[go: up one dir, main page]

JPS6147288B2 - - Google Patents

Info

Publication number
JPS6147288B2
JPS6147288B2 JP2224480A JP2224480A JPS6147288B2 JP S6147288 B2 JPS6147288 B2 JP S6147288B2 JP 2224480 A JP2224480 A JP 2224480A JP 2224480 A JP2224480 A JP 2224480A JP S6147288 B2 JPS6147288 B2 JP S6147288B2
Authority
JP
Japan
Prior art keywords
steam
turbine
temperature
pressure
seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2224480A
Other languages
Japanese (ja)
Other versions
JPS56118503A (en
Inventor
Takayoshi Maeda
Tsugio Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2224480A priority Critical patent/JPS56118503A/en
Publication of JPS56118503A publication Critical patent/JPS56118503A/en
Publication of JPS6147288B2 publication Critical patent/JPS6147288B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】 本発明はタービンの出力変化時において、中圧
タービンパツキン部等の熱応力を抑制させるため
のタービングランドシール蒸気系統に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a turbine gland seal steam system for suppressing thermal stress in an intermediate pressure turbine packing portion, etc. when the output of the turbine changes.

蒸気タービンのグランドシール蒸気系統は周知
の通り、グランドシール蒸気によりタービン内部
と外気をしや断し、タービン内蒸気の外部への漏
洩または外気空気のタービンへの流入を防止す
る。
As is well known, the grand seal steam system of a steam turbine uses grand seal steam to isolate the inside of the turbine from outside air, thereby preventing steam inside the turbine from leaking to the outside or outside air from flowing into the turbine.

グランドシール蒸気は、通常、高中圧タービン
においては起動時および抵負荷時にはグランドパ
ツキン部に供給され、高負荷時には余剰蒸気とし
てグランドシール蒸気系統に排出される。即ち、
シール蒸気の供給・排出は、高中圧タービン内の
圧力とグランドシール蒸気圧力との関係により決
まるものであつて、高中圧タービン内の圧力がグ
ランドシール蒸気圧力より大の時は、第10図に
破線で略示する如く高中圧タービン3,6からシ
ール蒸気が排出することになる。逆に、グランド
シール蒸気圧力の方が高中圧タービン3,6内の
圧力よりも大であれば、実線の如くシール蒸気が
パツキン部11,12(通常ラビリンスパツキ
ン)に供給されることになる。
In a high-to-intermediate pressure turbine, gland seal steam is normally supplied to the gland packing section during startup and low load, and is discharged as surplus steam to the gland seal steam system during high load. That is,
The supply and discharge of seal steam is determined by the relationship between the pressure inside the high-intermediate pressure turbine and the grand seal steam pressure. Seal steam is discharged from the high and intermediate pressure turbines 3 and 6 as shown schematically by broken lines. Conversely, if the grand seal steam pressure is higher than the pressure inside the high-intermediate pressure turbines 3 and 6, the seal steam will be supplied to the packing parts 11 and 12 (usually labyrinth packing) as shown by the solid line.

一方低圧タービンの場合は、常にグランドシー
ル蒸気圧力の方が低圧タービン内圧力より大であ
り、常時シール蒸気供給となる。
On the other hand, in the case of a low-pressure turbine, the grand seal steam pressure is always higher than the pressure inside the low-pressure turbine, and seal steam is constantly supplied.

上記のように高中圧タービン3,6におけるシ
ール蒸気の供給・排出は、タービン3,6内の圧
力とグランドシール蒸気圧力との大小関係により
決定されるので、場合によつては供給が必要なの
にグランドシール蒸気圧力が低く、シール蒸気を
供給できない場合がある。つまり起動時および低
負荷時にはグランドシール蒸気が不足するため、
この不足シール蒸気の供給蒸気源として主蒸気系
統あるいは補助蒸気系統の高温高圧および低温低
圧の蒸気を調整器により適切な圧力に減圧し、不
足シール蒸気をまかなうようにしなければならな
い。
As mentioned above, the supply and discharge of seal steam in the high and intermediate pressure turbines 3 and 6 is determined by the magnitude relationship between the pressure inside the turbines 3 and 6 and the grand seal steam pressure, so in some cases, even though supply is necessary, The gland seal steam pressure may be low and seal steam may not be supplied. In other words, at startup and under low load, there is insufficient gland seal steam.
As a supply steam source for this insufficient sealing steam, high-temperature, high-pressure and low-temperature, low-pressure steam from the main steam system or auxiliary steam system must be reduced to an appropriate pressure by a regulator to supply the insufficient sealing steam.

