JPS6147295B2 - - Google Patents
Info
- Publication number
- JPS6147295B2 JPS6147295B2 JP54013904A JP1390479A JPS6147295B2 JP S6147295 B2 JPS6147295 B2 JP S6147295B2 JP 54013904 A JP54013904 A JP 54013904A JP 1390479 A JP1390479 A JP 1390479A JP S6147295 B2 JPS6147295 B2 JP S6147295B2
- Authority
- JP
- Japan
- Prior art keywords
- intake
- valve
- exhaust
- dead center
- top dead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L13/00—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
- F01L13/0015—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
- F01L13/0036—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction
- F01L13/0042—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction with cams being profiled in axial and radial direction
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Valve Device For Special Equipments (AREA)
- Exhaust-Gas Circulating Devices (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Description
【発明の詳細な説明】
本発明は内燃機関の排気弁と吸気弁の開閉時期
を運転状態に応じて可変的にして、シリンダ内残
留ガス量(以下内部EGR量と称する)を適切に
制御するようにした内燃機関のバルブ駆動装置に
関する。[Detailed Description of the Invention] The present invention makes the opening/closing timing of the exhaust valve and intake valve of an internal combustion engine variable according to the operating condition to appropriately control the amount of residual gas in the cylinder (hereinafter referred to as the internal EGR amount). The present invention relates to a valve driving device for an internal combustion engine.
内燃機関から排出されるNOxの低減技術とし
て排気還流システム(EGR)が広く知られてい
るが、通常は排気通路と吸気通路を結ぶEGR通
路を介して還流している。しかしこの場合、比較
的長いEGR通路を流れる間にEGRガスが冷却を
受け、吸気通路に導入されたときには、約100〜
200℃と吸入混合気とそれほど変らない温度とな
る。 Exhaust gas recirculation system (EGR) is widely known as a technology for reducing NOx emitted from internal combustion engines, but NOx is normally recirculated through the EGR passage that connects the exhaust passage and intake passage. However, in this case, the EGR gas is cooled while flowing through the relatively long EGR passage, and when introduced into the intake passage, the
The temperature is 200℃, which is not much different from the intake mixture.
高温のEGRガスを吸気系に導入すると、混合
気を加熱する効果が期待でき燃料の気化促進や混
合の均一化がはかれるので、EGRガスはなるべ
く冷却しない状態に保ちたいのである。 Introducing high-temperature EGR gas into the intake system can be expected to have the effect of heating the air-fuel mixture, promoting vaporization of the fuel and making the mixture more uniform, so it is important to keep the EGR gas as cool as possible.
このことから、機関の吸排気弁が排気行程の終
期から吸気行程の初期で共に開いているバルブオ
ーバラツプ中に、排気が吸入負圧によつて燃焼室
を経て吸気通路へ吹き返す現象を利用する内部
EGGRシステムが注目され始めている。 Based on this, we utilized the phenomenon in which exhaust gas blows back into the intake passage via the combustion chamber due to negative intake pressure during valve overlap, when the engine's intake and exhaust valves are both open from the end of the exhaust stroke to the beginning of the intake stroke. inside to
The EGGR system is starting to attract attention.
この内部EGRシステムでは高温排気が直接的
に吸気系に吹き戻されるので、温度的には上記し
た外部EGRシステムに比べてはるかに高いもの
が得られる。 This internal EGR system blows high-temperature exhaust gas directly back into the intake system, resulting in much higher temperatures than the external EGR system described above.
しかしながら内部EGRは排圧と吸入負圧との
差圧によつて流量が決まるため、吸入負圧の大き
な低負荷領域で還流量が大きく、高負荷領域では
還流量が減少する傾向があり、要求EGR特性に
合致しないばかりか、その流量コントロールも難
かしいという問題があつた。 However, since the flow rate of internal EGR is determined by the differential pressure between the exhaust pressure and suction negative pressure, the reflux amount tends to be large in low load areas where the suction negative pressure is large, and decrease in high load areas. The problem was that not only did it not match the EGR characteristics, but it was also difficult to control the flow rate.
また、高温ガスが吹き返すといつても、燃焼室
から吸気弁を経て低温の吸気通路(吸気マニホー
ルド)にまで戻つてしまうため、冷却による降温
が著しく還流ガスの熱エネルギの有効利用という
点では熱的な損失が、避けられない。 In addition, whenever high-temperature gas blows back, it returns from the combustion chamber to the low-temperature intake passage (intake manifold) via the intake valve, so the temperature decreases significantly due to cooling, making it difficult to effectively utilize the thermal energy of the reflux gas. losses are unavoidable.
