JPS6147899B2 - - Google Patents
Info
- Publication number
- JPS6147899B2 JPS6147899B2 JP1948985A JP1948985A JPS6147899B2 JP S6147899 B2 JPS6147899 B2 JP S6147899B2 JP 1948985 A JP1948985 A JP 1948985A JP 1948985 A JP1948985 A JP 1948985A JP S6147899 B2 JPS6147899 B2 JP S6147899B2
- Authority
- JP
- Japan
- Prior art keywords
- metal
- group
- metals
- phase
- atomic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002184 metal Substances 0.000 claims description 41
- 229910052751 metal Inorganic materials 0.000 claims description 41
- 239000000956 alloy Substances 0.000 claims description 30
- 229910045601 alloy Inorganic materials 0.000 claims description 30
- 230000008018 melting Effects 0.000 claims description 12
- 238000002844 melting Methods 0.000 claims description 12
- 150000002739 metals Chemical class 0.000 claims description 12
- 229910052721 tungsten Inorganic materials 0.000 claims description 9
- 239000010953 base metal Substances 0.000 claims description 8
- -1 iron group metals Chemical class 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052763 palladium Inorganic materials 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052735 hafnium Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 238000000576 coating method Methods 0.000 description 13
- 239000011248 coating agent Substances 0.000 description 11
- 238000005520 cutting process Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 150000001247 metal acetylides Chemical class 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000878 H alloy Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 102220284308 rs1555738085 Human genes 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Description
a、a、a族元素の炭化物、窒化物及び
炭窒化物の1種又はそれ以上の硬質相と鉄族金属
を主成分とする結合相より成るいわゆる超硬合金
に炭化物、窒化物、炭窒化物および/または酸化
物の1種又は2種以上を被覆した被覆超硬合金工
具は特に耐摩耗性が優れているということはよく
知られている。なかんずく、TiC、Ti(CN)、
TiN、Al2O3の1種又は2種以上を5〜10μ被覆
をした被覆超硬合金は、従来の超硬合金に比べて
2〜10倍もの長寿命となることが知られている。
しかし、これ等の被覆超硬合金は鉄族金属なか
んづくCoを結合相とした地金を使用するために
さまざまの問題点があり、被覆相の性質を十分生
かしきつているとは言いがたい。
工具において必要な特性は2種類の大別される
ことが判つている。すなわち靭性と耐摩耗性とで
ある。このうち靭性に関しては発明者等の長年の
研究により、さらに2種類に大別されることが判
つて来た。それは機械的強度と熱疲労強度とであ
る。
機械的強度と耐摩耗性の関係は上記超硬合金に
おいては相反する性質であり、鉄族結合金属(多
くの場合Co)を増加させ、機械的強度を上昇さ
せれば耐摩耗性は減少してしまう。
熱疲労強度の変化はかなり複雑である。Co量
の増大にともない熱疲労強度の増加が起るが、
Co量が多すぎるとかえつて塑性変形が起り、熱
疲労強度の低下をまねく。従つてCo量増による
熱疲労強度向上にもおのずから限界がある。
一方、切削工具においては、その能率向上のた
め、切込み、送りの大きな重切削に耐える耐熱疲
