JPS6145937A - Structure of infrared sensor - Google Patents
Structure of infrared sensorInfo
- Publication number
- JPS6145937A JPS6145937A JP59166409A JP16640984A JPS6145937A JP S6145937 A JPS6145937 A JP S6145937A JP 59166409 A JP59166409 A JP 59166409A JP 16640984 A JP16640984 A JP 16640984A JP S6145937 A JPS6145937 A JP S6145937A
- Authority
- JP
- Japan
- Prior art keywords
- elements
- electrodes
- series
- infrared sensor
- pyroelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/34—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Radiation Pyrometers (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は複数の焦電体素子から構成される高感度の赤外
線センサーの構造に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to the structure of a highly sensitive infrared sensor composed of a plurality of pyroelectric elements.
[従来技術1
焦電体素子としてチタン酸・ジルコン酸鉛(以下PZT
という)、タンタル酸リチウム(以下Li2Tag、と
いう)、硫酸トリグリシン(以下TGSという)等の焦
電効果の大きい素材のセラミックスや単結晶を薄層化し
、これに電極をとりっけ単分域処理を施したものが衆知
である。[Prior art 1 Lead titanate/lead zirconate (hereinafter PZT) is used as a pyroelectric element.
), lithium tantalate (hereinafter referred to as Li2Tag), triglycine sulfate (hereinafter referred to as TGS), etc., ceramics or single crystals of materials with a large pyroelectric effect are made into a thin layer, and an electrode is attached to this to perform single-domain processing. That which has been subjected to this is the common knowledge.
さらに最近ではフッ化ビニリデン延伸フィルムや焦電効
果の大きい素材の粉粒を樹脂中に分散させた粒子分散型
複合シートなども知られている。Furthermore, recently, stretched vinylidene fluoride films and particle-dispersed composite sheets in which powder particles of a material with a large pyroelectric effect are dispersed in a resin are also known.
これらの電極面に赤外線を照射すると、焦電効果によっ
て電極面には電荷が誘起され、電界効果型トランジスタ
(以下FETという)など適当な電気回路によって電荷
量が電圧に変換され出力となる。When these electrode surfaces are irradiated with infrared rays, charges are induced on the electrode surfaces due to the pyroelectric effect, and the amount of charge is converted into a voltage by a suitable electric circuit such as a field effect transistor (hereinafter referred to as FET) and output.
即ち、一定のエネルギー密度の赤外線を受光したとき、
それを電圧に変換して大きな出力にできるものほど高感
度の赤外線センサーであるということができる。That is, when receiving infrared rays with a certain energy density,
It can be said that the more sensitive an infrared sensor can be, the more output it can produce by converting it into voltage.
従来、かかる赤外線センサーの感度を向上させるため素
材の改良が加えられるとともに形状も有効な受光面積を
大きく、かつできるだけ薄膜化して熱容量を小さくする
ための工夫がされたが、単一の素子のみを使用する範囲
では高感度化に限界があった。Conventionally, in order to improve the sensitivity of such infrared sensors, improvements have been made to the materials, and efforts have been made to increase the effective light-receiving area by changing the shape and making the film as thin as possible to reduce the heat capacity. There was a limit to how high the sensitivity could be achieved within the range of use.
[発明の目的1
本発明は複数個の焦電体素子を組合せて使用することに
より、単一の素子では得られなかった高感度の赤外線セ
ンサーを提供することにある。[Objective of the Invention 1] The object of the present invention is to provide an infrared sensor with high sensitivity, which could not be obtained with a single element, by using a plurality of pyroelectric elements in combination.
[発明の構成1
本発明は、その両面に電極を有し単分域処理が施こされ
た複数個の焦電体素子からなり、各素子が電気回路とし
て直列に接続され、かつ各素子の極性の向きが直列回路
に沿って同一方向に配列されていることを特徴とする赤
外線センサーの構造である。[Configuration 1 of the Invention The present invention consists of a plurality of pyroelectric elements having electrodes on both sides and subjected to single-domain processing, each element being connected in series as an electric circuit, and each element having a This is an infrared sensor structure characterized in that polarities are arranged in the same direction along a series circuit.