本発明はこのような問題を解決するために、排
気行程の途中において早めに排気弁を閉じてシリ
ンダ内に残留ガスを封じ込めるとともに、吸気弁
の開く時期を相対的に遅らせてこの残留ガスが吸
気通路へ戻るのを防止することにより、高温の残
留ガスを運転状態に応じて最適値にコントロール
してNOxの効果的な低減と運転性能の向上をは
かることを目的とする。 In order to solve these problems, the present invention closes the exhaust valve early in the middle of the exhaust stroke to confine the residual gas within the cylinder, and also relatively delays the opening timing of the intake valve so that this residual gas can be absorbed into the intake air. By preventing the gas from returning to the passageway, the purpose is to control high-temperature residual gas to an optimal value depending on operating conditions, effectively reducing NOx and improving operating performance.
以下、本発明の実施例を図面にもとづいて説明
する。 Embodiments of the present invention will be described below based on the drawings.
本発明は第1図に示すように吸気弁と排気弁の
バルブタイミングを運転状態によつて可変的に制
御し、機関中負荷域で最大のEGRを行うことを
可能とするものである。 As shown in FIG. 1, the present invention variably controls the valve timing of the intake valve and exhaust valve depending on the operating condition, thereby making it possible to perform maximum EGR in the engine medium load range.
排気弁については開き始めは通常の機関と同様
に排気下死点の近傍とするが、その閉じ終り時期
を排気上死点に至る以前で運転状態に応じて可変
的に制御する。 The exhaust valve begins to open near the exhaust bottom dead center like a normal engine, but its closing timing is variably controlled depending on the operating state before reaching the exhaust top dead center.
したがつて、排気弁が上死点前に閉じると、以
後はピストンの上昇に伴いシリンダ内に閉じ込め
た残留ガスを圧縮することになる。 Therefore, when the exhaust valve closes before top dead center, the remaining gas trapped in the cylinder will be compressed as the piston moves upward.
この残留ガス量は排気弁の閉じる時期が早くな
るほど増大する。 The amount of residual gas increases as the exhaust valve closes earlier.
一方、吸気弁については、排気(吸気)上死点
を過ぎピストンの降下し始める吸入行程におい
て、好ましくは残留ガスの圧力が排気弁を閉じた
時よりも低下してから開くようにする。 On the other hand, the intake valve is preferably opened after the pressure of the residual gas is lower than when the exhaust valve is closed, during the intake stroke when the piston begins to descend after the exhaust (intake) top dead center.
このように吸気弁の開時期を排気弁の閉時期に
対応して遅らせることにより、シリンダ内に閉じ
込めた残留ガスが吸気弁の開弁時に吸気系に押し
出されるのを防ぐのである。 By delaying the opening timing of the intake valve in accordance with the closing timing of the exhaust valve in this manner, residual gas trapped within the cylinder is prevented from being forced out into the intake system when the intake valve is opened.
吸気弁の閉時期は通常の機関と同様、吸入下死
点近傍の固定的位置に設定する。 The closing timing of the intake valve is set at a fixed position near the bottom dead center of the intake, as in a normal engine.
このように吸排気弁の作動を制御するための一
実施例を第2図に示す。 FIG. 2 shows an embodiment for controlling the operation of the intake and exhaust valves in this manner.
シリンダヘツド1の上部に取付けたカム軸2
は、軸受3,3間で回転かつ摺動自由に支持され
ており、その軸端に形成したスプライン部4に係
合するチエンホイール5を介して機関回転(クラ
ンク軸回転)に同期した回転が伝達される。 Camshaft 2 attached to the top of cylinder head 1
is rotatably and slidably supported between bearings 3, 3, and rotates in synchronization with engine rotation (crankshaft rotation) through a chain wheel 5 that engages with a spline portion 4 formed at the end of the shaft. communicated.
カム軸2の他端には油圧シリンダ6に摺動自由
なピストン7が連接しており、油圧室8に供給さ
れる油圧に応じてピストン7が変位すると、これ
と一体的にカム軸2が軸方向に運動する。 A freely sliding piston 7 is connected to a hydraulic cylinder 6 at the other end of the camshaft 2, and when the piston 7 is displaced in accordance with the hydraulic pressure supplied to the hydraulic chamber 8, the camshaft 2 is moved integrally with the piston 7. Move in the axial direction.