労強度の高い工具が要求されているが、この場合
は特に高い靭性が必要であるにもかゝわらず耐塑
性変形性が要求され、現在の超硬合金地金ではお
のずから限界がある。
本発明は、従来超硬合金では到達し得ない高温
下の耐塑性変形性と耐熱疲労靭性を有する地金に
硬質物質を被覆することによつて耐摩耗性及び靭
性を兼ね備え、且つ耐塑性変形性にも優れた工具
を提案するものである。
Coを結合相とした従来の超硬合金においては
Co相の軟化温度が低いため高温での耐塑性変形
性実用切削条件においてもすでに問題となつてい
るし、耐熱疲労靭性も以下に述べる材質に比べ低
い。
被覆超硬合金工具においては塑性変形が別の意
味でも重要である。それは切削時に刃先が高温と
なり、超硬合金地金が塑性変形しても、被覆硬質
相はその温度領域では塑性変形を殆んどしないた
めに、地金の変形に追従できず被覆が破れてしま
う。これが欠損の原因となつたり或いは被覆がは
がれる原因となり工具寿命を短かくしている。
従つて、これを防ぐためには鉄族金属のかわり
にWに代表される高融点金属を結合金属として用
いればよいことになる。実際このような考えに基
づいた合金の試作は2〜3行われており、米国特
許第3703368号にはTi−W−C系の共晶点を利用
して(Ti、W)C1-x−Wの合金を2500℃前後の
温度に加熱、溶融しこれを鋳造するいわゆる溶製
法で作成することが提案されている。
この合金(以下鋳造合金と記す)の耐摩耗性や
高温での耐塑性変形性は該超硬合金に比べはるか
に優れているものゝ、以下のような欠点があつて
広く使用されるには至らなかつた。第1に靭性、
特に機械的強度が著しく劣つている。第2にきわ
めて難研削材料であるにもかゝわらず、鋳造によ
り作られるため粉末冶金法で製造される超硬合金
のごとき複雑形状の製品を安価に製造することが
できない。第3に鋳造温度の関係上融点の低い共
晶組成付近に限定された合金しか得られない。
また(Ti、W)(C、N)−W鋳造合金の提案
もあるが同じような理由から実用には供されてい
ない。
そこでこれらの該鋳造合金の組成で粉末冶金法
で製造できれば、前述の欠点のうち第2、第3の
2つの欠点をカバーできるというとは当業者にお
いて容易に考えつくところである。しかし、この
試みは数々行われながら実際に優れた合金は作成
されていない。その理由はこの組成の合金は炭化
物やMo、Wといつた高融点金属より成つている
ので焼結性は著しく悪く、十分な強度が出なかつ
たためである。
本表明者等はこれ等の系の合金について、なか
んずく硬質相を形成する元素について詳細なる研
究を行つて驚くべき知見を得るに至つた。
すなわち、これまで硬質合金の常識では焼結を
阻害するとされていた酸素を硬質相に入れること
によつて焼結性が著しく向上し、さらには靭性の
向上がみられることを発見したのである。本発明
はこの知見をもとに靭性に優れた高融点金属バイ
ンダー硬質合金を、近年の高能率化に応える工具
として提案するものである。
本発明は酸素を硬質相に積極的に投入すること
に最大の特徴があるが、この合金においては酸素
は硬質相以外にはほとんどはいらず、硬質相は
(M1、M2)(C1-x、Ox)z(以下(1)式という)あ
るいは(M1、M2)(C1-x-y、Ox、Ny)z(以下
(2)式という)といつた組成となる。M1はa族
金属であるTi、Zr、Hfより選ばれた1種又は2
種以上の金属であり、M2はa族金属である
Cr、Mo、Wより選ばれた1種又は2種以上の金
属である。このことは第1図に示すX線回折によ
り明らかである。この図はW50原子%、Ti25原
子%、C20原子%、O5原子%の組成の本発明合金
のX線回折のパターンであるが、WとTiC相のみ
観察される。図中1はWのピーク、2はTiC相の
ピークを示している。このようなことはNを含有
する合金においても同じである。
ここで(1)式、(2)式の限定条件について説明す
る。まず、酸素の含有量であるxは余り少ないと
その効果は表われず、又あまり多いと焼結性を悪
くする。一般に酸化物と金属の混合物の焼結性が
劣るのはそれ等の界面のぬれが悪いためである
が、本発明の合金についても同じことが考えられ
る。0.05≦x≦0.5の範囲であれば酸素の添加効
果を損うことなく強度の高い合金が得られる。
窒素についても酸素と同様のことが言えるが、
耐摩耗性を最下限に要求される場合は窒素は望ま
しくない場合があるので0.01≦y≦0.5が適当と
考えられる。
さらにNとOの合計x+yも限度以上になると
焼結性を損う。Oが0.05以上含有することを要す
るので下限も定まつて0.05≦x+y≦0.6である
ことが望ましい。
化学量論定数zについては0.5を越えると硬質
相と炭素の共存域であり本発明の範囲ではない。
又0.1以下では硬質相が少なすぎて硬度が足りな
いため切削工具や耐摩耗材料としての本発明の目
的からはずれる。このため0.1≦z≦0.5であるこ
とを要する。
a族元素の一部をV、Nb、Taのa族元素
によつて置換することは靭性の向上に効果があ
る。しかし多量に添加するとa、a族高融点
元素の組合せによつて特徴的に表われるMe
(CNO)と高融点金属相の共存という組織からは
ずれやすくなる。
(M1a、M2b、M3c)(C1-x-y、Ny、Ox)zと
表わすと(M1a族元素、M2a族元素、M3
a族元素)a+cはa族元素の量の範囲であ
ることが望ましく0.1から0.7の間でありc/a+cは0.
