JPS6145160Y2 - - Google Patents
Info
- Publication number
- JPS6145160Y2 JPS6145160Y2 JP1982145475U JP14547582U JPS6145160Y2 JP S6145160 Y2 JPS6145160 Y2 JP S6145160Y2 JP 1982145475 U JP1982145475 U JP 1982145475U JP 14547582 U JP14547582 U JP 14547582U JP S6145160 Y2 JPS6145160 Y2 JP S6145160Y2
- Authority
- JP
- Japan
- Prior art keywords
- cathode
- anode
- chamber
- bottom plate
- electrolytic cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012528 membrane Substances 0.000 claims description 42
- 238000005341 cation exchange Methods 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 20
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 17
- 229910052753 mercury Inorganic materials 0.000 claims description 17
- 239000007788 liquid Substances 0.000 claims description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 239000007789 gas Substances 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- 239000003513 alkali Substances 0.000 description 8
- 239000003518 caustics Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 235000011121 sodium hydroxide Nutrition 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 6
- -1 e.g. Substances 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 239000012530 fluid Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 229920001875 Ebonite Polymers 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229910001415 sodium ion Inorganic materials 0.000 description 3
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 2
- 244000043261 Hevea brasiliensis Species 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910001508 alkali metal halide Inorganic materials 0.000 description 2
- 150000008045 alkali metal halides Chemical class 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- 239000012811 non-conductive material Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000012958 reprocessing Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 125000000542 sulfonic acid group Chemical group 0.000 description 2
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical class ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical compound FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000002990 reinforced plastic Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Description
【考案の詳細な説明】
本考案は主としてアルカリ金属ハロゲン化物水
溶液、特に塩化アルカリ塩水溶液の電解槽に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention mainly relates to an electrolytic cell for an aqueous alkali metal halide solution, particularly an aqueous alkali chloride solution.
詳しくは、電解隔膜として陽イオン交換膜を用
いた水平型電解槽において低い電解電圧で、主と
して高品質の苛性アルカリを効率良く得るための
装置に関するものである。 Specifically, the present invention relates to an apparatus for efficiently obtaining mainly high-quality caustic alkali at a low electrolytic voltage in a horizontal electrolytic cell using a cation exchange membrane as an electrolytic diaphragm.
水平型電解槽は、水平に張設された隔膜によつ
て上部の陽極室と下部の陰極室とに区画され、一
般に目的とする電解生成物、例えば苛性アルカリ
は陰極室で生成するため、隔膜を通して陽極室へ
移動することがないという利点から、従来工業的
に可成り利用されて来た。 Horizontal electrolytic cells are divided into an upper anode chamber and a lower cathode chamber by a horizontally stretched diaphragm, and generally have the advantage that the target electrolytic product, e.g., caustic alkali, is produced in the cathode chamber and does not move through the diaphragm to the anode chamber. For this reason, horizontal electrolytic cells have been widely used industrially.
また、水平型電解槽の最も典型的な例として、
水銀法電解槽があるが、陰極に用いる水銀が環境
汚染物質であるため、近い将来休止すべき運命に
ある。かかる水銀陰極電解槽を、水銀を用いない
隔膜法電解槽に、極力少ない費用を以つて転換せ
んとすれば必然的に水平型の隔膜法電解槽に改造
することとなり、かような水平型隔膜法電解槽
で、水銀法に劣らぬ品位の電解生成物を、高い電
流効率を以つて生産する方法の開発は当業界の直
面する重要課題である。 In addition, the most typical example of a horizontal electrolyzer is
There is a mercury electrolyzer, but because the mercury used in the cathode is an environmental pollutant, it is destined to be discontinued in the near future. If such a mercury cathode electrolyzer is to be converted to a mercury-free diaphragm electrolyzer at the lowest possible cost, it will inevitably be converted to a horizontal diaphragm electrolyzer, and such a horizontal diaphragm The development of a method for producing an electrolytic product of a quality equivalent to that of the mercury method with high current efficiency in a method electrolyzer is an important issue facing the industry.
上記水銀法電解槽を水平型隔膜法電解槽に転換
する方法が特公昭53−25557号公報に開示されて
いるが、これによつて得られた電解槽は濾隔膜を
用いたものであり、濾隔膜は透水率が大きく、従
つて陽極室液が隔膜を水力学的に透過し、陰極室
で生成する、例えば苛性アルカリ中に陽極液が混
入し純度を低下せしめる欠点がある。 A method of converting the above-mentioned mercury method electrolytic cell to a horizontal diaphragm method electrolytic cell is disclosed in Japanese Patent Publication No. 53-25557, but the electrolytic cell obtained by this method uses a filter diaphragm, The filtration membrane has a high water permeability, so that the anolyte fluid permeates through the membrane hydraulically and has the drawback that the anolyte fluid is mixed into, for example, caustic alkali produced in the cathode compartment, reducing its purity.