このカム軸2に取付けた排気弁用カム10は、
そのプロフイルが軸方向変位に伴つて可変となる
ように形成されたいわゆる立体カムであり、カム
軸2の軸移動によつて排気弁11の閉時期が変化
するように構成する。 The exhaust valve cam 10 attached to this camshaft 2 is
This is a so-called three-dimensional cam whose profile is variable as the axial displacement occurs, and the closing timing of the exhaust valve 11 changes as the camshaft 2 moves.
前記ピストン7にはアクセルペダルの開度に連
動して増加する油圧が作用し、カム軸2を比例的
に移動させるので、このカム10は、負荷が増加
するにしたがつて第1図の実線位置から点線位置
へと次第に排気弁閉時期が早まり、中負荷域で点
線位置に達した後、さらに負荷が増大するに従つ
て再び実線位置へと戻すようにカムプロフイルが
形成してある。 Hydraulic pressure that increases in conjunction with the opening degree of the accelerator pedal acts on the piston 7, moving the camshaft 2 proportionally, so that as the load increases, the cam 10 moves along the solid line in FIG. The cam profile is formed so that the exhaust valve closing timing gradually advances from the position to the dotted line position, reaches the dotted line position in the middle load range, and then returns to the solid line position as the load further increases.
つまり、内部EGR量としては低負荷から中負
荷にかけて漸増させ、中負荷で最大値となつてか
ら高負荷にかけて漸減させるように制御する。 In other words, the internal EGR amount is controlled so as to gradually increase from low load to medium load, reach the maximum value at medium load, and then gradually decrease as the load increases.
また、吸気弁についてもその開時期が吸気上死
点からのピストン降下過程において可変的に設定
され、原則的には排気弁の閉位置から排気上死点
までの期間(クランク角)と、吸気上死点から吸
気弁の開位置までの期間が等しくなるように、上
記カム軸2に取付けた吸気弁用カム(図示せず)
のカムプロフイルが設定されている。 In addition, the opening timing of the intake valve is variably set during the piston descent process from the intake top dead center, and in principle, the period (crank angle) from the exhaust valve closed position to the exhaust top dead center and the intake An intake valve cam (not shown) is attached to the camshaft 2 so that the period from top dead center to the open position of the intake valve is equal.
cam profile is set.
したがつて本発明では内部EGRを増やすため
に排気弁の閉じ終りが早くなれば吸気弁の開き始
めがそれだけ遅くなるようなバルブタイミングを
もち、この点、従来の内部EGR方式に共通な吸
排気弁のバルブオーバラツプの大きさに応じて内
部EGRを増やすのとは全く異る。 Therefore, in the present invention, in order to increase internal EGR, the valve timing is such that as the exhaust valve closes earlier, the intake valve starts opening later. This is completely different from increasing internal EGR depending on the size of the valve overlap.
上記油圧シリンダ6に供給する圧油を制御する
コントローラ12は、アクセルペダル(図示せ
ず)に連動してアクセル開度の増加に伴い油圧を
上昇させる。 A controller 12 that controls the pressure oil supplied to the hydraulic cylinder 6 increases the oil pressure as the accelerator opening increases in conjunction with an accelerator pedal (not shown).
アクセルペダルに連動するレバー13はスリー
ブ14、スプリング15を介してピストン16を
駆動し、ピストン16に連結した弁体17が、オ
イルポンプPからの吐出路18と油圧室8に連通
する供給路19との連通口20を開閉して、アク
セル開度に比例して油圧を上昇させる。 A lever 13 interlocked with the accelerator pedal drives a piston 16 via a sleeve 14 and a spring 15, and a valve body 17 connected to the piston 16 connects a discharge passage 18 from the oil pump P and a supply passage 19 communicating with the hydraulic chamber 8. The communication port 20 is opened and closed to increase the oil pressure in proportion to the accelerator opening.
なお、油室21には通路22を介して供給油圧
が作用し、ピストン16の動きを差圧変動に対応
して補償する一方、余剰流量はオリフイス付の還
流通路23を経てオイルタンクTへと戻す。 In addition, supply oil pressure acts on the oil chamber 21 via a passage 22 to compensate for the movement of the piston 16 in response to differential pressure fluctuations, while excess flow is sent to the oil tank T via a return passage 23 with an orifice. return.