本発明において電極は金、銀、銅、ニッケル、クロム、
アルミニウム、その他の金属をスパッタまたはイオンブ
レーティング等で付着させたものが望ましいが、これら
に限定するものではない。In the present invention, the electrodes include gold, silver, copper, nickel, chromium,
It is preferable to use aluminum or other metals deposited by sputtering or ion blasting, but the material is not limited to these.
印刷又は蒸着、メッキ等の方法を選択することが出来る
。Methods such as printing, vapor deposition, and plating can be selected.
受光面として使用する電極膜はさらに黒化処理など、赤
外線吸収効率を向上させる処理を施しても良い。The electrode film used as the light-receiving surface may be further subjected to treatment such as blackening treatment to improve infrared absorption efficiency.
単分域処理は各−素子の電極間に必要な強度の電界を加
えることによって達成される。Single domain processing is achieved by applying an electric field of the required strength between the electrodes of each element.
本発明における焦電体素子とは、従来用いられてきたP
ZT、Li2Tag3、TGSのセラミックスや単結晶
の薄層化したもので良く、又フッ化ビニリデン延伸フィ
ルムや、焦電性の粒子分散型複合シートでも良い。The pyroelectric element in the present invention refers to the conventionally used P
It may be a thin layer of ceramics or single crystals such as ZT, Li2Tag3, or TGS, or may be a stretched vinylidene fluoride film or a pyroelectric particle-dispersed composite sheet.
焦電性粒子分散型複合シートとは焦電体セラミックスの
微粒を合成樹脂等の結合材の中に分散させた複合材料シ
ートである。A pyroelectric particle dispersed composite sheet is a composite material sheet in which fine particles of pyroelectric ceramic are dispersed in a binder such as a synthetic resin.
各素子は単分域処理が施された後では極性を持っている
。Each element has a polarity after being subjected to single domain processing.
即ち、この処理時に(+)側である電極と(−)側であ
る電極が定まる。That is, during this process, the electrodes on the (+) side and the electrodes on the (-) side are determined.
本発明で最も重要な点は、1素子のく+)側電極に次に
接続する素子の(−)側電極がつながり、その素子の(
+)側電極には、さらに次の素子の(−)lull電極
がつながる形式で直列接続されていることである。The most important point in the present invention is that the (+) side electrode of one element is connected to the (-) side electrode of the next element to be connected.
The +) side electrode is further connected in series with the (-) Lull electrode of the next element.
構成する素子の数は2以上の任意の個数で良いが、4個
の素子から構成された本発明による赤外線センサーの構
造を例に選び図解する。Although the number of constituent elements may be any number greater than or equal to two, the structure of an infrared sensor according to the present invention composed of four elements will be selected as an example and illustrated.
第1図(A)は4個の素子が赤外線源(図の上方)に向
ってランダムな表裏の内外に配置された構造を側面図と
して示したものである。FIG. 1(A) is a side view showing a structure in which four elements are randomly arranged on the front and back, inside and outside, facing the infrared ray source (upper part of the figure).
各素子の分極方向を矢印で示しである。The polarization direction of each element is indicated by an arrow.
両面の電極に付した番号は素子の番号を兼ね、番号に゛
のついた側を正、゛のない番号の側を負とする電界で分
極されたことを意味する。The numbers assigned to the electrodes on both sides also serve as the device numbers, meaning that they were polarized by an electric field with the side with a ``'' in the number being positive and the side with a number without a `` being negative.
この図の場合1.2.3゛、4が受光面である。In this figure, 1, 2, 3 and 4 are the light receiving surfaces.
接続はPETと1.1゛と2、どと3.3′と4.4′
と接地となり直列回路に沿って各素子の分極の向きが揃
えられていることを示す。The connections are PET, 1.1' and 2, and 3.3' and 4.4'.
This indicates that the polarization direction of each element is aligned along the series circuit.