一方、密隔膜と呼ばれる陽イオン交換膜は水力
学的に電解液を透過することなく、電気的に移動
するアルカリ金属イオンと共に配位した水分子が
透過するのみであるから高純度の苛性アルカリを
得ることができる反面、透過した僅かな水分は蒸
発し、陽イオン交換膜と陰極との間に導電不良を
来たし、遂には電解反応が停止してしまう。 On the other hand, a cation exchange membrane called a dense diaphragm does not allow the electrolyte to permeate hydraulically, but only allows water molecules coordinated with electrically moving alkali metal ions to pass through. On the other hand, the small amount of water that permeated evaporates, causing poor conductivity between the cation exchange membrane and the cathode, and eventually stopping the electrolytic reaction.
かかる問題を解決する為、特開昭49−126596号
公報及び同50−55600号公報には陽イオン交換膜
と陰極との間に水分保持体を存在させる方法、及
び陰極に苛性アルカリ溶液を噴霧状又は噴水状で
供給しながら電解する方法が、それぞれ提案され
ている。 In order to solve this problem, Japanese Patent Laid-Open Nos. 49-126596 and 50-55600 disclose a method in which a water retainer is present between the cation exchange membrane and the cathode, and a method in which a caustic alkaline solution is sprayed on the cathode. Methods have been proposed in which electrolysis is carried out while supplying water in the form of water or water in the form of a fountain.
しかしながら、特開昭49−126596号公報によつ
て提案された方法は、水分保持体を介在させる手
数及び水分保持体の耐久性の問題があるのみなら
ず、陽イオン交換膜と陰極との間に水分保持体を
介在させた場合、極間距離が拡大すると共に水分
保持体による抵抗増は電解電圧を増大し、性能的
に有利な方法とは云えない。また特開昭50−
55600号公報にて提案された方法は、商業用電解
槽のような大型の場合、水分の噴射・供給を均一
に行なうことは困難であり、実用化の面で難があ
る。 However, the method proposed in Japanese Patent Application Laid-Open No. 49-126596 not only has problems in the number of steps involved in intervening a water retainer and the durability of the water retainer, but also When a water retaining body is interposed between the electrodes, the distance between the electrodes increases and the increase in resistance due to the water retaining body increases the electrolytic voltage, so this method cannot be said to be advantageous in terms of performance. Also, JP-A-50-
The method proposed in Publication No. 55600 has difficulty in practical application because it is difficult to spray and supply water uniformly in large-scale electrolyzers such as commercial electrolyzers.
本考案は叙上の如き従来技術の欠点を解消する
ためになされたものであり、本考案は水銀法電解
槽から比較的容易に水平型陽イオン交換膜電解槽
への転換を可能とし、高い電流効率を以つて高品
質の苛性アルカリの生産を可能とするものであ
る。また、かかる本考案になる電解槽は新材料を
用いて新たに建造することができることは云う迄
もない。 The present invention was made to eliminate the drawbacks of the prior art as described above, and the present invention enables a relatively easy conversion from a mercury method electrolyzer to a horizontal cation exchange membrane electrolyzer, and has a high cost. This makes it possible to produce high quality caustic alkali with high current efficiency. Furthermore, it goes without saying that the electrolytic cell according to the present invention can be newly constructed using new materials.
すなわち、本考案の目的は、水平型隔膜法電解
槽を用いて高品質の苛性アルカリを高い効率を以
つて取得するにある。他の目的は、新規な構造の
陰極を用い且つ高い性能を備えた改良された型式
の水平型隔膜法電解槽を提供するにある。さらに
他の目的は、水銀法電解槽から転換された高性能
の水平型隔膜法電解槽、特に水平型陽イオン交換
膜電解槽を提供するにある。その他の目的は以下
の記述により順次明らかとなろう。 That is, an object of the present invention is to obtain high quality caustic alkali with high efficiency using a horizontal diaphragm electrolytic cell. Another object is to provide an improved type of horizontal diaphragm electrolyzer that uses a cathode of new construction and has increased performance. Still another object is to provide a high performance horizontal diaphragm electrolyzer, particularly a horizontal cation exchange membrane electrolyzer, which is a conversion from a mercury electrolyzer. Other purposes will become clear in the following description.