以上のように構成したので、アクセル開度に比
例して油圧コントローラ12により供給油圧が上
昇すると、カム軸2は油圧シリンダ6のピストン
7に押されて移動し、これに伴つて排気弁11の
閉時期が排気上死点前において次第に早まり、同
時にこれに対応して吸気弁の開時期が吸入上死点
後において次第に遅くなる。 With the above configuration, when the hydraulic pressure supplied by the hydraulic controller 12 increases in proportion to the accelerator opening, the camshaft 2 is pushed by the piston 7 of the hydraulic cylinder 6 and moves, and accordingly, the exhaust valve 11 is moved. The closing timing becomes gradually earlier before the exhaust top dead center, and at the same time, the opening timing of the intake valve gradually becomes later after the intake top dead center.
このため排気行程で排気通路へと押し出される
燃焼ガス量は、排気弁閉時期が早まるほど減少
し、これに対して閉弁時のシリンダ体積分のガス
が燃焼室に残留ガスとして閉じ込められる。 For this reason, the amount of combustion gas pushed out into the exhaust passage during the exhaust stroke decreases as the exhaust valve closes earlier, and on the other hand, gas equivalent to the cylinder volume when the valve is closed is trapped in the combustion chamber as residual gas.
そしてこの残留ガスはその後のピストンの上昇
によりいつたん軽く圧縮され、やがて吸入上死点
を過ぎてから元の状態まで膨張したときに吸気弁
が開き、吸気通路からの新気がシリンダ内に吸入
され始める。 This residual gas is then slightly compressed as the piston rises, and when it expands to its original state after passing the top dead center of the intake, the intake valve opens and fresh air from the intake passage is sucked into the cylinder. begins to be
吸気弁が開いたときのシリンダ内残留ガス圧力
は、圧縮状態で吸気弁が開弁するのとは異り圧縮
前の状態にあるため、ほぼ大気圧程度に保たれ、
しかもピストンはシリンダ容積を拡大する方向に
降下中であるから、この残留ガスが吸気系へと大
量に流れ込むことなく、残留ガスは大部分がその
ままシリンダの内部に留まつている。 The residual gas pressure in the cylinder when the intake valve opens is in a pre-compression state, unlike when the intake valve opens in a compressed state, so it is maintained at approximately atmospheric pressure.
Moreover, since the piston is descending in a direction to expand the cylinder volume, a large amount of this residual gas does not flow into the intake system, and most of the residual gas remains inside the cylinder as it is.
この結果、残留ガスは冷却されにくく、新たに
吸入された混合気に高熱エネルギを確実に与え
て、燃料の気化あるいは混合均一化を著しく促進
するのである。 As a result, the residual gas is difficult to cool, and it reliably imparts high thermal energy to the newly drawn air-fuel mixture, significantly promoting vaporization of the fuel or homogenization of the mixture.
なお、排気弁が閉じてから残留ガスを圧縮して
も、また元の状態に膨張するまで吸気弁は開かな
いため、この間のエネルギロスは殆んどない。 Note that even if the residual gas is compressed after the exhaust valve closes, the intake valve does not open until it expands to its original state, so there is almost no energy loss during this time.
そしてアクセル開度が増加するにしたがつて排
気弁の閉時期が早まり、かつ吸気弁の開時期も遅
くなり、中負荷域(または中負荷から高負荷にか
けて)で残留ガス量は最大となり、運転領域とし
ての使用頻度が高くかつNOxの発生が増大する
この負荷域で効果的にNOxを低減するものであ
る。 As the accelerator opening increases, the exhaust valve closes earlier and the intake valve opens later.The amount of residual gas reaches its maximum in the medium load range (or from medium load to high load), and the This is intended to effectively reduce NOx in this load area, which is frequently used and where NOx generation increases.
次に、機関高負荷域では吸入空気量(新気)を
最大にして機関全開出力性能を確保するために、
残留ガスを減少させることが好ましいわけだが、
カム軸2の一層の移動によりこんどは排気弁の閉
時期が次第に遅れて通常のバルブタイミング固定
の場合に近づいてくるので、残留ガス量はこれと
ともに減少し、しかも吸気効率及び排気効率を高
出力運転時の要求特性に合さられるため、機関は
十分に高出力を発揮する。この実施例では吸排気
弁のバルブタイミングを立体カムによつて制御し
た例を示したが、吸排気弁のカムシヤフトを別々
に構成して、負荷の増加に対応して吸気弁カムシ
ヤフトの回転位相を相対的に遅らせ、かつ排気弁
カムシヤフトの同じく位相を相対的に進めるよう
に制御してもよい。 Next, in the engine high load range, in order to maximize the amount of intake air (fresh air) and ensure full engine output performance,
It is preferable to reduce residual gas, but
Due to the further movement of the camshaft 2, the closing timing of the exhaust valve is gradually delayed and approaches the normal fixed valve timing, so the amount of residual gas decreases, and moreover, the intake efficiency and exhaust efficiency are increased to high output. The engine produces sufficiently high output because it matches the characteristics required during operation. This example shows an example in which the valve timing of the intake and exhaust valves is controlled by a three-dimensional cam, but the camshafts of the intake and exhaust valves can be configured separately to adjust the rotational phase of the intake valve camshaft in response to an increase in load. The exhaust valve camshaft may be controlled to be relatively delayed and the phase of the exhaust valve camshaft may also be relatively advanced.