しかし高負荷時においては高中圧タービンの余
剰排出シール蒸気のみで低圧タービンの不足シー
ル蒸気をまかなうことができ、前記の主蒸気また
は補助蒸気を供給する必要はない。なお、このよ
うな高負荷時に、低圧タービンへの供給必要シー
ル蒸気量より高中圧タービンの余剰排出シール蒸
気量が大のときは、その差分は、調整器9a(後
記説明する第2図参照)より復水器等へ回収され
る。
However, at times of high load, the surplus exhaust seal steam from the high-intermediate pressure turbine alone can cover the insufficient seal steam from the low-pressure turbine, and there is no need to supply the main steam or auxiliary steam. Note that during such high loads, when the amount of excess seal steam discharged from the high and intermediate pressure turbine is larger than the amount of seal steam necessary to be supplied to the low pressure turbine, the difference is calculated by the regulator 9a (see Figure 2, which will be explained later). It is recovered to a condenser, etc.

従来、蒸気タービンの運転は高負荷一定運転が
主であつたが、最近は電力情勢の変化に伴い、い
わゆるミドル火力化が進み、昼間は高負荷、夜間
は低負荷運転を行なう2シフト運転あるいは低負
荷から高負荷まで、温度一定で圧力のみを変化さ
せて、効率向上を図る変圧運転を行なう傾向にあ
る。
In the past, steam turbines were mainly operated under constant high-load operation, but recently, with changes in the electric power situation, so-called middle thermal power generation is progressing, and two-shift operation with high-load operation during the day and low-load operation at night, or From low to high loads, there is a trend towards variable pressure operation where only the pressure is changed while keeping the temperature constant to improve efficiency.

次に従来技術のグランドシール蒸気系統につい
て説明する。
Next, a conventional grand seal steam system will be explained.

第1図は従来技術の再熱タービングランドシー
ル蒸気系統の一例を示す。タービンの蒸気の流れ
は、ボイラー(図示省略)から送られた主蒸気止
め弁1、蒸気加減弁2を通り、高圧タービン3に
入り、高圧タービン3で仕事をした後、低温再熱
管4を通つて再熱器(図示省略)に入る。再熱器
で再熱された高温再熱蒸気は再熱弁5を経由し、
中圧タービン6に入り、さらには低圧タービン7
で仕事をし、復水器8で復水される。
FIG. 1 shows an example of a prior art reheat turbine gland seal steam system. The flow of steam from the turbine passes through a main steam stop valve 1 and a steam control valve 2 sent from a boiler (not shown), enters a high-pressure turbine 3, performs work in the high-pressure turbine 3, and then passes through a low-temperature reheat pipe 4. and enters a reheater (not shown). The high temperature reheated steam reheated by the reheater passes through the reheat valve 5,
It enters the intermediate pressure turbine 6 and then the low pressure turbine 7.
The water works in the condenser 8 and is condensed in the condenser 8.

一方、タービンパツキン部のシール蒸気は次の
ようになる。タービン起動時および低負荷時は前
記の如く、グランドシール蒸気が不足する。不足
シール蒸気は高温高圧の主蒸気が用いられる。こ
の主蒸気は配管15を通り、圧力調整器9で最適
なグランドシール蒸気圧力に減圧され、配管10
を通り、各パツキン部11,12,13,14に
導かれる。高負荷時は前述の如く、高圧タービン
3のパツキン部11および中圧タービン6のパツ
キン部12から余剰シール蒸気が排出され、この
余剰シール蒸気は低圧タービン7のパツキン部1
3,14に供給される。
On the other hand, the sealing steam in the turbine packing section is as follows. As mentioned above, when the turbine is started and the load is low, there is a shortage of gland seal steam. High-temperature, high-pressure main steam is used as the insufficient sealing steam. This main steam passes through piping 15, is reduced in pressure to the optimal gland seal steam pressure by pressure regulator 9, and is then
and is led to each packing part 11, 12, 13, 14. During high load, as mentioned above, excess seal steam is discharged from the seal part 11 of the high pressure turbine 3 and the seal part 12 of the intermediate pressure turbine 6, and this surplus seal steam is discharged from the seal part 1 of the low pressure turbine 7.
3,14.

次に前述の2シフト運転および変圧運転時のグ
ランドシール蒸気について説明する。このような
運転においては、前述した如く高負荷運転と低負
荷運転とが行われるので、最初に述べたように高
中圧タービン3,6のパツキン部11,12のシ
ール蒸気は、高負荷時・低負荷時に応じて、それ
ぞれシール蒸気供給・排出を繰り返すことにな
る。かかる繰り返しがなされても、高圧タービン
3の方は、あまり問題がない。高圧タービン3の
パツキン部11のシール蒸気は前記低負荷運転範
囲よりさらに低い負荷まで排出状態にあるので、
たとえこの運転が行なわれても、パツキン部11
の温度変化はほとんどなく、熱応力も発生しない
からである。
Next, the gland seal steam during the above-mentioned two-shift operation and variable pressure operation will be explained. In this type of operation, high-load operation and low-load operation are performed as described above, so as mentioned at the beginning, the sealing steam in the packing parts 11 and 12 of the high and intermediate pressure turbines 3 and 6 is Seal steam supply and discharge are repeated depending on the low load. Even if such repetition is performed, there is not much problem with the high pressure turbine 3. Since the seal steam in the packing part 11 of the high-pressure turbine 3 is discharged to a load lower than the above-mentioned low load operating range,
Even if this operation is performed, the seal part 11
This is because there is almost no temperature change and no thermal stress occurs.