上記目的を達成するための本考案は、実質的に
水平に張設された陽イオン交換膜により上部の陽
極室と下部の陰極室とに区画され、前記陽極室は
実質的に水平な陽極を有してなり、蓋体と、該陽
極を囲むように周設された陽極室側壁と、該陽イ
オン交換膜の上面とにより囲繞され、且つ陽極液
の導入口および排出口並に陽極ガス排出口とを具
備してなり、前記陰極室は陰極底板と該底板の周
縁上に周設された陰極室側壁と該陽イオン交換膜
の下面とにより囲まれ、かつ該陰極底板上の支持
部を介して該底板より適宜間隔離して設置された
陰極を有し、且つ陰極液の導入口および陰極ガス
と陰極液との混相流の排出口を具備して構成され
ることを特徴とする新規な電解槽を内容とするも
のである。 To achieve the above object, the present invention is divided into an upper anode chamber and a lower cathode chamber by a cation exchange membrane stretched substantially horizontally, and the anode chamber has a substantially horizontal anode. It is surrounded by a lid, an anode chamber side wall surrounding the anode, and the upper surface of the cation exchange membrane, and has an anolyte inlet and outlet as well as an anode gas exhaust. The cathode chamber is surrounded by a cathode bottom plate, a side wall of the cathode chamber provided around the periphery of the bottom plate, and a lower surface of the cation exchange membrane, and the cathode chamber is surrounded by a support portion on the cathode bottom plate. A novel device characterized in that it has a cathode installed at an appropriate distance from the bottom plate via a catholyte, and an inlet for a catholyte and an outlet for a multiphase flow of cathode gas and catholyte. It contains an electrolytic cell.
次に本考案の態様を添付図面について詳述す
る。以下の説明において、アルカリ金属ハロゲン
化物の代表例として現在産業界で最も一般的に使
われている塩化ナトリウムを、また、その電解生
成物は苛性ソーダをそれぞれ便宜上用いるが、こ
れによつて本考案をそれらに限定する意図を表わ
したものでなく、他の無機塩水溶液や水電解等に
も適用できることは云う迄もない。 Aspects of the invention will now be described in detail with reference to the accompanying drawings. In the following explanation, sodium chloride, which is currently most commonly used in industry, will be used as a representative example of the alkali metal halide, and caustic soda will be used as the electrolyzed product thereof. It goes without saying that the invention is not intended to be limited to these, and can be applied to other inorganic salt aqueous solutions, water electrolysis, etc.
第1図乃至第3図は、本考案にかかる電解槽の
それぞれ側面図、垂直縦断面図及び垂直横断面図
である。 1 to 3 are a side view, a vertical longitudinal cross-sectional view, and a vertical cross-sectional view, respectively, of an electrolytic cell according to the present invention.
第1図及び第2図において、本考案装置は幅に
対し長さの大なる、好ましくは数倍の長さを有す
る長方型の陽極室1とその直下に位置する陰極室
2とよりなり、陽極室1と陰極室2とは、実質的
に水平に側壁間に張設された陽イオン交換膜3に
よつて区画される。本書中「実質的に水平」と
は、必要に応じて若干傾斜させた場合(1/10程度
迄の勾配を付与した場合)をも包含するものとす
る。 In FIGS. 1 and 2, the device of the present invention consists of a rectangular anode chamber 1 whose length is larger than its width, preferably several times the length, and a cathode chamber 2 located directly below the rectangular anode chamber 1. The anode chamber 1 and the cathode chamber 2 are partitioned by a cation exchange membrane 3 stretched substantially horizontally between the side walls. In this document, "substantially horizontal" includes a case where the object is slightly inclined as necessary (a case where a slope of up to about 1/10 is applied).
本考案に好適な陽イオン交換膜としては、例え
ば、陽イオン交換基を有するパーフルオロカーボ
ン重合体からなる膜を挙げることができる。スル
ホン酸基を交換基とすするパーフルオロカーボン
重合体よりなる膜は、米国のイー・アイ・デユポ
ン・デ・ニモアス・アンド・カンパニー(E.I.Du
Pont de Nemours & Company)より商品名
「ナフイオン」として市販されており、その化学
構造は次式に示す通りである。 Examples of cation exchange membranes suitable for the present invention include membranes made of perfluorocarbon polymers having cation exchange groups. Membranes made of perfluorocarbon polymers with sulfonic acid groups as exchange groups are manufactured by E.I.
It is commercially available under the trade name "Nafion" from Pont de Nemours & Company, and its chemical structure is as shown in the following formula.
