する
と、特性曲線1′は点h′から点a′の方向へと、た
どることになる。明らかに、上述したようなトル
ク変化は、不利益である。 Assuming that the effective head H is constant, a decrease in T 1 means a decrease in the pump turbine torque T. Furthermore, it is clear that a decrease in the pump-turbine torque T results in a decrease in the pump-turbine rotational speed N. When the pump-turbine rotation speed N decreases, correspondingly
N 1 will decrease and then T 1 will decrease further. In reality, during this period, as mentioned above, the effective head H
This accelerating trend will become even stronger as the number of
In this way, the pump-turbine has the characteristic curve 1
While tracing Q 1 in the decreasing direction, the characteristic curve 1' is at the same time
This means that we are tracing from a' to point h'. The way to trace this is the same as in the case of a positive feedback control circuit.
Thereafter, when the direction of tracing the S-shaped characteristic portion is reversed, the characteristic curve 1' traces from point h' to point a'. Obviously, torque variations as described above are disadvantageous.
さて下池側又は上池側管路が他の水車又はポン
プ水車と合流し、この合流点以遠の管路を共有す
る如く配置されるポンプ水車を考えてみる。管路
を共有する複数台の水車又はポンプ水車がいずれ
もS字特性をもつていない場合には、上池側管路
水圧が最高になり、下池側管路水圧が最低になる
最も苛酷な状態は、それら複数の水車又はポンプ
水車が同時に負荷しや断又は停止した時に現われ
る。 Now, let us consider a pump-turbine that is arranged so that the pipe on the lower pond side or the upper pond side merges with another water turbine or pump-turbine, and the pipes beyond this junction are shared. If multiple water turbines or pump-turbines sharing a pipeline do not have S-shaped characteristics, the most severe condition is where the water pressure in the upper basin side pipeline is the highest and the lower basin side pipeline water pressure is the lowest. This occurs when multiple water turbines or pump turbines are unloaded or stopped at the same time.
しかしながら複数台の中に複数台のS字特性を
有するポンプ水車が含まれていると、この相乗効
果によつて必ずしも同時しや断が最も苛酷な条件
になるとは限らない。今、上池側管路を共有した
2台のポンプ水車が負荷しや断されたとして案内
羽根を初期急速閉鎖の継続が不足して第3図のよ
うに閉鎖し、結果的に案内羽根の初期急速閉め込
み中に生ずる案内羽根上流側水圧の最高値より、
回転数が下降に転じた直後にS字特性に突入する
ことによつて自然に達する該上流側水圧の最高値
の方が高くなつた場合の計算結果の一例を第6図
に実線で示す。第6図は縦軸は上池側管路に生ず
る最大水圧値、横軸は1台目と2台目の負荷しや
断の時間差を示す。この図の実線より明らかなよ
うに時間差0秒即ち同時しや断の場合に比べて時
間差が増すにつれて最大水圧値が上昇し、時間差
4秒のとき最大に達した。このように時間差によ
つて現われる最大水圧値が変る場合には、設計段
階では真の最大値を把むために時間差をパラメー
タにした数多くのケースのコンピユータ解析を実
行する必要がある。また、試験段階に入つても真
の最大値を把むために時間差をパラメータにした
数多くのケースにつき実際に負荷しや断テストを
実施して確認する必要が生ずる。これらのコンピ
ユータ解析、負荷しや断試験は時間を要するばか
りでなく、実際に負荷しや断試験を何回も実行す
ることになり電力系統への迷路が大きくしかもポ
ンプ水車や発電電動機自身の損傷を早めかねな
い。 However, if a plurality of pump turbines having S-shaped characteristics are included in the plurality of pump turbines, simultaneous breakage is not necessarily the most severe condition due to this synergistic effect. Now, assuming that two pump-turbines sharing the upper pond side pipeline are cut off due to load, the guide vanes are closed as shown in Figure 3 due to insufficient initial rapid closure, and as a result, the guide vanes are closed as shown in Figure 3. From the maximum water pressure on the upstream side of the guide vane that occurs during initial rapid closing,
An example of the calculation results in the case where the maximum value of the water pressure on the upstream side that naturally reaches the S-shaped characteristic immediately after the rotation speed starts to decrease becomes higher is shown by a solid line in FIG. In FIG. 6, the vertical axis shows the maximum water pressure value generated in the upper pond side pipe, and the horizontal axis shows the time difference between the load shedding of the first and second units. As is clear from the solid line in this figure, the maximum water pressure value increases as the time difference increases, compared to the case where the time difference is 0 seconds, that is, simultaneous disconnection, and reaches the maximum value when the time difference is 4 seconds. If the maximum water pressure value that appears