しかしながら中圧タービン6のパツキン部12
においては、熱応力の問題が発生する。即ち中圧
タービン6のパツキン部12のシール蒸気は、第
6図に示す如く、前記低負荷運転範囲で供給と排
出が切換わる。第6図において31はパツキンリ
ーク量で、プラス側は排出、マイナス側は供給を
示す。これは前記説明した通りである。第7図は
シール蒸気が切換わる時の中圧タービン6のパツ
キン部11の温度特性を示す。33は供給シール
温度、32は排出シール蒸気を示す。このように
中圧タービン6のパツキン部12にはシール蒸気
が供給から排出、排出から供給に移行する時、過
大な温度差が生じ、熱応力が発生する。前記運転
法ではこのような運転を繰り返すことになり、そ
の結果タービンは破壊の恐れがあり、信頼性ある
いは安全性が著しく低下することになる。
However, the gasket 12 of the intermediate pressure turbine 6
In this case, the problem of thermal stress occurs. That is, as shown in FIG. 6, the supply and discharge of the seal steam from the packing portion 12 of the intermediate pressure turbine 6 are switched in the low load operating range. In FIG. 6, numeral 31 indicates the amount of gas leakage, the plus side indicates discharge, and the minus side indicates supply. This is as explained above. FIG. 7 shows the temperature characteristics of the packing portion 11 of the intermediate pressure turbine 6 when the sealing steam is switched. 33 indicates the supply seal temperature, and 32 indicates the discharge seal vapor. As described above, when the sealing steam moves from supply to discharge and from discharge to supply, an excessive temperature difference occurs in the packing portion 12 of the intermediate pressure turbine 6, and thermal stress is generated. In the above operating method, such operation is repeated, and as a result, there is a risk that the turbine will be destroyed, and reliability or safety will be significantly reduced.

第2図は不足シール蒸気の供給源として、第1
図に示すシール蒸気系統に補助蒸気系統16を追
加した系統で、圧力調整器9aは補助ボイラ(図
示省略)等から送られてくる補助蒸気を主蒸気に
優先させて供給させるものである。補助蒸気は主
にタービン起動時またはタービン暖機を目的とし
ているため、低温低圧の蒸気である。第8図は不
足シール蒸気供給源として補助蒸気を使用した場
合の、シール蒸気切換わり時の温度動性を示した
もので、ここでは第7図と同様、補助蒸気が低温
低圧のため、供給シール蒸気温度34と排出シー
ル蒸気温度32に過大な温度差が生じる。従つ
て、第1図に示す主蒸気供給と同様、シール蒸気
切換え時に過大な熱応力が発生することになる。
Figure 2 shows the first
This is a system in which an auxiliary steam system 16 is added to the sealed steam system shown in the figure, and the pressure regulator 9a supplies auxiliary steam sent from an auxiliary boiler (not shown) or the like with priority over main steam. The auxiliary steam is mainly used for starting the turbine or warming up the turbine, so it is low-temperature and low-pressure steam. Figure 8 shows the temperature dynamics at the time of sealing steam switching when auxiliary steam is used as the insufficient sealing steam supply source.Similar to Figure 7, here the auxiliary steam is low temperature and low pressure, so the supply An excessive temperature difference occurs between the seal steam temperature 34 and the exhaust seal steam temperature 32. Therefore, similar to the main steam supply shown in FIG. 1, excessive thermal stress will occur when switching to seal steam.

第3図は第2図の補助蒸気系統16の途中に蒸
気を減温するための減温器17を設けた系統であ
る。この第3図に示す系統では、シール蒸気切換
え時の温度差を小にするため、補助蒸気系統16
の蒸気温度を排出シール蒸気温度にマツチした温
度に上げる必要がある。しかし補助蒸気温度を上
げると、今度は起動時、パツキン部12に過大な
温度差が生じる。従つて、減温器17は起動時の
みに使用し、低負荷運動時には使用しないように
する必要がある。このように補助蒸気温度を下げ
るために設置した減温器17は起動時のみ使用す
ることになり、実用的でなく、しかも減温器17
は非常に高価であり、経済的に問題がある。
FIG. 3 shows a system in which a desuperheater 17 is provided in the middle of the auxiliary steam system 16 shown in FIG. 2 to reduce the temperature of the steam. In the system shown in FIG. 3, in order to reduce the temperature difference when switching the seal steam, the auxiliary steam system 16
It is necessary to raise the steam temperature to a temperature that matches the exhaust seal steam temperature. However, if the auxiliary steam temperature is increased, an excessive temperature difference will occur in the gasket 12 during startup. Therefore, it is necessary to use the desuperheater 17 only during startup and not during low-load exercise. In this way, the desuperheater 17 installed to lower the auxiliary steam temperature is used only at startup, which is impractical, and the desuperheater 17
is very expensive and economically problematic.