また、排気弁の閉時期と吸気弁の開時期は必ら
ずしも上死点位置を中心に対称としなくてもよい
のであるが、この場合でも吸気弁は吸入上死点後
に開き始めるようにする。 Also, the timing of closing the exhaust valve and the opening timing of the intake valve do not necessarily have to be symmetrical about the top dead center position, but even in this case, the intake valve should start opening after the intake top dead center. Make it.
以上説明したように本発明によれば、排気弁の
閉時期を排気行程中に可変的に制御するととも
に、吸気弁の開時期をこれに対応して遅らせるよ
うにしたため、シリンダ内残留ガス(内部EGR
ガス)を運転状態に応じて精度よく制御でき、し
かも残留ガスの大部分をシリンダ内に閉じ込めて
おけるので温度低下が防止でき、混合気とEGR
ガスとの混合後のガス温度を相対的に上昇させて
燃焼の改善がはかれ、したがつて機関運転性能を
損わずにNOxを効果的に低減できる効果があ
る。 As explained above, according to the present invention, the closing timing of the exhaust valve is variably controlled during the exhaust stroke, and the opening timing of the intake valve is correspondingly delayed. EGR
gas) can be controlled accurately according to the operating conditions, and most of the residual gas can be confined within the cylinder, preventing temperature drops and reducing the air-fuel mixture and EGR.
Combustion is improved by relatively increasing the temperature of the gas after mixing with gas, and therefore NOx can be effectively reduced without impairing engine operating performance.
なお、EGRガスの温度が相対的に上昇すると
同一のEGR率ならばEGRガスの占める容積が増
大し、このとき同一の吸入負圧では吸入空気量が
減るので、機関出力を同一に保つつようにスロツ
トル開度を大きくして吸入空気量(新気)を同一
にすると、これによつて吸入負圧が相対的に低下
した分だけ、機関のポンピングロスが低減して燃
費特性が改善できる。 Furthermore, if the temperature of EGR gas increases relatively, the volume occupied by EGR gas will increase if the EGR rate is the same, and at this time, the amount of intake air will decrease with the same suction negative pressure, so it is necessary to maintain the same engine output. If the throttle opening is increased to keep the amount of intake air (fresh air) the same, the pumping loss of the engine will be reduced by the amount that the intake negative pressure is relatively reduced, and fuel efficiency will be improved.
第1図は本発明の吸排気弁の開閉特性を示す説
明図、第2図は動弁機構の実施例をあらわす断面
図である。
2……カム軸、6……油圧シリンダ、7……ピ
ストン、10……カム(立体カム)、12……油
圧コントローラ。
FIG. 1 is an explanatory diagram showing the opening and closing characteristics of the intake and exhaust valves of the present invention, and FIG. 2 is a sectional view showing an embodiment of the valve mechanism. 2...Camshaft, 6...Hydraulic cylinder, 7...Piston, 10...Cam (three-dimensional cam), 12...Hydraulic controller.