changes depending on the time difference in this way, it is necessary to perform computer analysis of many cases using the time difference as a parameter in order to determine the true maximum value at the design stage. Furthermore, even at the testing stage, in order to determine the true maximum value, it is necessary to conduct actual loading and disconnection tests for numerous cases in which the time difference is used as a parameter. These computer analyzes and load/disconnection tests not only take time, but also require the actual load/disconnection tests to be performed many times, creating a maze for the power system and causing damage to the pump-turbine or generator-motor itself. may hasten the
ところで従来は上記S字特性による異常な相乗
効果の存在を認識せずに各水車やポンプ水車の案
内羽根の閉鎖方法を決定していた。 By the way, in the past, the method of closing the guide vanes of each water turbine or pump water turbine was determined without recognizing the existence of the abnormal synergistic effect due to the above-mentioned S-shaped characteristic.
水車負荷急減又は水車負荷しや断の際の案内羽
根閉鎖方法としては従来第2図のような各種の方
法が公知となつている。 Various methods as shown in FIG. 2 are conventionally known as methods for closing the guide vanes when the water turbine load suddenly decreases or the water turbine load is interrupted.
第2図aは水車流量は回転上昇すれば減少し、
低下すれば増加するという通常の特定を想定し、
前述のような高落差ポンプ水車特有の逆特性、即
ち、S字特性に対し考慮していない。即ち負荷し
や断後ポンプ水車の回転数が上昇することに着目
しこの回転上昇に伴うポンプ水車の流量減少のみ
を配慮して、回転上昇が続く限り案内羽根の閉動
作を避けて回転数上昇による流量減少効果と案内
羽根による流量減少効果が重ならないように即
ち、回転上昇中は案内羽根が閉めなうようにした
ものであるが、実際には回転数が最高値を越えて
降下し始めた後にこそ運転点がS字領域に入りこ
こで急激に流量減少が起る。この事実に立てばこ
こでこそ緩閉鎖すべきであるが実際には急閉鎖を
始めてしまうことになる。この点でS字特性を有
するポンプ水車には採用できない。 Figure 2 a shows that the flow rate of the water turbine decreases as the rotation increases.
Assuming the usual specification that if it decreases, it will increase,
No consideration is given to the reverse characteristics unique to high-head pump turbines, ie, S-shaped characteristics, as described above. In other words, focusing on the fact that the rotational speed of the pump-turbine increases after the load is interrupted, the rotational speed is increased while avoiding the closing operation of the guide vanes as long as the rotation continues to increase, taking into consideration only the decrease in the flow rate of the pump-turbine due to this increase in rotation. In order to prevent the flow rate reduction effect caused by the flow rate reduction effect caused by the guide vane from overlapping, that is, the guide vane is closed while the rotation speed is rising, but in reality, the rotation speed exceeds the maximum value and begins to fall. It is only after this point that the operating point enters the S-shaped region, at which point the flow rate suddenly decreases. Based on this fact, a gradual closure should have been carried out here, but in reality, a sudden closure would have begun. In this respect, it cannot be used for pump turbines with S-shaped characteristics.
bはaより積極的で回転数上昇中は案内羽根を
開せしめ回転上昇による流量減少を案内羽根の開
動作による流量増加で相殺せしめんとしたもの
で、もちろんS字特性に対しては適用できない。 b is more aggressive than a, and is designed to open the guide vane while the rotation speed is increasing to offset the decrease in flow rate due to the increase in rotation with the increase in flow rate due to the opening operation of the guide vane, and of course cannot be applied to S-shaped characteristics. .
dは最初は速くし、水圧変動値が大きくなつて
きたらその以上の上昇を抑えるべく、途中で腰折
させるというものでS字特性の有無に関係なく広
く採用されている方法である。しかしこの閉鎖方
法によつて複数のポンプ水車が負荷しや断したと
き、管路の最大水圧値がどのようになるのか不明
である。 d is set to be fast at first, and when the water pressure fluctuation value becomes large, it is stopped midway in order to prevent further increase. This is a method that is widely adopted regardless of the presence or absence of S-shaped characteristics. However, it is unclear what will happen to the maximum water pressure value in the pipeline when multiple pump turbines are no longer loaded using this closure method.