前述の如く、従来技術ではシール蒸気切換え時
の給排出シール蒸気温度に温度差があり、パツキ
ン部に過大な熱応力が生じ、信絡性あるいは安全
性が著しく低下する欠点がある。またこれを改善
するために、補助蒸気系統の途中に減温器を設け
ると、原価高になる欠点があり、これらの問題点
を解決する根本的な改善策が要望されている。
As described above, in the conventional technology, there is a temperature difference between the supply and exhaust seal steam temperatures when switching the seal steam, and excessive thermal stress is generated in the packing portion, resulting in a disadvantage that the reliability or safety is significantly reduced. Furthermore, in order to improve this problem, if a desuperheater is provided in the middle of the auxiliary steam system, there is a drawback that the cost increases, and there is a need for a fundamental improvement measure to solve these problems.

本発明の目的は前述の従来技術の欠点を除去
し、出力変化時の中圧タービンパツキン部等に生
ずる過大な熱応力を抑制することにより信頼性、
安全性を著しく向上でき、しかも設備費を節減で
きるタービングランドシール蒸気系統を提供する
ことにある。
The purpose of the present invention is to eliminate the drawbacks of the prior art described above, and to improve reliability by suppressing excessive thermal stress generated in the intermediate pressure turbine packing part etc. when output changes.
An object of the present invention is to provide a turbine gland seal steam system that can significantly improve safety and reduce equipment costs.

本発明の特徴はタービンの段落中に、中圧ター
ビンのグランドパツキン部メタル温度に適した温
度の蒸気を抽出する配管を接続し、該配管とグラ
ンドシール蒸気系統間に蒸気の供給弁を設け、該
供給弁にはタービンの出力変化時の圧力を検出し
かつグランドシール蒸気不足時に供給弁を開動作
させる制御部を取り付けたところに存し、これに
よつて前記配管により中圧タービンからのシール
蒸気と略同じ温度の蒸気を抽出するとともに、前
記制御部により中圧タービンのパツキン部のシー
ル蒸気が排出から供給に切換わるときに供給弁を
開動作する構成とし、この構成によりグランドシ
ール蒸気不足時における外部蒸気流入時の過大な
熱応力を抑制でき、しかも設備費が嵩むことのな
いタービングランドシール蒸気系統を得たもので
ある。
The features of the present invention are that a pipe for extracting steam at a temperature suitable for the gland seal metal temperature of the intermediate pressure turbine is connected in the turbine stage, and a steam supply valve is provided between the pipe and the gland seal steam system. The supply valve is equipped with a control unit that detects the pressure when the output of the turbine changes and opens the supply valve when there is a shortage of gland seal steam. In addition to extracting steam at approximately the same temperature as the steam, the control section opens the supply valve when the seal steam in the packing section of the intermediate pressure turbine is switched from discharge to supply. The present invention provides a turbine gland seal steam system that can suppress excessive thermal stress when external steam flows in, and does not increase equipment costs.

以下本発明を図面に基づいて説明する。 The present invention will be explained below based on the drawings.

第4図,第5図に本発明の一実施例を示す。 An embodiment of the present invention is shown in FIGS. 4 and 5.

この実施例では中圧タービン6のパツキン部1
2について、シール蒸気の供給、排出の切換え時
に生じる熱応力を抑制すべく構成されており、高
圧タービン3の任意の段落途中に挿入された低温
再熱管4に蒸気を抽出するための配管2が接続さ
れている。
In this embodiment, the packing part 1 of the intermediate pressure turbine 6
Regarding 2, the piping 2 is configured to suppress the thermal stress that occurs when switching between the supply and discharge of seal steam, and the piping 2 for extracting steam to the low temperature reheat pipe 4 inserted in the middle of an arbitrary stage of the high pressure turbine 3. It is connected.

前記低温再熱管4は中圧タービン6のパツキン
部12のメタル温度に適した温度の蒸気を抽出し
うる段落途中に挿入される。
The low-temperature reheat pipe 4 is inserted in the middle of a stage where steam having a temperature suitable for the metal temperature of the packing part 12 of the intermediate pressure turbine 6 can be extracted.

前記配管20には蒸気の供給弁21、オリフイ
ス22が設けられ、供給弁21の開動作時、配管
20からグランドシール蒸気系統の前記パツキン
部12に連結された配管19を通じてパツキン部
12にシール用の蒸気を供給しうるようになつて
いる。
The piping 20 is provided with a steam supply valve 21 and an orifice 22, and when the supply valve 21 is opened, a sealing valve 21 and an orifice 22 are provided in the piping 20 to the sealing portion 12 through a piping 19 connected to the packing portion 12 of the gland seal steam system. It is now possible to supply steam.

前記供給弁21には制御部23が取り付けられ
ている。
A control section 23 is attached to the supply valve 21 .