第1図(B)も同一の接続でなりたっている。The same connection is used in FIG. 1(B).
(A)では各素子はそれぞれ独立した個別のセンサーで
あるが(B)では1枚のシート内に集積された形になっ
ている。In (A), each element is an independent individual sensor, but in (B), each element is integrated within a single sheet.
第1図(C)は隣り合う素子の分極の向きが相互に逆向
きであり、したがって隣り合う素子間の結合が、シート
に関して同じ側の面同志をつなぐこので成立している。In FIG. 1(C), the polarization directions of adjacent elements are opposite to each other, and therefore, the coupling between adjacent elements is established by connecting the surfaces on the same side of the sheet.
即ち、FETと1゛、1と2゛、2と31.3と4゛、
4と接地となり、やはり直列回路に沿って各素子の分極
の向きが揃えられ、しかも、A面から8面への接続を必
要としない構造になっている。That is, FET and 1゛, 1 and 2゛, 2 and 31.3 and 4゛,
4 and ground, and the polarization direction of each element is also aligned along the series circuit, and the structure does not require connection from the A side to the 8th side.
第1図(D)は(C)の応用例である。FIG. 1 (D) is an application example of (C).
即ち、隣り合う素子に共有の電極11“が設けられた構
造で、機能上は(C)と同一である。That is, it has a structure in which adjacent elements are provided with a common electrode 11'', and is functionally the same as (C).
印刷配線技術を活用するのに極めて有効で、実用性の高
い構造の例である。This is an example of a highly practical structure that is extremely effective in utilizing printed wiring technology.
第2図は第1図に示された各構造を赤外線源側から見た
図である。FIG. 2 is a diagram of each structure shown in FIG. 1 viewed from the infrared source side.
(A)、(B)、(C)及び(D)は各々第1図に対応
する。(A), (B), (C) and (D) each correspond to FIG.
第1図及び第2図に示される構造の赤外線センサーはF
ETを含めた過当な電気回路に接続されるのは単一素子
の場合と同じ扱いである。The infrared sensor with the structure shown in Figures 1 and 2 is F
Connecting to an appropriate electrical circuit, including ET, is handled in the same way as a single element.
本発明は素子の数が4個以外の任意の複数個の場合にも
正し〈実施でトることはいうまでもない。It goes without saying that the present invention is applicable to cases where the number of elements is any plurality other than four.
[発明の効果]
本発明に従うと、従来の単一素子を用いた赤外線センサ
ーよりも感度が増大する。[Effects of the Invention] According to the present invention, the sensitivity is increased compared to a conventional infrared sensor using a single element.
中でも内部抵抗の低い素子の場合にはn(>2)個の素
子から構成すれば、単一素子の場合の0倍に近し・感度
か得られる。In particular, in the case of an element with low internal resistance, if it is composed of n (>2) elements, a sensitivity close to 0 times that of a single element can be obtained.
感度増大の効果については後述の実施例をもって示す。The effect of increasing sensitivity will be shown in Examples described later.
また、本発明に従う構造をもつ赤外線センサーは単一素
子のものよりも応答時間が短縮される。Also, an infrared sensor constructed according to the invention has a faster response time than one with a single element.
これは本発明によって直列に集積された素子群の総電気
容量が単一素子のそれより減少するためである。This is because according to the present invention, the total capacitance of a group of devices integrated in series is reduced compared to that of a single device.
本発明において複数個からなる素子群力弓枚のシートの
中に構成されるとこれらを1シートとしてまとめて扱う
ことができて便利である。In the present invention, if a plurality of elements are arranged in a sheet, it is convenient because they can be handled as one sheet.
さらに隣り合って接続されている素子それぞれの分極の
向きが相互に逆向きであると、シートに関して同じ側に
面した電極同志が接続された構造になり印刷配線化に適
した構造である。Furthermore, if the polarization directions of the adjacently connected elements are opposite to each other, the structure is such that the electrodes facing the same side of the sheet are connected, which is a structure suitable for printed wiring.