3
以下であることが望ましい。即ち、M1aの30原子
%までをV、Nb、Taより選ばれた1種以上の
a族金属で置換するのが望ましい。なお置換量は
1原子%以下では効果が認められない。
鉄族金属やAg、Pd、Cu等の微量添加が高融点
金属の焼結性を促進することは一般に知られてい
るが、本発明合金においてもその効果が認められ
る。これ等の金属の1種又は2種以上を添加する
とより低い温度での焼結が可能となり好ましい。
しかしこれ等の金属は低融点であり、多量に添加
した場合本合金の特徴である耐熱性を低下させる
ことは明白である。このような観点からこれ等の
金属は2原子%以下の添加量にとゞめることが望
ましい。なお、0.01原子%以下では効果が認めら
れない。
このように地金に炭化物、窒化物、酸化物、硼
化物の単体もしくは混合体もしくは化合物を単層
もしくは複層に例えば被覆物質としてTiC、
TiN、Ti(CN)、Al2O3等を被覆すれば従来の被
覆超硬合金地金に比べ高能率の切削に耐えられる
工具となる。これについては実施例に述べる。
なお、本発明に有効である被覆の方法は実施例
において示した被覆方法に限られるものではな
く、被覆物質も本実施例に限られるものではな
い。
実施例 1
W粉末、TiC粉末、Ag粉末、Pd粉末、Cu粉末
を秤取し、混合、型押し成型後以下の条件で焼結
を行つた。(型番SNG432、−25゜×0.10mmチヤン
フアーホーニング)
1000℃ 真空 10-1Torr以下
1000〜1600℃ PCo=100Torr
1600〜1700℃ 真空 3×10-3Torr
1700℃ 1時間保持、真空 3×10-3Torr
このようにして得られた合金の組成、およびこ
の合金に化学蒸着法でTiCを5μ被覆し、以下の
条件で切削テストを行つた結果を表1に示す。
被削材:S43C 鍛造材
速度:110m/min
切り込み:6〜10mm
送り:0.86mm/rev
Ag、Cu、Pdの添加量が0.01〜2原子%の範囲
外のD、Gおよび無添加のH合金は本発明品であ
る他の合金に比較し、切削性能は著しく劣ること
がわかつた。
Carbides, nitrides, and carbonitrides are added to the so-called cemented carbide, which is composed of one or more hard phases of carbides, nitrides, and carbonitrides of Group A, A, and A group elements, and a binder phase whose main component is iron group metals. It is well known that coated cemented carbide tools coated with one or more compounds and/or oxides have particularly excellent wear resistance. Among others, TiC, Ti(CN),
It is known that a coated cemented carbide coated with 5 to 10 microns of one or more of TiN and Al 2 O 3 has a lifespan 2 to 10 times longer than conventional cemented carbide. However, these coated cemented carbides have various problems because they use base metals with iron group metals, especially Co, as a binder phase, and it cannot be said that they fully utilize the properties of the coated phase. It has been found that the characteristics required in tools can be broadly classified into two types. That is, toughness and wear resistance. As for toughness, it has been found through many years of research by the inventors that it can be further divided into two types. These are mechanical strength and thermal fatigue strength. The relationship between mechanical strength and wear resistance is contradictory in the above-mentioned cemented carbide, and if the iron group binding metal (in most cases Co) is increased and the mechanical strength is increased, the wear resistance will be decreased. I end up. Changes in thermal fatigue strength are quite complex. As the amount of Co increases, thermal fatigue strength increases.