かかる陽イオン交換膜の好適な当量重量は1000
乃至2000、好ましくは1100乃至1500である。ここ
に当量重量とは、交換基当量当りの乾燥膜の重量
(g)である。また、上記交換膜のスルホン酸基
の一部又は全部をカルボン酸基に置換した陽イオ
ン交換膜その他慣用されている陽イオン交換膜も
本発明に適用することができる。これらの陽イオ
ン交換膜は透水率が著しく小さく、水力学的流れ
を通さずに水分子3〜4個を有するナトリウムイ
オンを通すのみである。 The preferred equivalent weight of such a cation exchange membrane is 1000
It is between 2000 and 2000, preferably between 1100 and 1500. The equivalent weight here is the weight (g) of the dry membrane per equivalent of exchange group. Further, cation exchange membranes in which part or all of the sulfonic acid groups in the above exchange membranes are replaced with carboxylic acid groups and other commonly used cation exchange membranes can also be applied to the present invention. These cation exchange membranes have extremely low water permeability and only allow sodium ions with 3 to 4 water molecules to pass through without allowing hydraulic flow.
陽極室1は蓋体4と、該蓋体4から懸垂された
陽極6を囲むように延設された陽極室側壁5と、
陽イオン交換膜3の上表面とにより画成されてお
り、陽極6は蓋体4に立設された陽極懸垂装置7
で懸垂され、各陽極6は陽極ブスバー8で互いに
連結されている。蓋体4は陽極導電棒9を挿通す
る孔10を有し、該孔10はシート11により気
密にシールされている。陽極導電棒9の下端には
陽極板12が取付けられており、かくして陽極板
12は陽極懸垂装置7に連結されているため、陽
極懸垂装置7を操作するとにより上下に昇降調節
可能で、陽イオン交換膜3に接触するよう配置す
ることができる。もつとも陽極は蓋体に立設され
た陽極懸垂装置から懸垂される場合に限られず、
他の方法により懸垂支持されていても差し支えな
い。さらに陽極室は少なくとも1個の陽極液導入
口13を有しており、これらは該蓋体4または陽
極室側壁5に設けることができる。一方、陽極液
排出口14は少なくとも1個設けられ、これらは
該側壁5に設けることができる。また、該蓋体4
または該側壁5の適宜箇処に陽極ガス(塩素ガ
ス)排出口15を備えている。 The anode chamber 1 includes a lid 4 and an anode chamber side wall 5 extending to surround an anode 6 suspended from the lid 4.
The anode 6 is defined by the upper surface of the cation exchange membrane 3, and the anode suspension device 7 is provided upright on the lid 4.
The anodes 6 are connected to each other by an anode bus bar 8. The lid body 4 has a hole 10 through which the anode conductive rod 9 is inserted, and the hole 10 is hermetically sealed by a sheet 11. An anode plate 12 is attached to the lower end of the anode conductive rod 9, and since the anode plate 12 is connected to the anode suspension device 7, it can be adjusted up and down by operating the anode suspension device 7, and the positive ions It can be arranged so as to be in contact with the exchange membrane 3. Of course, the anode is not limited to being suspended from an anode suspension device installed upright on the lid.
Suspension support may be provided by other methods. Furthermore, the anode chamber has at least one anolyte inlet 13, which can be provided on the lid 4 or on the side wall 5 of the anode chamber. On the other hand, at least one anolyte outlet 14 is provided, and these can be provided on the side wall 5. Moreover, the lid body 4
Alternatively, the side wall 5 is provided with an anode gas (chlorine gas) outlet 15 at an appropriate location.
上記の陽極室1を構成する蓋体4および陽極室
側壁5としては、水銀法電解槽を構成する蓋体及
び陽極室側壁を転用することもできるし、また塩
素に耐える材質であれば特に制限はなく好適に使
用することができる。例えばチタン及びチタン合
金等の耐塩素金属あるいは、弗素系ポリマー、硬
質ゴム等を使用することができる。さらに上記金
属、弗素系ポリマーまたは硬質ゴム等をライニン
グした鉄を用いることもできる。 As the lid body 4 and the anode chamber side wall 5 constituting the above-mentioned anode chamber 1, the lid body and the anode chamber side wall constituting the mercury method electrolyzer can be used, and there are no particular restrictions as long as they are made of materials that can withstand chlorine. It can be used suitably. For example, chlorine-resistant metals such as titanium and titanium alloys, fluorine-based polymers, hard rubber, etc. can be used. Furthermore, iron lined with the above-mentioned metals, fluorine-based polymers, hard rubber, etc. can also be used.