その制御部23の図示実施例のものは、圧力検
出配管24を通じて前記低温再熱管4に接続され
た圧力スイツチ25、配線26を介して圧力スイ
ツチ25に接続された電磁切換弁27とを備えて
いる。
The illustrated embodiment of the control section 23 includes a pressure switch 25 connected to the low temperature reheat pipe 4 through a pressure detection pipe 24, and an electromagnetic switching valve 27 connected to the pressure switch 25 through a wiring 26. There is.

前記圧力スイツチ25は中圧タービン6側から
パツキン部12にシール用の蒸気が流れている状
態から、反対にパツキン部12側から中圧タービ
ン6に向つて蒸気が流れる状態に切換えられる圧
力よりも若干高い圧力に設定される。なお前記切
換え時の圧力はタービンプラントの設計時に予め
決められている。また圧力スイツチ25がONに
なると電磁切換弁27が開に、圧力スイツチ25
がOFFになると電磁切換弁27が閉にそれぞれ
切換えられるようになつている。
The pressure switch 25 is set at a pressure higher than the pressure at which the state in which sealing steam is flowing from the intermediate pressure turbine 6 side to the packing part 12 to the state in which steam flows from the packing part 12 side toward the intermediate pressure turbine 6 is changed. The pressure is set slightly higher. Note that the pressure at the time of switching is predetermined at the time of designing the turbine plant. Also, when the pressure switch 25 is turned on, the electromagnetic switching valve 27 is opened, and the pressure switch 25 is turned on.
When the switch is turned OFF, the electromagnetic switching valve 27 is switched to close.

前記電磁切換弁27には流体圧供給源(図示省
略)に連結された配管28が接続され、電磁切換
弁27と供給弁21間には前記流体圧を導く配管
29が連結され、さらに電磁切換弁27には流体
圧排出の配管30が接続されている。そして電磁
切換弁27が開に切換えられたときは配管28、
電磁切換弁27、配管29を通じて供給弁21に
流体圧が送られて該供給弁21が開操作され、電
磁切換弁27が閉に切換えられたときは流体圧が
配管30を通つて逃がされ、供給弁21が閉操作
されるようになつている。
A pipe 28 connected to a fluid pressure supply source (not shown) is connected to the electromagnetic switching valve 27, and a pipe 29 for guiding the fluid pressure is connected between the electromagnetic switching valve 27 and the supply valve 21. A fluid pressure discharge pipe 30 is connected to the valve 27 . When the electromagnetic switching valve 27 is switched to open, the piping 28,
Fluid pressure is sent to the supply valve 21 through the electromagnetic switching valve 27 and piping 29 to open the supply valve 21, and when the electromagnetic switching valve 27 is switched to close, the fluid pressure is released through the piping 30. , the supply valve 21 is operated to close.

なお第3図において、第1図および第2図に示
されるものと同じ部材には同一符号を付して説明
している。
In FIG. 3, the same members as those shown in FIGS. 1 and 2 are designated by the same reference numerals.

いま、高負荷運転から低負荷運転に移行する場
合について説明すると、前述の如く負荷が減少す
るにつれて、中圧タービン6のパツキン部12の
シール蒸気が排出から供給に切換わることにな
る。
Now, to explain the case of transition from high load operation to low load operation, as the load decreases as described above, the sealing steam of the packing part 12 of the intermediate pressure turbine 6 is switched from being discharged to being supplied.

低負荷運転になると中圧タービン6内の圧力が
減少するので、この圧力がグランドシール蒸気圧
力より小になると、今迄はシール蒸気が中圧ター
ビン26から排出されていたのが、逆にシール蒸
気圧力の方が大になつたことにより、シール蒸気
が中圧タービン26の方に供給されることになる
からである。このような場合にはシール蒸気が排
出から供給に切換わる負荷になると圧力スイツチ
25がONとなり、その信号は配線26により電
磁切換弁27に導かれ、電磁切換弁27が開に切
換えられ、配管28,29が連通されて供給弁2
1に流体圧が導入され、その圧力で供給弁21が
開動作し、低温再熱管4で抽気された蒸気の一部
が供給弁21、オリフイス22、配管20を通
り、シール蒸気系統の配管19を経て中圧タービ
ン6のパツキン部12に中圧タービン6の蒸気温
度と略同じ温度の、適量の温度のシール蒸気が、
通常のシール蒸気供給におけると同様に供給され
て、該パツキン部12がシールされる。
During low load operation, the pressure inside the intermediate pressure turbine 6 decreases, so when this pressure becomes lower than the grand seal steam pressure, seal steam was previously discharged from the intermediate pressure turbine 26, but on the contrary, the seal steam is discharged from the intermediate pressure turbine 26. This is because the sealing steam is supplied to the intermediate pressure turbine 26 due to the increased steam pressure. In such a case, when the load changes from discharge to supply of seal steam, the pressure switch 25 is turned ON, the signal is led to the electromagnetic switching valve 27 via the wiring 26, the electromagnetic switching valve 27 is switched open, and the piping is switched on. 28 and 29 are connected to supply valve 2.
Fluid pressure is introduced into 1, the supply valve 21 is opened by the pressure, and a part of the steam extracted from the low temperature reheat pipe 4 passes through the supply valve 21, orifice 22, and piping 20, and is then transferred to the piping 19 of the sealed steam system. An appropriate amount of sealing steam, which is approximately the same temperature as the steam temperature of the intermediate pressure turbine 6, is delivered to the packing part 12 of the intermediate pressure turbine 6 through the
The packing portion 12 is sealed by being supplied in the same manner as in normal sealing steam supply.