If the amount of Co is too large, plastic deformation will occur, leading to a decrease in thermal fatigue strength. Therefore, there is naturally a limit to the improvement in thermal fatigue strength by increasing the amount of Co. On the other hand, in order to improve the efficiency of cutting tools, there is a need for tools with high thermal fatigue strength that can withstand heavy cutting with large depths of cut and feed, but in this case, particularly high toughness is required. Plastic deformation resistance is required, and current cemented carbide metals naturally have their limits. The present invention combines wear resistance and toughness by coating a base metal with a hard material that has plastic deformation resistance and thermal fatigue toughness at high temperatures that conventional cemented carbide cannot achieve. We propose a tool with excellent performance. In conventional cemented carbide with Co as a binder phase,
Due to the low softening temperature of the Co phase, plastic deformation resistance at high temperatures is already a problem under practical cutting conditions, and thermal fatigue toughness is also lower than the materials described below. Plastic deformation is also important in coated cemented carbide tools in another sense. The reason for this is that even if the cutting edge becomes hot during cutting and the cemented carbide metal is plastically deformed, the coating hard phase hardly deforms plastically in that temperature range, so it cannot follow the deformation of the metal and the coating breaks. Put it away. This causes chipping or peeling of the coating, shortening the tool life. Therefore, in order to prevent this, a high melting point metal such as W may be used as the bonding metal instead of the iron group metal. In fact, a few prototype alloys have been made based on this idea, and US Pat. It has been proposed to produce the alloy by a so-called melting method in which an alloy of -W is heated to a temperature of around 2500°C, melted, and then cast. Although this alloy (hereinafter referred to as cast alloy) has much better wear resistance and plastic deformation resistance at high temperatures than the cemented carbide, it has the following drawbacks that prevent it from being widely used. I couldn't reach it. Firstly, toughness,
In particular, mechanical strength is extremely poor. Second, although it is an extremely difficult material to grind, it is made by casting, so products with complex shapes such as cemented carbide manufactured by powder metallurgy cannot be manufactured at low cost. Thirdly, due to the casting temperature, only alloys with low melting points near eutectic compositions can be obtained. There has also been a proposal for a (Ti,W)(C,N)-W casting alloy, but it has not been put to practical use for the same reason. Therefore, those skilled in the art can easily think that if these cast alloy compositions can be manufactured by powder metallurgy, the second and third drawbacks mentioned above can be overcome. However, although many attempts have been made to achieve this goal, no superior alloy has actually been created. The reason for this is that since the alloy with this composition is composed of carbides and high melting point metals such as Mo and W, its sinterability is extremely poor and sufficient strength cannot be obtained. The authors of this paper have conducted detailed research on these alloys, particularly the elements that form the hard phase, and have obtained surprising findings. In other words, they discovered that by introducing oxygen into the hard phase, which was conventionally thought to inhibit sintering in hard alloys, sinterability was significantly improved, and toughness was also improved. Based on this knowledge, the present invention proposes a high melting point metal binder hard alloy with excellent toughness as a tool that meets the recent demands for higher efficiency. The greatest feature of the present invention is that oxygen is actively introduced into the hard phase, but in this alloy, almost no oxygen is present outside of the hard phase, and the hard phase is (M1, M2) (C 1-x , O x ) z (hereinafter referred to as equation (1)) or (M1, M2) (C 1-xy , O x , N y ) z (hereinafter referred to as equation (1))
It has a composition as shown in equation (2). M1 is one or two selected from group a metals Ti, Zr, and Hf.