陽極反応を行なう陽極板12はグラフアイト陽
極を用いることもできるが、チタンあるいはタン
タルのような金属に、例えば白金族金属あるいは
酸化白金族金属又はそれらの混合物を有する被覆
を施した不溶性陽極が好ましい。もちろん水銀法
電解槽に用いられている陽極板を同じ寸法、同じ
形状のままで使用することができる。 Although a graphite anode can be used as the anode plate 12 for carrying out the anode reaction, an insoluble anode made of a metal such as titanium or tantalum coated with, for example, a platinum group metal, an oxidized platinum group metal, or a mixture thereof is preferable. . Of course, the anode plate used in the mercury method electrolyzer can be used with the same dimensions and shape.
次いで陰極室2は陽イオン交換膜3の下表面と
陰極底板16と、該陰極底板の縁に沿つて該陰極
底板を囲むように立設された陰極室側壁17とに
より画成される。 Next, the cathode chamber 2 is defined by the lower surface of the cation exchange membrane 3, a cathode bottom plate 16, and a cathode chamber side wall 17 standing upright along the edge of the cathode bottom plate so as to surround the cathode bottom plate.
陰極24は1又は2以上の支持部25により陰
極24に固定されている。支持部25は鉄、ニツ
ケル、ステンレススチール、銅等のようにそれ自
身が導電性を有し陰極底板16と陰極24を電気
的に接続すると共に陰極24を支持することもで
きる。固定方法としては特に制限されず、溶接、
ネジ、ボルト・ナツト等が例示される。更に、支
持部25は、ポリテトラフルオロエチレン、塩素
化塩ビ等の耐熱性プラスチツク、天然ゴム等の硬
質ゴム等の非導電性材料で構成することもでき
る。支持部の固定は接着剤、ボルト等により実施
できる。上記の如き非導電性材料により陰極24
を陰極底板16上に支持する場合は、鉄、ニツケ
ル、銅、ステンレススチール等の導電性材料によ
り陰極底板16と陰極24を電気的に接続する
か、陰極24と接続した導電性材料を陰極室側壁
17より取り出し、隣接する電解槽の陽極ブスバ
ー8に接続しても良い。陰極は鉄、ニツケル、ス
テンレススチール等の耐食性材料からなり、その
形状は丸棒、角棒等の棒状のものを該支持部25
の上にならべたものでもよく、またエクスパンド
メタル、パンチドメタル等の多孔性シートを該支
持部25の上に固定することもできる。更にタン
ザク状の板を該支持部25の上にならべ、ルーバ
ー状の電極としてもよい。上記陰極の表面に水素
過電圧を低下せしめるためのニツケル、銀の溶
射、ニツケル合金メツキ等を施したものを好適に
使用することができる。該支持部の材質は該陰極
と同じであつてもよく、また異なつていても差し
支えない。 The cathode 24 is fixed to the cathode 24 by one or more supports 25 . The support portion 25 is made of iron, nickel, stainless steel, copper, or the like, and is conductive in itself, and can electrically connect the cathode bottom plate 16 and the cathode 24 as well as support the cathode 24 . There are no particular restrictions on the fixing method; welding,
Examples include screws, bolts and nuts. Further, the support portion 25 may be made of a non-conductive material such as heat-resistant plastic such as polytetrafluoroethylene or chlorinated vinyl chloride, or hard rubber such as natural rubber. The support portion can be fixed using adhesive, bolts, or the like. The cathode 24 is made of a non-conductive material such as those described above.
When supporting the cathode on the cathode bottom plate 16, the cathode bottom plate 16 and the cathode 24 are electrically connected with a conductive material such as iron, nickel, copper, stainless steel, etc., or the conductive material connected to the cathode 24 is placed in the cathode chamber. It may be taken out from the side wall 17 and connected to the anode bus bar 8 of an adjacent electrolytic cell. The cathode is made of a corrosion-resistant material such as iron, nickel, or stainless steel, and its shape is a rod such as a round bar or a square bar.
It is also possible to fix a porous sheet such as expanded metal or punched metal on top of the support part 25. Furthermore, a tanzak-shaped plate may be arranged on the support portion 25 to form a louver-shaped electrode. It is preferable to use a cathode whose surface is coated with nickel or silver spraying, nickel alloy plating, etc. to reduce the hydrogen overvoltage. The material of the support portion may be the same as that of the cathode, or may be different.