[実施例1
実施例1
素子 ; 変性チタン酸鉛セラミックス N200(東
北金属工業製) ?、5X7,5XO,5(mm)
銀電極焼付、単分域処理チップ、表面黒インク塗装。[Example 1 Example 1 Element; Modified lead titanate ceramic N200 (manufactured by Tohoku Metal Industries)? , 5X7, 5XO, 5 (mm)
Silver electrode baking, single area processing chip, surface black ink painting.
測定 : 市販のローソクで長さ3cmの炎を点し、素
子を20c+nの距離に設置して受光できるようにした
。平均照射エネルギー密度(40mW /can2)あ
らカルめシャッターを閉じておいで、シャッターを開い
た時の出力を求めた。(但し、出力中のノイズ低減のた
め1.12Hz以下をカットオフする。Measurement: A flame with a length of 3 cm was lit using a commercially available candle, and the element was placed at a distance of 20c+n so that it could receive light. Average irradiation energy density (40 mW/can2) The shutter was closed, and the output when the shutter was opened was determined. (However, to reduce noise during output, cut off below 1.12Hz.
結果 ; 第1表に示す。Results: Shown in Table 1.
実施例2
素子 ; PZT粉末(粒径5〜10μm)、混合エ
ポキシ樹脂シート 25X20X0.10(m+n)両
面銅張板(25μm厚銅)1単分域処理、エツチングに
より両面に4 X 4 (+nm)の電極12対を対向
させたパターンをつくる。Example 2 Element; PZT powder (particle size 5 to 10 μm), mixed epoxy resin sheet 25×20×0.10 (m+n) double-sided copper clad plate (25 μm thick copper) 1 single domain treatment, etching on both sides to form 4×4 (+nm) A pattern is created in which 12 pairs of electrodes are opposed to each other.
隣り合う素子の間隙に小孔をあけて導線を通し、順次各
素子の分極の向きの正極と負極とを結合させてゆく。A small hole is made in the gap between adjacent elements and a conductive wire is passed through the gap, and the positive and negative electrodes of each element in the polarization direction are successively connected.
測定 ; タンゲス、テンランプから42ctnの距離
に素子を設置しその照射エネルギー密7i4,8+nV
/Cl112に調整した。8Hzのチョッパーを通じて
受光させた。Measurement: The element was installed at a distance of 42 ctn from the tongue lamp and the irradiation energy density was 7i4,8+nV.
/Cl112. Light was received through an 8Hz chopper.
結果 ; 第2表に示す。Results: Shown in Table 2.
実施例3
素子 ; N200を粉砕後分級して得られたC粒径5
0〜70μm)粉粒の並列分散ポリイミド樹脂複合シー
ト7X5oxo、o4(m+n)の両面に5 X 5
(mm)の銀蒸着電極8対を対向させたパターンをつ゛
くり、単分域処理し8素子化する。このとき隣り合う素
子は分極の向きが相互に逆向きとなる゛ように処理する
。つづいて、銀蒸着で電極同志を直列接続化させる。Example 3 Element; C particle size 5 obtained by crushing and classifying N200
0~70μm) Parallel dispersion of powder particles polyimide resin composite sheet 7X5oxo, 5X5 on both sides of o4(m+n)
A pattern of 8 pairs of silver-deposited electrodes (mm) facing each other was created, and single-domain processing was performed to form 8 elements. At this time, adjacent elements are processed so that the directions of polarization are opposite to each other. Next, the electrodes are connected in series by silver vapor deposition.
即ち、シートの片面において第1と第2、第3と第4、
第5と第6、第7と第8の電極を接続する銀蒸着をほど
こし、逆面では第2と第3、第4と第5、第6と第7の
電極を接続させ、かつ、第1は接地に、第8はFETに
結線する。That is, on one side of the sheet, the first and second, the third and fourth,
Silver vapor deposition is applied to connect the fifth and sixth electrodes, and the seventh and eighth electrodes, and on the other side, the second and third electrodes, the fourth and fifth electrodes are connected, and the sixth and seventh electrodes are connected. 1 is connected to ground, and 8th is connected to FET.