また、cは特公昭49―40902号公報に示される
本発明に最も近い例であるが、この公報の記載か
らも明らかなように∂Q/∂N(但しQは水車流
量、Nは回転数)が負の大きな値をとるような水
車領域で緩閉鎖すると規定しており最も問題視す
べき∂Q/∂Nが逆に正となるS字特性領域に対
して言及していない。もちろん管路を共有する複
数台のポンプ水車の負荷しや断時の案内羽根閉鎖
方法についての検討はなされてない。 In addition, c is the closest example to the present invention shown in Japanese Patent Publication No. 49-40902, but as is clear from the description in this publication, ∂Q/∂N (where Q is the flow rate of the water turbine and N is the number of revolutions) ) specifies that the turbine closes slowly in a region where ∂Q/∂N takes a large negative value, and does not mention the S-shaped characteristic region where ∂Q/∂N is positive, which should be considered the most problematic. Of course, no consideration has been given to the loading of multiple pump-turbines sharing a pipeline or the method for closing the guide vanes in the event of a disconnection.
また、c,dに見られる閉鎖方法では、負荷し
や断直後の案内羽根の急速閉鎖速度ないしは、閉
鎖開度をどの程にしたら良いかの指針がなく、モ
デル水車もしくは、実際の水車で、案内羽根を
種々のパターンで閉鎖してみて、閉鎖時の水圧上
昇から最適パターンを見つけていたが、管路を共
有する複数台のポンプ水車にあつては、互に水圧
変動が他のパターン水車に影響を与えるため、最
適パターンを見つけるためにすべてのケースにつ
いて、しや断試験を行わなければならなかつた。
In addition, in the closing methods shown in c and d, there is no guideline as to the rapid closing speed of the guide vanes immediately after the load is cut off, or the closing opening degree, so it is difficult to use model or actual water turbines. They tried closing the guide vanes in various patterns and found the optimal pattern based on the increase in water pressure when they were closed. However, in the case of multiple pump-turbines sharing a pipeline, water pressure fluctuations may be different from those of other pattern-turbines. In order to find the optimal pattern, shear tests had to be performed for all cases.
本発明は上記事情に鑑みなされたもので、その
目的とするところは、管路を共用する複数台のポ
ンプ水車が、どのような状態で負荷しや断が生じ
ても、上池側管路に生ずる水圧が過大とならない
案内羽根の閉鎖方法を提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is to maintain the upper pond side pipeline even if a plurality of pump turbines sharing the pipeline are loaded or disconnected under any conditions. An object of the present invention is to provide a method for closing a guide vane in which the water pressure generated in the guide vane does not become excessive.
上記目的は1台のポンプ水車の定格負荷から負
荷しや断の場合を基本とし、この時回転降下開始
直後のS字特性領域突入による水圧最高値と、負
荷しや断直後の水圧最高値とが略等しくなるよう
に負荷しや断直後の案内羽根の急速閉鎖速度及
び、その閉め込み開度を設定することにより達成
される。
The above objective is based on the case where the load is cut off from the rated load of one pump-turbine, and at this time, the maximum water pressure value due to entering the S-shaped characteristic region immediately after the rotation starts to decrease, and the maximum water pressure value immediately after the load stops. This is achieved by setting the load, the rapid closing speed of the guide vane immediately after disconnection, and the closing opening degree so that the values are approximately equal.