M2 is a group A metal.
One or more metals selected from Cr, Mo, and W. This is clear from the X-ray diffraction shown in FIG. This figure shows the X-ray diffraction pattern of the alloy of the present invention having a composition of 50 at.% W, 25 at.% Ti, 20 at.% C, and 5 at.% O, but only W and TiC phases are observed. In the figure, 1 indicates the peak of W, and 2 indicates the peak of the TiC phase. This also applies to alloys containing N. Here, the limiting conditions of equations (1) and (2) will be explained. First, if x, which is the oxygen content, is too small, its effect will not be exhibited, and if it is too large, the sinterability will be deteriorated. In general, the sinterability of mixtures of oxides and metals is poor because of poor wetting of their interfaces, and the same is believed to apply to the alloys of the present invention. If the range is 0.05≦x≦0.5, a high-strength alloy can be obtained without impairing the effect of oxygen addition. The same thing can be said about nitrogen, but
Since nitrogen may not be desirable when the lowest wear resistance is required, 0.01≦y≦0.5 is considered to be appropriate. Furthermore, if the sum of N and O (x+y) exceeds a limit, sinterability will be impaired. Since it is necessary to contain O of 0.05 or more, the lower limit is also determined and it is desirable that 0.05≦x+y≦0.6. Regarding the stoichiometric constant z, if it exceeds 0.5, the hard phase and carbon coexist, which is outside the scope of the present invention.
Moreover, if it is less than 0.1, the hard phase is too small and the hardness is insufficient, which deviates from the purpose of the present invention as a cutting tool or wear-resistant material. Therefore, it is necessary that 0.1≦z≦0.5. Substituting a part of the group a elements with group a elements such as V, Nb, and Ta is effective in improving toughness. However, when added in large amounts, Me
(CNO) and a high melting point metal phase coexist easily. (M1a, M2b, M3c) (C 1-xy , N y , O x ) When expressed as z , (M1a group element, M2a group element, M3
A group element) a+c is preferably within the range of the amount of the a group element, and is between 0.1 and 0.7, and c/a+c is 0.
It is desirable that it is 3 or less. That is, it is desirable to substitute up to 30 atomic percent of M1a with one or more group a metals selected from V, Nb, and Ta. Note that no effect is observed if the amount of substitution is less than 1 atomic %. It is generally known that the addition of trace amounts of iron group metals, Ag, Pd, Cu, etc. promotes the sinterability of high melting point metals, and this effect is also observed in the alloy of the present invention. It is preferable to add one or more of these metals, as this enables sintering at a lower temperature.
However, these metals have low melting points, and it is clear that if they are added in large amounts, the heat resistance, which is a characteristic of the present alloy, will be reduced. From this point of view, it is desirable to limit the amount of these metals added to 2 atomic % or less. Note that no effect is observed at 0.01 atomic % or less. In this way, carbides, nitrides, oxides, and borides can be coated in a single layer or in multiple layers with carbides, nitrides, oxides, or borides as coating materials, such as TiC,
Coating with TiN, Ti(CN), Al 2 O 3 , etc. will result in a tool that can withstand high-efficiency cutting compared to conventional coated cemented carbide base metals. This will be discussed in Examples. It should be noted that the coating method that is effective in the present invention is not limited to the coating method shown in the Examples, and the coating material is not limited to the one shown in the Examples. Example 1 W powder, TiC powder, Ag powder, Pd powder, and Cu powder were weighed out, mixed, pressed, and then sintered under the following conditions. (Model number SNG432, −25゜×0.10mm chamfer honing) 1000℃ Vacuum 10 -1 Torr or less 1000 to 1600℃ PCo=100Torr 1600 to 1700℃ Vacuum 3×10 -3 Torr 1700℃ Hold for 1 hour, Vacuum 3×10 -3 Torr Table 1 shows the composition of the alloy thus obtained and the results of a cutting test performed on this alloy coated with 5 μm of TiC by chemical vapor deposition under the following conditions. Work material: S43C Forging speed: 110 m/min Depth of cut: 6 to 10 mm Feed: 0.86 mm/rev D, G, and H alloys with no additives of Ag, Cu, and Pd outside the range of 0.01 to 2 atomic% It was found that the cutting performance of the alloy was significantly inferior to that of other alloys of the present invention.