前記中圧タービン6のパツキン部12のシール
蒸気が排出状態にあるとき、この蒸気は低圧ター
ビン7のパツキン部13,14に供給されるが、
負荷がさらに低下し、中圧タービン6のパツキン
部12のシール蒸気が不足してくると、配管20
からの供給シール蒸気が供給されることになる。
この蒸気温度は前述の如く、排出シール蒸気と略
同じであるため、中圧タービン6のパツキン部1
2には熱応力が発生しない。
When the seal steam in the packing part 12 of the intermediate pressure turbine 6 is in the discharge state, this steam is supplied to the packing parts 13 and 14 of the low pressure turbine 7,
When the load further decreases and the sealing steam in the packing part 12 of the intermediate pressure turbine 6 becomes insufficient, the piping 20
The supply seal steam will be supplied from.
As mentioned above, this steam temperature is approximately the same as the exhaust seal steam, so the gasket part 1 of the intermediate pressure turbine 6
No thermal stress occurs in No. 2.

次に低負荷時から高負荷時に移行する場合は、
抵温再熱蒸気管4は負荷が上昇するにつれて圧力
も上昇する。そして、パツキン部12のシール蒸
気が供給から排出に切換わつた負荷になると、負
荷低下時とは逆に圧力スイツチ25がOFFにな
り、その信号は配線26を介して、電磁切換弁2
7に導かれ、電磁切換弁27が閉に切換えられ、
配管28から送られる流体圧は電磁切換弁27を
通つて流体圧排出用の配管30から逃され、蒸気
の供給弁21は閉動作する。従つて、配管20か
らの中圧タービン6のパツキン部12への蒸気の
供給は遮断されるが、このときには前述の如くパ
ツキン部12のシール蒸気はすでに排出の状態に
あり、パツキン部12に温度変化はなく、熱応力
は生じない。
Next, when transitioning from low load to high load,
The pressure in the low-temperature reheat steam pipe 4 increases as the load increases. Then, when the sealing steam in the sealing part 12 becomes a load that is switched from supply to discharge, the pressure switch 25 is turned OFF, contrary to when the load is reduced, and the signal is sent to the electromagnetic switching valve 2 through the wiring 26.
7, the electromagnetic switching valve 27 is switched to close,
The fluid pressure sent from the pipe 28 is released from the fluid pressure discharge pipe 30 through the electromagnetic switching valve 27, and the steam supply valve 21 is closed. Therefore, the supply of steam from the pipe 20 to the packing part 12 of the intermediate pressure turbine 6 is cut off, but at this time, the sealing steam in the packing part 12 has already been discharged as described above, and the temperature in the packing part 12 has increased. There is no change and no thermal stress occurs.

第9図に本発明のシール蒸気の温度特性を示
す。この図において符号32は排出シール蒸気温
度、符号35供給シール蒸気温度を表わしてお
り、この第9図から明らかなように、本発明によ
ればシール蒸気切換わり時の温度差を著しく少な
くすることができる。
FIG. 9 shows the temperature characteristics of the sealing vapor of the present invention. In this figure, numeral 32 represents the discharge seal steam temperature, and numeral 35 represents the supply seal steam temperature. As is clear from this FIG. 9, according to the present invention, the temperature difference at the time of seal steam switching can be significantly reduced. I can do it.

前述の如く、高負荷から低負荷に移行すると
き、低負荷から高負荷へ移行するときは、中圧タ
ービン6のパツキン部12のシール蒸気が排出か
ら供給に切換わるときに、低温再熱管4で抽気し
た蒸気の一部をグランドシール蒸気系統の配管1
9通じて中圧タービン6のパツキン部12に供給
することにより、パツキン部12のシール蒸気の
不足を補うことができ、しかもシール蒸気切換わ
り時の温度差を少なくし、熱応力を軽減させるこ
とができ、従つて寿命の向上、ひいては信頼性お
よび安全性の向上を図ることができる。
As mentioned above, when transitioning from a high load to a low load or from a low load to a high load, when the sealing steam of the packing part 12 of the intermediate pressure turbine 6 is switched from discharge to supply, the low temperature reheat pipe 4 A part of the steam extracted in the gland seal steam system piping 1
9 to the packing part 12 of the intermediate pressure turbine 6, it is possible to compensate for the lack of sealing steam in the packing part 12, and also to reduce the temperature difference at the time of switching the sealing steam and reduce thermal stress. Therefore, it is possible to improve the lifespan and, in turn, improve reliability and safety.