1台のポンプ水車の案内羽根閉鎖の特性は、第
3図に示すパターンで閉じたときには、上池側水
圧は、S字領域に入つたときの方が負荷しや断直
後の案内羽根急閉後(ガイドベーンサーボモータ
ストロークで示している。)の水圧よりも高くな
つているが、負荷しや断直後の急閉速速度及び、
案内羽根を低開度領域まで閉め込むことにより、
負荷しや断直後の水圧が上昇し、S字領域の水圧
が低下する。急閉速度及び閉じ込み開度を調整す
ることにより、第5図に示す如くΔH1とΔH2が
ほぼ等しい値となる。このとき、ΔH1もΔH2も
第3図の上池側水圧の最高値よりも小さくなる。
なぜならば、第5図の閉鎖方法の方が負荷しや断
直後の案内羽根の閉め込みの度合が大きい(すな
わち案内羽根の低い開度まで閉め込まれる)の
で、S字領域に突入したときの案内羽根開度が小
さいため、S字特性の影響が小さくなるためであ
る。
The characteristic of closing the guide vanes of a single pump-turbine is that when the guide vanes close in the pattern shown in Figure 3, the water pressure on the upper pond side is faster when the load reaches the S-shaped region, and the guide vanes close more quickly immediately after the load breaks. Although it is higher than the water pressure at the rear (indicated by the guide vane servo motor stroke), the rapid closing speed immediately after the load is disconnected, and
By closing the guide vanes to the low opening range,
Immediately after loading and unloading, the water pressure increases, and the water pressure in the S-shaped area decreases. By adjusting the quick closing speed and the closing opening degree, ΔH 1 and ΔH 2 become approximately equal values as shown in FIG. At this time, both ΔH 1 and ΔH 2 become smaller than the maximum value of the water pressure on the upper pond side in FIG.
This is because the closing method shown in Figure 5 closes the guide vanes to a greater degree immediately after the load is cut off (that is, the guide vanes are closed to a low opening), so when entering the S-shaped region, This is because the guide vane opening degree is small, so the influence of the S-shaped characteristic becomes small.
そして、第5図のような閉鎖方法を採用した場
合、複数台のポンプ水車を同時もしくは時間差を
もつて負荷しや断した場合、相互の干渉によつて
上池側水圧が最大となるのは、同時しや断の場合
である。つまり、相互のポンプ水車の負荷しや断
直後の水圧上昇ΔH1が同時に生ずる場合であり
この同時しや断の場合についての解析を行えば、
他の時間差しや断の場合は、同時しや断よりも水
圧上昇が大きくなることはない。 If the closing method shown in Figure 5 is adopted, and if multiple pump turbines are loaded and disconnected at the same time or at different times, the water pressure on the upper pond side will be at its maximum due to mutual interference. , in the case of simultaneous termination. In other words, this is a case where the mutual load on the pump-turbine and the water pressure rise ΔH 1 immediately after the cut-off occur simultaneously, and if we analyze this simultaneous case, we get:
In the case of other time lags or breaks, the increase in water pressure will not be greater than if the breaks occur at the same time.
したがつて、単独運転における定格負荷から負
荷しや断を行うに当り、負荷しや断直後の上流側
水圧上昇ΔH1がその後S字領域に入つて生ずる
上流側水圧上昇ΔH2はほぼ等しくなるように負
荷しや断直後の案内羽根の閉め込み速度及び閉め
込み開度を設定し、この速度及び開度まで急速に
閉鎖し、その後ゆるやかに閉鎖する方法を採用す
れば複数のポンプ水車がどのような状態で負荷し
や断を行つても、上流側に生ずる水圧上昇が過大
となることがない。 Therefore, when the load is removed from the rated load in standalone operation, the upstream water pressure increase ΔH 1 immediately after the load is removed and the upstream water pressure increase ΔH 2 that occurs when the load enters the S-shaped region is approximately equal. By setting the closing speed and closing opening of the guide vanes immediately after loading or disconnection, and adopting a method in which the guide vanes are rapidly closed to these speeds and openings, and then closed slowly, it is possible to control how multiple pump-turbines operate. Even if the load is applied or disconnected under such conditions, the increase in water pressure on the upstream side will not become excessive.