本考案の陰極は、水銀法電解槽を水平型陽イオ
ン交換膜法電解槽に転換する場合に特に有利であ
る。即ち、陰極底板と略同寸法の棒状、多孔性シ
ート状、ルーバー状電極等を前もつて製作し、こ
れを陰極底板上に支持部を介して固定すれば、陰
極底板をラインから外すことなく容易に陰極を形
成することができる。また陰極に溶射、メツキ等
による低水素過電圧処理を施こす場合も、陰極底
板を製造ラインから外すことなく、前もつて処理
を施こした陰極を底板上に接続すれば良く、施工
上非常に有利である。更にまた低水素過電圧の再
処理を実施する場合は、陰極のみを外し、再処理
することが出来る。 The cathode of the present invention is particularly advantageous when converting a mercury electrolyzer into a horizontal cation exchange membrane electrolyzer. In other words, if a rod-shaped, porous sheet-shaped, louver-shaped electrode, etc. of approximately the same size as the cathode bottom plate is manufactured in advance, and this is fixed on the cathode bottom plate via a support, the cathode bottom plate can be easily removed from the line. A cathode can be easily formed. Also, when applying low hydrogen overvoltage treatment to the cathode by thermal spraying, plating, etc., the cathode that has been previously treated can be connected to the bottom plate without removing the cathode bottom plate from the production line, which is very convenient for construction. It's advantageous. Furthermore, when performing reprocessing with low hydrogen overvoltage, only the cathode can be removed and reprocessing can be performed.
陰極室側壁17は剛性を有する枠縁のごときも
ので構成することができるし、弾性を有するゴ
ム、プラスチツク等のパツキング状のもので構成
することも可能である。 The cathode chamber side wall 17 can be made of something like a rigid frame edge, or can be made of a packing-like material made of elastic rubber, plastic, or the like.
陰極室側壁17の構成材料としては、苛性ソー
ダ等の苛性アルカリに耐える材料であれば特に制
限はなく、鉄、ステンレススチール、ニツケル、
ニツケル合金等を使用できる。また、鉄基材上に
耐アルカリ性材料をライニングした材料も好適に
使用できる。さらにまたゴム、プラスチツク等の
材料も使用することができる。かかる材料として
は、たとえば天然ゴム、ブチルゴム、エチレンプ
ロピレンゴム(EPR)などのゴム系材料、ポリ
(四フツ化エチレン)、ポリ(四フツ化エチレン−
六フツ化プロピレン)、ポリ(エチレン−四フツ
化エチレン)などのフツ素系ポリマー材料、ポリ
塩化ビニル、強化プラスチツク(FRP)などが
例示される。 The material for forming the cathode chamber side wall 17 is not particularly limited as long as it is resistant to caustic alkalis such as caustic soda, and iron, stainless steel, nickel,
Nickel alloy etc. can be used. Furthermore, a material obtained by lining an alkali-resistant material on an iron base material can also be suitably used. Furthermore, materials such as rubber, plastic, etc. can also be used. Examples of such materials include rubber-based materials such as natural rubber, butyl rubber, and ethylene propylene rubber (EPR), poly(tetrafluoroethylene), and poly(tetrafluoroethylene).
Examples include fluorine-based polymer materials such as propylene hexafluoride), poly(ethylene-tetrafluoroethylene), polyvinyl chloride, and reinforced plastics (FRP).
次に陰極液導入口および陰極ガスと陰極液の混
相液の排出口であるが、前記陰極室2、すなわち
該陽イオン交換膜3、陰極室側壁17および陰極
底板16により囲繞された陰極室2に陰極液と陰
極ガスとの混相液の流れを生ぜしめることができ
ればよい。従つて陰極底板16または陰極室側壁
17の適宜箇処に設けることができる。陰極液導
入口の断面構造は、前記の如く陰極液の流れを生
ぜしめることができれば十分で、特に制限はない
が、陰極液が均一に流れることが好ましく、この
目的のためにスリツト状の導入口は好ましい態様
である。混相液流の方向は電解槽の長手方向ある
いはこれに垂直な方向等のいずれでもよい。 Next, the catholyte inlet and the outlet for the mixed phase liquid of cathode gas and catholyte are connected to the cathode chamber 2, that is, the cathode chamber 2 surrounded by the cation exchange membrane 3, the cathode chamber side wall 17, and the cathode bottom plate 16. It is only necessary to generate a flow of a mixed phase liquid of catholyte and cathode gas. Therefore, it can be provided at an appropriate location on the cathode bottom plate 16 or the cathode chamber side wall 17. The cross-sectional structure of the catholyte inlet is not particularly limited as long as it can cause the catholyte to flow as described above, but it is preferable that the catholyte flows uniformly. The mouth is a preferred embodiment. The direction of the multiphase liquid flow may be either the longitudinal direction of the electrolytic cell or the direction perpendicular thereto.