【表】
実施例 2
表2に示す組成の合金を地金として化学蒸着法
によつてTiC2μ、Ti(CN)2μ、TiN2μを被
覆した。これを下記条件にてフライス切削試験を
行つた。結果を表2に示す。
被削材:SCM3(巾600mm、長さ1000mmの板材)
速度:80m/min
切り込み:6mm
送り:0.54mm/刃
工具形状:アキシアルレーキ 4゜30′
ラジアルレーキ −1゜30′
リードアングル 25゜
19.05mm角の一枚刃をつけてテスト
切削時間:30分[Table] Example 2 An alloy having the composition shown in Table 2 was used as a base metal and coated with 2μ of TiC, 2μ of Ti(CN), and 2μ of TiN by chemical vapor deposition. This was subjected to a milling test under the following conditions. The results are shown in Table 2. Work material: SCM 3 (plate material with width 600mm and length 1000mm) Speed: 80m/min Depth of cut: 6mm Feed: 0.54mm/Blade tool shape: Axial rake 4゜30' Radial rake -1゜30' Lead angle 25゜Test cutting time with 19.05mm square single blade: 30 minutes
【表】
市販TiCコーテイングチツプは断続のはげしい
フライス切削では被覆膜が破れ、これが欠損の原
因となつて寿命となるが、本発明品は被覆膜の破
れによつて欠損に至るようにはキレツが進行しな
いため被覆膜の耐摩耗性の良さをひき出すことが
できる。このように本発明は地金靭性が高いため
にコーテイング膜の優秀な性能を十分生かすこと
ができる。[Table] With commercially available TiC coated chips, the coating film is torn due to severe intermittent milling, which causes defects and shortens the service life. However, with the product of the present invention, chips do not occur due to breaks in the coating film. Since cracking does not progress, the coating film can bring out its good wear resistance. As described above, the present invention can fully utilize the excellent performance of the coating film due to the high base metal toughness.
第1図はW50原子%、Ti25原子%、C20原子
%、O5原子%の組成の本発明合金のX線回折パ
ターンを示している。
1……Wのピーク、2……TiC相のピークであ
る。
FIG. 1 shows the X-ray diffraction pattern of the alloy of the present invention having a composition of 50 atomic % W, 25 atomic % Ti, 20 atomic % C, and 5 atomic % O. 1...Peak of W, 2...Peak of TiC phase.