以下本発明の一実施例を第5図によつて説明す
る。図より明らかなように案内羽根(ガイドベー
ン)の初期閉め込み速度を速くしたり、閉め込み
巾を大きくして第3図の従来例より小開度まで一
気に急閉鎖し、この時生ずる水車上流側水圧上昇
ΔH1がその後S字領域に入つてから生ずる水車
上流側水圧上昇ΔH2よりも高くする。これに応
じて水車下流側水圧低下の巾もΔH1の時の方が
大きく、ΔH2の時の方が小さくなる。なお、案
内羽根の初期閉め込みの段階をより詳しく説明す
ると次のようになる。負荷しや断が生じると回転
数は上昇し、図示していない調速機は案内羽根を
全力で閉め込むように動作するがこの調速機によ
る自動閉め込み作用を受けて動作する調速機内の
配圧弁のプランジヤーの変位の制限値を負荷しや
断直後の初期閉め込み中のみ大きく設定し、その
後は案内羽根が所定開度まで閉め込まれたという
条件で(又は他の公知の判定条件を用いて)該配
圧弁プランジヤーの制限値を小さな値に自動切換
せしめる。かくして、初期閉め込み速度は速く、
その後の閉め込み速度はより緩かなものとなり図
のように腰折状態となる。上述のごとく初期閉め
込みの巾を従来より大きくしたため、その後迎え
るS字特性曲線の大きさがより圧縮できてΔH2
もそれだけ小さなものとなつている。この結果、
管路を共有した複数のポンプ水車が同時に負荷し
や断された時の水車上流側水圧上昇に最高値は、
丁度ΔH1の時点であり、この値がいかなる時間
差しや断の際に生ずる水圧上昇値より高くなる。
第5図の特性でΔH1とΔH2とが略等しくなる初
期閉め込み速度と閉め込み巾を求めるには、ポン
プ水車の単独運転において、初期閉め込み速度及
び閉め込み巾を種々変えて実験しΔH1とΔH2を
測定することにより求められる。特にΔH1は、
初期閉め込み速度が速い程、また閉め込み巾が大
きくなる程大きくなる傾向を示すので、数回の実
験によりΔH1=ΔH2となる初期閉め込み速度及
び閉め込み巾を見つけ出すことができる。
An embodiment of the present invention will be described below with reference to FIG. As is clear from the figure, the initial closing speed of the guide vane (guide vane) is increased, the closing width is increased, and the opening is suddenly closed to a smaller opening than the conventional example shown in Figure 3. The side water pressure increase ΔH 1 is made higher than the water pressure increase ΔH 2 on the upstream side of the water turbine that occurs after entering the S-shaped region. Correspondingly, the width of the water pressure drop on the downstream side of the water turbine is also larger when ΔH 1 , and smaller when ΔH 2 . The initial closing stage of the guide vanes will be explained in more detail as follows. When a load or disconnection occurs, the rotational speed increases, and the governor (not shown) operates to close the guide vanes with full force. The limit value of the displacement of the plunger of the pressure regulating valve is set to a large value only during the initial closing immediately after the load is disconnected, and thereafter the guide vane is closed to a predetermined opening (or other known judgment conditions). ) to automatically switch the limit value of the pressure regulating valve plunger to a small value. Thus, the initial confinement speed is fast;
After that, the closing speed becomes slower, resulting in a bent state as shown in the figure. As mentioned above, since the width of the initial confinement is made larger than before, the size of the subsequent S-shaped characteristic curve can be further compressed, resulting in ΔH 2
has become that much smaller. As a result,
When multiple pump-turbines sharing a pipeline are simultaneously unloaded and disconnected, the maximum water pressure increase on the upstream side of the turbine is:
It is exactly at the time of ΔH 1 , and this value is higher than the water pressure increase value that occurs during any time lag or disconnection.
In order to find the initial confinement speed and confinement width at which ΔH 1 and ΔH 2 are approximately equal according to the characteristics shown in Figure 5, experiments are carried out by varying the initial confinement speed and confinement width during independent operation of the pump-turbine. It is obtained by measuring ΔH 1 and ΔH 2 . In particular, ΔH 1 is
Since the faster the initial closing speed and the larger the closing width, the larger the closing width is, the initial closing speed and closing width such that ΔH 1 =ΔH 2 can be found through several experiments.