測定 : 実施例2と同し条件で実施した。Measurement: Conducted under the same conditions as Example 2.
結果 : 第3表に示す。Results: Shown in Table 3.
実施例4 素子 ; 実施例3と同じ素子を用いた。Example 4 Element: The same element as in Example 3 was used.
測定 : タングステンランプから31cmの距離に素
子を設置し、あらカルめシャッターを閉しておいてシャ
ッターを開き出力を求めた。Measurement: The element was installed at a distance of 31 cm from the tungsten lamp, the shutter was closed, and then the shutter was opened to determine the output.
結果 ; 第4表に示す。Results: Shown in Table 4.
第1図は本発明の構造の側面を示した図である、(A)
は素子が分断されていて直列接続されている例を示す。
(B)は素子が同一シート内に形成されていて、直列接
続されている例を示す。
(C)は素子の極性が隣り同志では相互に逆向きになっ
ている例を示す。
(D)は接続すべき電極2枚分をつなぐ大ぎな電極で接
続を兼ている例を示す。
第2図は本発明の構造を赤外線源側から見た図である。
(A)〜(D)は各々第1図のそれらに対応する。
付帯の数字1〜4は分極時に陰極側の面、1゛〜4゛は
陽極側の面、11は素子共有の電極、22はシート、3
3は電極を結ぶリード線、44は表面電極へのリード線
の接点、55は裏面電極へのリード線の接点、66は焦
電体シート内の貫通孔を通るリード線、さらに10は素
子の極性の向きを示す矢印、20はFET、30は接地
を示す。
出願人 住友ベークライト株式会社第1図FIG. 1 is a diagram showing a side view of the structure of the present invention, (A)
shows an example in which the elements are separated and connected in series. (B) shows an example in which elements are formed in the same sheet and connected in series. (C) shows an example in which the polarities of adjacent elements are opposite to each other. (D) shows an example in which a large electrode is used to connect two electrodes to be connected. FIG. 2 is a diagram of the structure of the present invention viewed from the infrared source side. (A) to (D) correspond to those in FIG. 1, respectively. The accompanying numbers 1 to 4 are the surface on the cathode side during polarization, 1゛ to 4゛ are the surface on the anode side, 11 is the electrode shared by the element, 22 is the sheet, 3
3 is a lead wire connecting the electrodes, 44 is a contact point of the lead wire to the front electrode, 55 is a contact point of the lead wire to the back electrode, 66 is a lead wire passing through a through hole in the pyroelectric sheet, and 10 is a lead wire of the element. Arrows indicate polarity direction, 20 indicates FET, and 30 indicates ground. Applicant Sumitomo Bakelite Co., Ltd. Figure 1
Claims (3)
焦電体素子からなり、該素子のうちの一部の複数個もし
くは全部が電気回路として直列に接続され、かつ各素子
の分極の向きが、直列回路に沿って同一方向に配列され
ていることを特徴とする赤外線センサーの構造。(1) Consisting of a plurality of pyroelectric elements having electrodes on both sides and subjected to single-domain processing, some or all of the elements are connected in series as an electric circuit, and each An infrared sensor structure characterized in that the polarization directions of the elements are arranged in the same direction along a series circuit.
のシートの中に構成されていることを特徴とする特許請
求の範囲第1項記載の赤外線センサーの構造。(2) The structure of the infrared sensor according to claim 1, wherein a plurality or all of the elements are constructed in one sheet.