Claims (1)
属、Ag、Cu、Pdより選ばれた1種又は2種以上
を0.01〜2原子%含有し残部が式(1)で表されるこ
とを特徴とする被覆硬質合金用地金。 (M1a、M2b)(C1-x、Ox)z ……(1) 但し、M1はa族金属で、Ti、Zr、Hfより選
ばれた1種または2種以上で、M2はa族金属
で、Cr、Mo、Wより選ばれた1種または2種以
上で構成される。こゝでa、b、x、zはいずれ
も原子比でa+b=1であり、0.1≦a≦0.7であ
る。0.05≦x≦0.5、0.1≦z≦0.5である。 2 硬質相及び高融点金属相より成り、鉄族金
属、Ag、Cu、Pdより選ばれた1種又は2種以上
を0.01〜2原子%含有し残部が式(2)で表されるこ
とを特徴とする被覆硬質合金用地金。 (M1a、M2b)(C1-x-y、Ny、Ox)z ……(2) 但し、M1はa族金属で、Ti、Zr、Hfより選
ばれた1種または2種以上で、M2はa族金属
で、Cr、Mo、Wより選ばれた1種または2種以
上で構成される。こゝでa、b、x、y、zはい
ずれも原子比a+b=1であり、0.1≦a≦0.7で
ある。又0.05≦x+y≦0.6で0.05≦x≦0.5、
0.01≦y≦0.5、0.1≦z≦0.5である。 3 硬質相及び高融点金属相より成り、鉄族金
属、Ag、Cu、Pdより選ばれた1種又は2種以上
を0.01〜2原子%含有し残部が式(3)で表されるこ
とを特徴とする被覆硬質合金用地金。 (M1a、M2b)(C1-x、Ox)z ……(3) 但し、M1はa族金族で、Ti、Zr、Hfより選
ばれた1種または2種以上で、M2はa族で、
Cr、Mo、Wより選ばれた1種または2種以上で
あり、M1の1から30原子%までをa族金属で
あるV、Nb、Taの1種又は2種以上の金属で置
換したものである。ここでa、b、x、zはいず
れも原子比でa+b=1で0.1≦a≦0.7である。 0.05≦x≦0.5であり、0.1≦z≦0.5である。 4 硬質相及び高融点金属相より成り、鉄族金
属、Ag、Cu、Pdより選ばれた1種又は2種以上
を0.01〜2原子%含有し残部が式(4)で表されるこ
とを特徴とする被覆硬質合金用地金。 (M1a、M2b)(C1-x-y、Ny、Ox)z ……(4) 但し、M1はa族金属で、Ti、Zr、Hfより選
ばれた1種または2種以上で、M2はa族金属
で、Cr、Mo、Wより選ばれた1種または2種以
上であり、M1の1から30原子%までをa族金
属であるV、Nb、Taの1種又は2種以上の金属
で置換したものである。ここでa、b、x、y、
zはいずれも原子比でa+b=1で0.1≦a≦0.7
である。 又0.05≦x+y≦0.6で0.05≦x≦0.5、0.01≦
y≦0.5であり、0.1≦z≦0.5である。[Scope of Claims] 1 Consisting of a hard phase and a high melting point metal phase, containing 0.01 to 2 atomic % of one or more selected from iron group metals, Ag, Cu, and Pd, with the remainder represented by formula (1) An ingot for coated hard alloys characterized by the following: (M1a, M2b) (C 1-x , O x ) z ...(1) However, M1 is a group a metal and is one or more selected from Ti, Zr, and Hf, and M2 is a group a metal. It is a metal and is composed of one or more selected from Cr, Mo, and W. Here, a, b, x, and z all have an atomic ratio of a+b=1, and 0.1≦a≦0.7. 0.05≦x≦0.5, 0.1≦z≦0.5. 2 Consisting of a hard phase and a high melting point metal phase, containing 0.01 to 2 atomic percent of one or more selected from iron group metals, Ag, Cu, and Pd, with the remainder represented by formula (2). Features of base metal for coated hard alloys. (M1a, M2b) (C 1-xy , N y , O x ) z ...(2) However, M1 is a group a metal, one or more selected from Ti, Zr, and Hf, and M2 is a group a metal and is composed of one or more selected from Cr, Mo, and W. Here, a, b, x, y, and z all have an atomic ratio a+b=1, and 0.1≦a≦0.7. Also, 0.05≦x+y≦0.6 and 0.05≦x≦0.5,
0.01≦y≦0.5, 0.1≦z≦0.5. 3 Consisting of a hard phase and a high melting point metal phase, containing 0.01 to 2 atomic percent of one or more selected from iron group metals, Ag, Cu, and Pd, with the remainder represented by formula (3). Features of base metal for coated hard alloys. (M1a, M2b) (C 1-x , O x ) z ...(3) However, M1 is a group metal and is one or more selected from Ti, Zr, and Hf, and M2 is a In the family,
One or more selected from Cr, Mo, and W, and 1 to 30 atomic percent of M1 is replaced with one or more of V, Nb, and Ta, which are group a metals. It is. Here, a, b, x, and z all have an atomic ratio of a+b=1 and 0.1≦a≦0.7. 0.05≦x≦0.5, and 0.1≦z≦0.5. 4 Consisting of a hard phase and a high melting point metal phase, containing 0.01 to 2 at% of one or more selected from iron group metals, Ag, Cu, and Pd, with the remainder represented by formula (4). Features of base metal for coated hard alloys. (M1a, M2b) (C 1-xy , N y , O x ) z ...(4) However, M1 is a group a metal and is one or more selected from Ti, Zr, and Hf, and M2 is a group a metal, and is one or more selected from Cr, Mo, and W, and 1 to 30 atomic percent of M1 is one or more group a metals, such as V, Nb, and Ta. It is replaced with metal. Here a, b, x, y,