なお本発明においては供給弁21の制御部23
は前記実施例に限らず、供給弁21を電動弁また
はそれと同等の機能を有する弁とし、電磁切換弁
27を省略してもよい。また負荷検出を圧力スイ
ツチ25によらず、発電機の出力を検出する手段
等に代えてもよく、さらに圧力検出場所は負荷に
相当する圧力を検出できる所であれば、いかなる
所でもよい。
Note that in the present invention, the control section 23 of the supply valve 21
The present invention is not limited to the above-mentioned embodiment, and the supply valve 21 may be an electric valve or a valve having an equivalent function, and the electromagnetic switching valve 27 may be omitted. In addition, the load detection may be performed not by the pressure switch 25, but by means for detecting the output of the generator, etc., and the pressure detection location may be any location as long as the pressure corresponding to the load can be detected.

中圧タービン6のパツキン部12の不足シール
蒸気の抽気個所はタービンの種類、形式によつて
異なり、中圧タービン6のパツキン部12のシー
ル蒸気が切換わるときの温度にマツチした蒸気を
供給しうるタービン段落から任意に選択される。
The point where insufficient sealing steam is extracted from the sealing part 12 of the intermediate pressure turbine 6 varies depending on the type and type of turbine, and the point where the sealing steam of the sealing part 12 of the intermediate pressure turbine 6 is supplied is supplied with steam that matches the temperature at which the sealing steam is switched. The turbine stage is arbitrarily selected from the following turbine stages.

また本発明は中圧タービン6のパツキン部12
のシールに限らず、低い蒸気温度と高い蒸気温度
とが入れ替るパツキン部のシールに全て適用でき
ることは勿論である。
Further, the present invention provides a packing portion 12 of the intermediate pressure turbine 6.
Of course, the present invention is applicable not only to the seal of the present invention but also to all seals of the packing part where low steam temperature and high steam temperature alternate.

なお、第1図乃至第4図においては、中高圧タ
ービン3,6のパツキン部11,12に対するグ
ランドシール蒸気の流れは、すべて供給(タービ
ン3,6方向への流れ)方向で代表して図示した
が、当然のことながら前記説明した如く、排出時
には逆方向の流れになるものであり、それは第1
0図を用いて説明した通りである。
In addition, in FIGS. 1 to 4, the flow of the gland seal steam to the packing parts 11 and 12 of the medium and high pressure turbines 3 and 6 is shown representatively in the supply direction (flow toward the turbines 3 and 6). However, of course, as explained above, the flow is in the opposite direction at the time of discharge, and this is due to the
This is as explained using FIG.

本発明は以上説明した構成、作用のもので、本
発明によればシール蒸気の切換え時に、シール蒸
気の温度差による熱応力を著しく軽減できる結
果、タービン寿命を向上できる効果を有し、ひい
てはタービンの信頼性、安全性の向上を図ること
ができる。
The present invention has the configuration and operation described above.According to the present invention, when switching the seal steam, the thermal stress caused by the temperature difference of the seal steam can be significantly reduced, and as a result, the life of the turbine can be improved, and the turbine life can be improved. The reliability and safety of the system can be improved.

また本発明は減温器を用いる従来技術に比較し
て、設備費を節減できる利益もある。
The present invention also has the advantage of reducing equipment costs compared to prior art techniques that use attemperators.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はタービングランドシール蒸気系統の従
来技術の一例を示す説明図、第2図は従来技術の
他の例を示す説明図、第3図は従来技術の別の例
を示す説明図、第4図は本発明の一実施例を示す
図、第5図は同要部の詳細説明図、第6図,第7
図および第8図はそれぞれ第1図,第2図および
第3図に示される従来技術における中圧タービン
のパツキン部のシール蒸気温度特性を示す図、第
9図は本発明におけるシール蒸気温度特性を示す
図である。第10図はグランドシール蒸気の排
出・供給を説明するための略示図である。 3…高圧タービン、4…低温再熱管、6…中圧
タービン、7…低圧タービン、11〜14…ター
ビンのパツキン部、20…低温再熱管とグランド
シール蒸気系統における中圧タービンのパツキン
部に接続された配管間を結ぶシール蒸気用の配
管、21…蒸気の供給弁、2…供給弁の制御部、
24〜30…制御部を構成する部材。
Fig. 1 is an explanatory diagram showing an example of the conventional technology of a turbine gland seal steam system, Fig. 2 is an explanatory diagram showing another example of the conventional technology, Fig. 3 is an explanatory diagram showing another example of the conventional technology, 4 is a diagram showing an embodiment of the present invention, FIG. 5 is a detailed explanatory diagram of the main parts, and FIGS. 6 and 7.
8 and 8 are diagrams showing the seal steam temperature characteristics of the packing part of the intermediate pressure turbine in the prior art shown in FIGS. 1, 2, and 3, respectively, and FIG. 9 is the seal steam temperature characteristics in the present invention. FIG. FIG. 10 is a schematic diagram for explaining the discharge and supply of grand seal steam. 3...High-pressure turbine, 4...Low-temperature reheat pipe, 6...Intermediate-pressure turbine, 7...Low-pressure turbine, 11-14...Turbine packing part, 20...Low-temperature reheat pipe and gland seal connected to intermediate-pressure turbine packing part in the steam system 21... Steam supply valve, 2... Supply valve control unit,
24-30...Members constituting the control section.