また、第5図ではS字領域を脱出した後案内羽
根を再び急速に閉めているが、これはその後の水
圧の振り戻し作用により再びS字領域に突入しな
いよう一気に収束を図つたものである。しかし二
点鎖線のように緩閉鎖を継続し、水圧の振り戻し
により再びS字領域に突入してもその時の案内羽
根開度はかなり小さくなつているはずで、S字特
性の大きさもそれ相当に縮小されており、それま
でに経験する水圧値よりも大きな変動が生ずる心
配はない。 Furthermore, in Figure 5, the guide vanes are quickly closed again after escaping from the S-shaped area, but this is done in order to prevent the ship from entering the S-shaped area again due to the subsequent swing-back action of water pressure. . However, even if the gradual closing continues as shown by the two-dot chain line, and the water pressure swings back to enter the S-shaped region again, the guide vane opening should have become considerably smaller at that time, and the size of the S-shaped characteristic will be correspondingly large. , so there is no need to worry about larger fluctuations than the water pressure values experienced up to that point.
ところで第1図から明らかなようにS字特性に
入るのはトルクが略零になる点で、これは即ち回
転数の上昇が止み下降が始まる点に他ならない。 By the way, as is clear from FIG. 1, the S-shaped characteristic occurs at the point where the torque becomes approximately zero, which is the point at which the rotational speed stops increasing and begins to decrease.
そこで回転数が最高値に達する時点より前即ち
S字の外にある内に案内羽根を早めに閉め込む方
法が簡単で有力となる。 Therefore, it is simple and effective to close the guide vanes early before the rotational speed reaches its maximum value, that is, while it is outside the S-curve.
〔発明の効果〕
本発明によれば、同時しや断時、上池側管路に
生ずる水圧値が最大となり、これによつて時間差
しや断を対象にした水圧値変動の解析や試験が全
く不要となり、上流側水圧上昇が過大とならない
案内羽根閉鎖方法を提供できる。[Effects of the Invention] According to the present invention, the water pressure value generated in the upper pond side pipe becomes the maximum when there is a simultaneous power outage, and this makes it possible to analyze and test water pressure value fluctuations targeting time differences and power outages. It is possible to provide a guide vane closing method that is completely unnecessary and does not cause an excessive rise in water pressure on the upstream side.
第1図AはS字特性を有するポンプ水車の流量
特性(N1―Q1)グラフ第2図Bは同じくトルク特
性(N1―T1)グラフ、第2図a〜dは従来の負荷
しや断時の案内羽根閉鎖方法を示す線図、第3図
は従来の案内羽根閉鎖方法を採用した場合のポン
プ水車の動特性を示す線図、第4図は第3図等の
従来技術のS字特性上での説明図、第5図は本発
明の一実施例を示す案内羽根閉鎖方法を用いた場
合のポンプ水車の動特性を示す線図、第6図は本
発明と従来技術による上流側管路に生ずる最大水
圧値の比較線図である。
N……回転数、H……有効落差、Q……水車流
量、T……水車トルク、N1……単位落差当りの
回転数、Q1……単位落差当りの水車流量、T1…
…単位落差当りの水車トルク。
Figure 1A is a flow rate characteristic (N 1 - Q 1 ) graph of a pump-turbine with S-shaped characteristics. Figure 2B is also a torque characteristic (N 1 -T 1 ) graph. Figures 2 a to d are graphs of conventional loads. Figure 3 is a diagram showing the method of closing the guide vanes in the event of a blowout, Figure 3 is a diagram showing the dynamic characteristics of a pump-turbine when the conventional guide vane closing method is adopted, and Figure 4 is a diagram showing the conventional technology such as Figure 3. Fig. 5 is a diagram showing the dynamic characteristics of a pump-turbine when using the guide vane closing method showing one embodiment of the present invention, and Fig. 6 is a diagram showing the present invention and the prior art. FIG. 2 is a comparison diagram of the maximum water pressure value generated in the upstream pipe line. N... Number of revolutions, H... Effective head, Q... Turbine flow rate, T... Turbine torque, N 1 ... Rotation speed per unit head, Q 1 ... Water turbine flow rate per unit head, T 1 ...