z is an atomic ratio of a+b=1 and 0.1≦a≦0.7
It is. Also, 0.05≦x+y≦0.6, 0.05≦x≦0.5, 0.01≦
y≦0.5, and 0.1≦z≦0.5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1948985A JPS6141744A (en) | 1985-02-04 | 1985-02-04 | Bare metal for coated hard alloys |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1948985A JPS6141744A (en) | 1985-02-04 | 1985-02-04 | Bare metal for coated hard alloys |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP52156145A Division JPS6056778B2 (en) | 1977-09-20 | 1977-12-23 | Bare metal for coated hard alloys |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6141744A JPS6141744A (en) | 1986-02-28 |
JPS6147899B2 true JPS6147899B2 (en) | 1986-10-21 |
Family
ID=12000767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1948985A Granted JPS6141744A (en) | 1985-02-04 | 1985-02-04 | Bare metal for coated hard alloys |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6141744A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0512257U (en) * | 1991-07-30 | 1993-02-19 | 株式会社タチエス | Slide rail |
-
1985
- 1985-02-04 JP JP1948985A patent/JPS6141744A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0512257U (en) * | 1991-07-30 | 1993-02-19 | 株式会社タチエス | Slide rail |
Also Published As
Publication number | Publication date |
---|---|
JPS6141744A (en) | 1986-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU735160B2 (en) | A cutting insert of a cermet having a Co-Ni-Fe-Binder | |
US4022584A (en) | Sintered cermets for tool and wear applications | |
WO2010104094A1 (en) | Cermet and coated cermet | |
JP2580168B2 (en) | Nitrogen-containing tungsten carbide based sintered alloy | |
JP3366659B2 (en) | Heterogeneous layer surface-finished sintered alloy and method for producing the same | |
JPS6225631B2 (en) | ||
WO2023042777A1 (en) | Coated ultrafine grain cemented carbide, and cutting tool or abrasion-resistant member using same | |
JPS6147899B2 (en) | ||
JPS644989B2 (en) | ||
JPS607022B2 (en) | Cubic boron nitride-based ultra-high pressure sintered material for cutting tools | |
JPH0271906A (en) | Surface-coated tungsten carbide-based cemented carbide cutting tool with excellent plastic deformation resistance | |
JP2982359B2 (en) | Cemented carbide with excellent wear and fracture resistance | |
JPS58164750A (en) | Ultra-high pressure sintered material for cutting tools | |
JP2805339B2 (en) | High density phase boron nitride based sintered body and composite sintered body | |
JPS6056778B2 (en) | Bare metal for coated hard alloys | |
JPS6242988B2 (en) | ||
KR890004538B1 (en) | Cutting tool materials with excellent high temperature characteristics | |
JPS58113349A (en) | Cubic boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools | |
JP3591858B2 (en) | Carbide insert for aluminum cutting | |
JPS61199048A (en) | Sintered hard alloy and its production | |
JPS6245290B2 (en) | ||
JPS6020458B2 (en) | High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools | |
JPS6146429B2 (en) | ||
JPH0547632B2 (en) | ||
JP2003071612A (en) | Surface coated cemented carbide throw-away tip exerting excellent heat-resisting plastic deformation in high- speed cutting |