互いに逆向きであることを特徴とする特許請求の範囲第
1、第2項記載の赤外線センサーの構造。(3) The structure of an infrared sensor according to claims 1 and 2, wherein the polarization directions of adjacent elements are opposite to each other when connected in series.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59166409A JPS6145937A (en) | 1984-08-10 | 1984-08-10 | Structure of infrared sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59166409A JPS6145937A (en) | 1984-08-10 | 1984-08-10 | Structure of infrared sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6145937A true JPS6145937A (en) | 1986-03-06 |
Family
ID=15830881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59166409A Pending JPS6145937A (en) | 1984-08-10 | 1984-08-10 | Structure of infrared sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6145937A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0232024U (en) * | 1988-08-25 | 1990-02-28 | ||
JPH02197747A (en) * | 1989-01-25 | 1990-08-06 | Matsushita Electric Ind Co Ltd | Air conditioner |
JP2012132874A (en) * | 2010-12-24 | 2012-07-12 | Seiko Epson Corp | Detector, sensor device and electronic equipment |
US8895927B2 (en) | 2010-12-24 | 2014-11-25 | Seiko Epson Corporation | Detection device, sensor device and electronic apparatus |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4917400A (en) * | 1972-06-12 | 1974-02-15 | ||
JPS5035676A (en) * | 1973-06-15 | 1975-04-04 | ||
JPS59120831A (en) * | 1982-12-27 | 1984-07-12 | Nippon Denso Co Ltd | Apparatus for detecting infrared rays |
-
1984
- 1984-08-10 JP JP59166409A patent/JPS6145937A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4917400A (en) * | 1972-06-12 | 1974-02-15 | ||
JPS5035676A (en) * | 1973-06-15 | 1975-04-04 | ||
JPS59120831A (en) * | 1982-12-27 | 1984-07-12 | Nippon Denso Co Ltd | Apparatus for detecting infrared rays |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0232024U (en) * | 1988-08-25 | 1990-02-28 | ||
JPH02197747A (en) * | 1989-01-25 | 1990-08-06 | Matsushita Electric Ind Co Ltd | Air conditioner |
JP2012132874A (en) * | 2010-12-24 | 2012-07-12 | Seiko Epson Corp | Detector, sensor device and electronic equipment |
US8481940B2 (en) | 2010-12-24 | 2013-07-09 | Seiko Epson Corporation | Detection device, sensor device, and electronic apparatus |
US8895927B2 (en) | 2010-12-24 | 2014-11-25 | Seiko Epson Corporation | Detection device, sensor device and electronic apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3204130B2 (en) | Pyroelectric infrared sensor element | |
US4234813A (en) | Piezoelectric or pyroelectric polymer input element for use as a transducer in keyboards | |
US4627138A (en) | Method of making piezoelectric/pyroelectric elements | |
CA1144776A (en) | Radiation detector devices and circuit arrangements including radiation detector devices | |
US4437003A (en) | Differential pyroelectric sensor with static discharge | |
JPS6317354B2 (en) | ||
JPS6145937A (en) | Structure of infrared sensor | |
US3076949A (en) | Photoconductive cell | |
JP3186603B2 (en) | Pyroelectric infrared sensor element | |
US4106933A (en) | Piezoelectric method and medium for producing electrostatic charge patterns | |
JPH03503225A (en) | Electrode structure of thermal infrared detector | |
JPH0792025A (en) | Infrared sensor | |
CN100458382C (en) | Quick-responding high-sensitivity ultraviolet detector made by calcium-titanium oxide monocrystal material | |
JPH0961238A (en) | Pyroelectric-type infrared sensor element | |
JPS62128571A (en) | Amorphous silicon solar cell | |
JPH05251082A (en) | Thin battery | |
JP4228589B2 (en) | Infrared detector manufacturing method | |
DE3525148C2 (en) | ||
JP2616654B2 (en) | One-dimensional pyroelectric sensor array | |
JPH0338069A (en) | thin film solar cells | |
JPH0261895A (en) | Optical storage element | |
JPH06265406A (en) | Pyroelectric infrared sensor array | |
JPS61117420A (en) | Infrared detector | |
CN106997908B (en) | Visible blind UV light detector unit and array | |
Batra et al. | Comparison of Electrical Properties of Pb0. 95La0. 05Zr0. 54Ti0. 46O3 Thin Film Capacitors Using Coplanar and Interplanar Electrode Configuration |