...Hydraulic turbine torque per unit head.
Claims (1)
ポンプ水車と合流し、この合流点以遠の管路を共
有するごとく配置される複数のポンプ水車を有
し、これらポンプ水車の各々が水車領域において
S字特性、いわゆる (但しNは回転数、Hは有効落差)の比較的高
い領域においてN1の低下に伴いQ1=Q/√
(但しQは水車流量)やT1=T/H(但しTは水
車の発生トルク)が低下する特性を有し、個々の
ポンプ水車が発電運転中において負荷しや断され
たとき案内羽根を急速に閉鎖し、しかるのち少く
とも一度は緩閉鎖に移行して閉鎖するポンプ水車
案内羽根閉鎖方法において、前記案内羽根を急速
に閉鎖する閉鎖速度及び閉め込み巾は、ポンプ水
車の単独運転時に定格負荷から負荷しや断したと
き負荷しや断直後にポンプ水車の回転数が最高値
に達し、下降に転じた直後で上記緩閉鎖続行中に
S字特性に突入することによつて自然に再上昇す
る案内羽根上流側水圧が、上記急速閉鎖中の最高
水圧と略等しくなる案内羽根の上記急速閉鎖速度
及び閉め込み巾とほぼ一致するようにしたことを
特徴とするポンプ水車の案内羽根閉鎖方法。[Scope of Claims] 1. A water turbine having a plurality of pump-turbines arranged so that the pipe on the lower pond side or the upper pond side merges with other water turbines or pump-turbines and sharing the pipes beyond this merging point; Each of the pump-turbines has an S-shaped characteristic, the so-called (However, N is the rotation speed and H is the effective head.) As N 1 decreases in a relatively high range, Q 1 = Q/√
(where Q is the flow rate of the water turbine) and T 1 = T/H (where T is the generated torque of the water turbine) has the characteristic of decreasing, and when an individual pump-turbine is disconnected from the load during power generation operation, the guide vanes In a pump-turbine guide vane closing method in which the guide vanes are closed rapidly and then transitioned to slow closure at least once, the closing speed and closing width for rapidly closing the guide vanes are the same as those rated when the pump-turbine is operated independently. Immediately after the load is removed or removed, the rotation speed of the pump-turbine reaches its maximum value, and immediately after the rotation speed begins to decrease, it automatically restarts by entering the S-shaped characteristic while continuing the gradual closure described above. A method for closing a guide vane of a pump water turbine, characterized in that the rising water pressure on the upstream side of the guide vane is made to approximately match the rapid closing speed and closing width of the guide vane which are approximately equal to the maximum water pressure during the rapid closing. .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10744777A JPS5440946A (en) | 1977-09-07 | 1977-09-07 | Controlling method for pump waterwheel |
US05/940,359 US4253794A (en) | 1977-09-07 | 1978-09-07 | Method of controlling wicket gates of a pump-turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10744777A JPS5440946A (en) | 1977-09-07 | 1977-09-07 | Controlling method for pump waterwheel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5440946A JPS5440946A (en) | 1979-03-31 |
JPS6147981B2 true JPS6147981B2 (en) | 1986-10-22 |
Family
ID=14459374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10744777A Granted JPS5440946A (en) | 1977-09-07 | 1977-09-07 | Controlling method for pump waterwheel |
Country Status (2)
Country | Link |
---|---|
US (1) | US4253794A (en) |
JP (1) | JPS5440946A (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4382745A (en) * | 1977-05-20 | 1983-05-10 | Hitachi, Ltd. | Method of controlling wicket gates of a pump-turbine |
JPS5660862A (en) * | 1979-10-23 | 1981-05-26 | Nippon Koei Kk | Small hydraulic generator |
JPS57126572A (en) * | 1981-01-30 | 1982-08-06 | Toshiba Corp | Operation controlling method for water wheel and pump water wheel |
JPS57163168A (en) * | 1981-03-31 | 1982-10-07 | Hitachi Ltd | Switching method of operating mode in water turbine |
KR920008189B1 (en) * | 1987-12-18 | 1992-09-25 | 가부시기가이샤 히다찌세이사꾸쇼 | Variable speed pumping-up system |