第3図は本考案による電解槽の垂直横部分断面
図で、陰極の一実施例として棒状陰極を示したも
ので、棒状陰極24aは複数の横桟26の上に溶
接により並設され、該横桟26は複数の導電性支
持部25により陰極底板16に接続されている。 FIG. 3 is a vertical cross-sectional view of an electrolytic cell according to the present invention, showing a rod-shaped cathode as an example of the cathode. The horizontal beam 26 is connected to the cathode bottom plate 16 by a plurality of conductive support portions 25 .
第4図は、本考案により水銀法電解槽を陽イオ
ン交換膜法電解槽に転換した水平型陽イオン交換
膜法電解槽の断面図および陰極液循環系統を示す
概略図である。 FIG. 4 is a cross-sectional view and a schematic diagram showing a catholyte circulation system of a horizontal cation exchange membrane electrolytic cell in which a mercury electrolytic cell is converted into a cation exchange membrane electrolytic cell according to the present invention.
同図において、陽極室1は蓋体4と、該蓋体4
から懸垂された複数の陽極6および陽極板12を
包囲するように立設された陽極室側壁5と、陽極
室側壁5の下部フランジと陰極室側壁(図示せ
ず)との間に挾持張設された陽イオン交換膜3の
上表面とにより画成されている。陽極6は蓋体4
に立設された陽極懸垂装置7で懸垂され、各陽極
はブスバー8で相互に連結されている。また陽極
室1は陽極液導入口13、同排出口および陽極ガ
ス排出口15が設けられている。もつとも、陽極
ガスと陽極液を共に混相液として抜き出し陽極室
の外部で気液分離する場合は、該陽極ガス排出口
13は不要である。 In the figure, the anode chamber 1 includes a lid 4 and a lid 4.
An anode chamber side wall 5 is erected to surround the plurality of anodes 6 and anode plate 12 suspended from the anode chamber, and a clamp is provided between the lower flange of the anode chamber side wall 5 and the cathode chamber side wall (not shown). The upper surface of the cation exchange membrane 3 is defined by the upper surface of the cation exchange membrane 3. The anode 6 is the lid 4
The anodes are suspended by an anode suspension device 7 installed upright, and each anode is interconnected by a bus bar 8. Further, the anode chamber 1 is provided with an anolyte inlet 13, an anolyte outlet, and an anode gas outlet 15. However, when the anode gas and the anolyte are extracted as a mixed phase liquid and separated into gas and liquid outside the anode chamber, the anode gas outlet 13 is not necessary.
一方、陰極室2は水銀法電解槽の底板をその
まゝ転用した陰極底板16と、該陰極板の周縁上
に設置された陰極室側壁と、前記陽イオン交換膜
3の下表面とにより画成されている。陰極底板1
6は陰極ブスバー18と連結されている。陰極室
2は陰極液導入口19および陰極液と陰極ガスと
の混相液排出口20が設けられている。陰極24
は、導電性支持部25を介して電気的に陰極底板
16と接続されている。 On the other hand, the cathode chamber 2 is defined by a cathode bottom plate 16 which is the same as the bottom plate of a mercury electrolyzer, a side wall of the cathode chamber installed on the periphery of the cathode plate, and the lower surface of the cation exchange membrane 3. has been completed. Cathode bottom plate 1
6 is connected to a cathode busbar 18. The cathode chamber 2 is provided with a catholyte inlet 19 and a mixed phase liquid outlet 20 of catholyte and cathode gas. Cathode 24
is electrically connected to the cathode bottom plate 16 via the conductive support portion 25 .
飽和塩水は、陽極液導入口13より陽極室1に
供給され、電気分解を受けて発生した塩素ガスは
陽極ガス排出口15より取り出し、淡塩水は陽極
液排出口から排出される。 Saturated salt water is supplied to the anode chamber 1 from the anolyte inlet 13, chlorine gas generated by electrolysis is taken out from the anode gas outlet 15, and fresh salt water is discharged from the anolyte outlet.
陰極液は陰極液導入口19より供給され、陰極
室2で発生する水素ガスとの混相流となつて混相
液排出口20より取り出され、水素ガスと陰極液
とは分離器21で分離される。ガスを分離した実
質的にガスを含まない陰極液はポンプ22により
該陰極液導入口19から陰極室2へ循環導入され
る。分離器21及びポンプ22は複数の電解槽に
対して1個でもよいし各電解槽毎に設けても良
い。 The catholyte is supplied from the catholyte inlet 19, becomes a multiphase flow with hydrogen gas generated in the cathode chamber 2, and is taken out from the multiphase liquid outlet 20, and the hydrogen gas and catholyte are separated by a separator 21. . The substantially gas-free catholyte from which the gas has been separated is circulated into the cathode chamber 2 through the catholyte inlet 19 by a pump 22 . The separator 21 and the pump 22 may be provided one for a plurality of electrolytic cells, or may be provided for each electrolytic cell.