Claims (1)

【特許請求の範囲】[Claims] 1 タービンの段落途中に、中圧タービンのグラ
ンドパツキン部メタル温度に適した温度の蒸気を
抽出する配管を接続し、この配管により中圧ター
ビンからのシール蒸気と略同じ温度の蒸気を抽出
するとともに、該配管とグランドシール蒸気系統
間に蒸気の供給弁を設け、該供給弁にはタービン
の出力変化時の圧力を検出しかつグランドシール
蒸気不足時に供給弁を開動作させる制御部を取り
付け、この制御部により中圧タービンのパツキン
部のシール蒸気が排出から供給に切換わるときに
供給弁を開動作する構成としたことを特徴とする
タービングランドシール蒸気系統。
1. A pipe is connected in the middle of the turbine stage to extract steam at a temperature suitable for the gland packing metal temperature of the intermediate pressure turbine, and this pipe extracts steam at approximately the same temperature as the sealing steam from the intermediate pressure turbine. A steam supply valve is provided between the piping and the gland seal steam system, and a control unit is attached to the supply valve to detect the pressure when the output of the turbine changes and to open the supply valve when the gland seal steam is insufficient. A turbine gland seal steam system characterized in that a supply valve is opened when seal steam in a gasket of an intermediate pressure turbine is switched from discharge to supply by a control section.
JP2224480A 1980-02-26 1980-02-26 Turbine gland sealing steam line Granted JPS56118503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2224480A JPS56118503A (en) 1980-02-26 1980-02-26 Turbine gland sealing steam line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2224480A JPS56118503A (en) 1980-02-26 1980-02-26 Turbine gland sealing steam line

Publications (2)

Publication Number Publication Date
JPS56118503A JPS56118503A (en) 1981-09-17
JPS6147288B2 true JPS6147288B2 (en) 1986-10-18

Family

ID=12077375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2224480A Granted JPS56118503A (en) 1980-02-26 1980-02-26 Turbine gland sealing steam line

Country Status (1)

Country Link
JP (1) JPS56118503A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2614211B2 (en) * 1986-02-28 1997-05-28 株式会社東芝 Steam turbine ground steam seal system pressure regulator
US8650878B2 (en) * 2010-03-02 2014-02-18 General Electric Company Turbine system including valve for leak off line for controlling seal steam flow
CN102052103A (en) * 2010-10-14 2011-05-11 山东电力高等专科学校 Automatic pressure adjuster for main steam supply pipe with shaft seal

Also Published As

Publication number Publication date
JPS56118503A (en) 1981-09-17

Similar Documents

Publication Publication Date Title
US6339926B1 (en) Steam-cooled gas turbine combined power plant
US5660037A (en) Method for conversion of a reheat steam turbine power plant to a non-reheat combined cycle power plant
US5109665A (en) Waste heat recovery boiler system
JPS6193208A (en) Turbine bypass system
JP2000161014A5 (en)
US5042247A (en) Overspeed protection method for a gas turbine/steam turbine combined cycle
US6237543B1 (en) Sealing-steam feed
US2586510A (en) Reheater control for turbine apparatus
US5388411A (en) Method of controlling seal steam source in a combined steam and gas turbine system
JPS6147288B2 (en)
CN108317500A (en) Shut down the system and method for not blowing out in low-heat value gas power plant
JP3660727B2 (en) Operation method of single-shaft combined cycle plant
JPH0932512A (en) Steam turbine gland seal steam supply device
JPH08200016A (en) Combined cycle power plant load control system
JPS63117107A (en) Auxiliary steam equipment
JP3133183B2 (en) Combined cycle power plant
JPH11148603A (en) Controller for coal/residual oil gassifying combined power generation plant
EP0978636B1 (en) Combined cycle power plant
CN212319772U (en) Device for improving stability of boiler hydrodynamic working condition and denitration inlet smoke temperature in thermal power plant
JPH08200010A (en) Combined generation plant and operating method thereof
JPS59224405A (en) Turbing land seal steam system
JPS6033965B2 (en) Seal steam temperature control method and device in steam turbine
JPH08121112A (en) Single-shaft combined-cycle power generating equipment
JPS63117106A (en) Turbine plant stoppage control method and device
Cushing et al. Fast valving as an aid to power system transient stability and prompt resynchronization and rapid reload after full load rejection