JPH0737791B2 (en) * | 1988-11-28 | 1995-04-26 | 株式会社日立製作所 | Pump backflow detection device, pump operation control device for pumping equipment, and variable-speed pumped storage power generation / electric device |
US5240380A (en) * | 1991-05-21 | 1993-08-31 | Sundstrand Corporation | Variable speed control for centrifugal pumps |
JP3374696B2 (en) * | 1997-03-03 | 2003-02-10 | 株式会社日立製作所 | Pump turbine |
CN100386515C (en) * | 1999-10-29 | 2008-05-07 | 株式会社日立制作所 | Water pump turbine, its control method and its stopping method |
WO2019150517A1 (en) * | 2018-01-31 | 2019-08-08 | 中国電力株式会社 | Hydroelectric power generation control system and control method |
CN112012869B (en) * | 2020-07-14 | 2022-03-08 | 四川大学 | Mixed-flow water turbine tail water vortex band elimination method based on variable speed technology |
CN116292034B (en) * | 2023-05-22 | 2023-07-21 | 南方电网调峰调频发电有限公司检修试验分公司 | S-type characteristic identification method, device and control method of a water pump turbine |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3339567A (en) * | 1963-05-06 | 1967-09-05 | Hitachi Ltd | Method and system for adjusting the closure of flowrate adjusting devices for hydraulic turbines, pump turbines, pumps, and the like |
US3275293A (en) * | 1963-07-09 | 1966-09-27 | Hitachi Ltd | Control device for controlling the closing operation of water shut-off means of a water pump-turbine |
CH419010A (en) * | 1964-06-19 | 1966-08-15 | Escher Wyss Ag | Method and device for closing a water turbine with an adjustable diffuser in the event of sudden relief |
GB1140128A (en) * | 1966-05-20 | 1969-01-15 | English Electric Co Ltd | Improvements relating to hydraulic turbines and pump turbines |
JPS6048634B2 (en) * | 1976-03-29 | 1985-10-28 | 株式会社東芝 | Guide vane closing device for hydraulic machinery |
-
1977
- 1977-09-07 JP JP10744777A patent/JPS5440946A/en active Granted
-
1978
- 1978-09-07 US US05/940,359 patent/US4253794A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS5440946A (en) | 1979-03-31 |
US4253794A (en) | 1981-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6147981B2 (en) | ||
JPH0370874A (en) | variable speed pump system | |
JP6380722B1 (en) | Hydroelectric power generation control system and control method | |
AU2019323106B2 (en) | Reversible pump turbine and guide vane for the reversible pump turbine | |
US6602044B1 (en) | Pump turbine, method of controlling thereof, and method of stopping thereof | |
US4382745A (en) | Method of controlling wicket gates of a pump-turbine | |
JPH0737791B2 (en) | Pump backflow detection device, pump operation control device for pumping equipment, and variable-speed pumped storage power generation / electric device | |
JPH10306766A (en) | Pump turbine | |
US4255078A (en) | Method of controlling operation of multistage hydraulic machines | |
JP4337270B2 (en) | Pump turbine | |
Ciocan et al. | Improving draft tube hydrodynamics over a wide operating range | |
JPS6147980B2 (en) | ||
JPS6135381B2 (en) | ||
US6250887B1 (en) | Reversible pump-turbine system | |
US3368493A (en) | Guide vane arrangement | |
JPS629748B2 (en) | ||
JP2001132610A (en) | Pump turbine | |
JPS6157471B2 (en) | ||
JP2002021700A (en) | Pump turbine | |
JP2001342939A (en) | Pump turbine | |
JPS5925088A (en) | Light load air charging controller | |
JP4269449B2 (en) | Pump turbine | |
JPS6038558B2 (en) | How to control hydraulic machines with inlet valves | |
JPH04272477A (en) | Hydraulic wheel starting method for hydraulic machine | |
CN114087118A (en) | A flexible control method, system, device and storage medium for water turbine guide vanes for suppressing water hammer effect |