Claims (1)
た往復動型内燃機関において、吸気弁の開時期と
排気弁の閉時期を運転状態に応じて可変的に制御
する動弁機構を設け、排気弁閉時期は排気上死点
よりも早い位置まで、かつ吸気弁開時期は吸気上
死点よりも遅れた位置までそれぞれ可変とすると
共に、排気弁閉位置から排気上死点までのクラン
ク角と、吸気上死点から吸気弁開位置までのクラ
ンク角が略同一となるように設定して、シリンダ
内残留ガス量を制御するように構成した内燃機関
のバルブ駆動装置。 2 排気弁は開時期が排気下死点付近の略一定時
期に設定され、吸気弁は閉時期が吸気下死点付近
の略一定時期に設定されている特許請求の範囲第
1項記載の内燃機関のバルブ駆動装置。[Claims] 1. In a reciprocating internal combustion engine equipped with intake and exhaust valves that open and close in synchronization with engine rotation, the opening timing of the intake valve and the closing timing of the exhaust valve are variably controlled according to the operating state. A valve mechanism is installed, and the exhaust valve closing timing is variable to a position earlier than the exhaust top dead center, and the intake valve opening timing is variable to a position later than the intake top dead center. A valve drive device for an internal combustion engine configured to control the amount of residual gas in a cylinder by setting the crank angle to dead center and the crank angle from intake top dead center to the intake valve open position to be approximately the same. . 2. The internal combustion engine according to claim 1, wherein the exhaust valve has an opening timing set at a substantially constant time near the exhaust bottom dead center, and the intake valve has a closing timing set at a substantially constant time near the intake bottom dead center. Engine valve drive.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1390479A JPS55107011A (en) | 1979-02-09 | 1979-02-09 | Valve driver for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1390479A JPS55107011A (en) | 1979-02-09 | 1979-02-09 | Valve driver for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55107011A JPS55107011A (en) | 1980-08-16 |
JPS6147295B2 true JPS6147295B2 (en) | 1986-10-18 |
Family
ID=11846154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1390479A Granted JPS55107011A (en) | 1979-02-09 | 1979-02-09 | Valve driver for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS55107011A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62247107A (en) * | 1986-04-17 | 1987-10-28 | Mazda Motor Corp | Valve driving controller of diesel engine |
JP4517515B2 (en) * | 2001-02-14 | 2010-08-04 | マツダ株式会社 | 4-cycle engine for automobiles |
JP4517516B2 (en) * | 2001-02-14 | 2010-08-04 | マツダ株式会社 | 4-cycle engine for automobiles |
US6886532B2 (en) | 2001-03-13 | 2005-05-03 | Nissan Motor Co., Ltd. | Intake system of internal combustion engine |
JP4394318B2 (en) * | 2001-10-12 | 2010-01-06 | 株式会社デンソー | Valve timing control device for internal combustion engine |
KR100440024B1 (en) * | 2001-11-28 | 2004-07-14 | 현대자동차주식회사 | Oil leak preventing structure |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52131021A (en) * | 1976-04-28 | 1977-11-02 | Suzuki Motor Co Ltd | Valve timing changing device in 4-cycle engine |
-
1979
- 1979-02-09 JP JP1390479A patent/JPS55107011A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52131021A (en) * | 1976-04-28 | 1977-11-02 | Suzuki Motor Co Ltd | Valve timing changing device in 4-cycle engine |
Also Published As
Publication number | Publication date |
---|---|
JPS55107011A (en) | 1980-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR890002317B1 (en) | Improvements in or relating method of fitting operating conditions of an internal combustion engine | |
US5224460A (en) | Method of operating an automotive type internal combustion engine | |
US5404844A (en) | Part load gas exchange strategy for an engine with variable lift camless valvetrain | |
JP4171000B2 (en) | Multi-cylinder diesel engine with variable drive valve | |
US7819100B2 (en) | Internal combustion engine with intake valves having a variable actuation and a lift profile including a constant lift boot portion | |
US4461151A (en) | Internal combustion engine | |
JP4672220B2 (en) | Combustion control device for compression ignition engine | |
US7395813B2 (en) | Method of controlling the intake and/or the exhaust of at least one deactivated cylinder of an internal-combustion engine | |
GB2134596A (en) | Fresh charge intake quantity control in an internal combustion engine | |
CN102725496A (en) | A two-stroke internal combustion engine with variable compression ratio and an exhaust port shutter and a method of operating such an engine | |
US4273083A (en) | Distribution system for the intake and exhaust of a super charged internal combustion engine | |
JPH045457A (en) | Otto cycle engine | |
JP2005325818A (en) | Operation controller for engine | |
US5211146A (en) | Inlet control mechanism for internal combustion engine | |
CN101691845B (en) | internal combustion engine | |
US5178104A (en) | Two cycle diesel engine | |
JPS6147295B2 (en) | ||
JPS5810573B2 (en) | spark ignition internal combustion engine | |
JPH0754678A (en) | Engine operating method and 4-stroke engine | |
US8950368B2 (en) | Internal combustion engine and working cycle | |
JPS602496B2 (en) | Intake system for 2-cylinder rotary piston engine | |
JPS5914602B2 (en) | Internal combustion engine residual gas control device | |
JPH0621579B2 (en) | Variable valve timing engine control method | |
JPH09256891A (en) | Control device for diesel engine | |
US2574694A (en) | Method and means for facilitating engine starting |