電流は陽極ブスバー8より供給され、陰極室2
の陰極24、導電性支持部25、陰極底板16を
通り、陰極ブスバー18より取り出される。 Current is supplied from the anode busbar 8 and the cathode chamber 2
It passes through the cathode 24 , the conductive support part 25 , and the cathode bottom plate 16 , and is taken out from the cathode bus bar 18 .
陽極室1では式、
なる反応が起こり、陽極室1のナトリウムイオン
は陽イオン交換膜3を通つて陰極室2に達する。
一方、陰極室2では式、
なる反応が生起し、水素ガスを発生すると共に、
陽極室1より陽イオン交換膜3を通過して移動し
て来たナトリウムイオンを受けて苛性ソーダを生
成する。 In the anode chamber 1, the formula A reaction occurs, and the sodium ions in the anode chamber 1 pass through the cation exchange membrane 3 and reach the cathode chamber 2.
On the other hand, in cathode chamber 2, the formula A reaction occurs, producing hydrogen gas, and
Caustic soda is generated by receiving sodium ions that have migrated from the anode chamber 1 through the cation exchange membrane 3.
従つて本考案の最大の特色は、陰極室内に陰極
液を供給し、陰極室内を満たして貫流する陰極液
と陰極ガスとの混相流を形成することによつて、
陽イオン交換膜3の下面を該流れで充分に潤し電
解反応を円滑に進行せしめると共に、陽イオン交
換膜3と陰極24との間に生成した苛性ソーダと
水素ガスとを、生成後直ちにこの流れに巻き込ん
で陰極と陰極底板の間に分散させながら陰極室2
の外へ排出させる構造にある。 Therefore, the greatest feature of the present invention is that by supplying catholyte into the cathode chamber and forming a multiphase flow of catholyte and cathode gas that fills the cathode chamber and flows through it,
The lower surface of the cation exchange membrane 3 is sufficiently moistened with this flow to allow the electrolytic reaction to proceed smoothly, and the caustic soda and hydrogen gas generated between the cation exchange membrane 3 and the cathode 24 are immediately introduced into this flow after generation. The cathode chamber 2 is rolled up and dispersed between the cathode and the cathode bottom plate.
It has a structure that allows it to be discharged outside.
尚陰極室内へ供給され、その中を貫流する陰極
液は水素ガスと生成した苛性ソーダを伴なつて陰
極室外へ運ばれ、分離器21によつて水素ガスを
分離した後、再び陰極液導入口19へ少なくとも
一部を還流せしめる循環液とすれば、苛性ソーダ
の濃度を適宜に増大することも、また途中で水を
以つて稀釈し濃度を調整することもでき有利であ
る。 The catholyte that is supplied into the cathode chamber and flows through it is carried to the outside of the cathode chamber together with hydrogen gas and generated caustic soda. After the hydrogen gas is separated by the separator 21, the catholyte is returned to the catholyte inlet 19. It is advantageous to use a circulating fluid in which at least a portion of the sodium hydroxide is refluxed, since the concentration of caustic soda can be increased as appropriate, and the concentration can also be adjusted by diluting it with water midway through.
叙上の通り、本考案によれば、水平型陽イオン
交換膜法電解槽において高品質の苛性アルカリを
低電圧でしかも効率よく製造することができる。
更に本考案の電解槽は水銀法電解槽を転換して容
易に製造することができ、電解槽のみならず、ブ
スバー、整流器、淡塩水処理設備、塩水系設備
等、殆んどすべての現存設備をスクラツプするこ
となく転用することができる為、水銀法電解槽の
転換を経済的に頗る有利に行なうことができる。 As described above, according to the present invention, high quality caustic alkali can be efficiently produced at low voltage in a horizontal cation exchange membrane electrolytic cell.
Furthermore, the electrolytic cell of the present invention can be easily manufactured by converting a mercury method electrolytic cell, and can be used not only for electrolytic cells but also for almost all existing equipment such as busbars, rectifiers, fresh salt water treatment equipment, salt water system equipment, etc. Since the mercury electrolyzer can be reused without having to be scrapped, conversion of the mercury electrolyzer can be carried out with great economic advantage.
第1図、第2図および第3図は本考案に係る電
解槽の1実施態様を示す各々側面図、垂直縦断面
図及び垂直横断面図、第4図は水銀法電解槽を陽
イオン交換膜法電解槽に転換した水平型陽イオン
交換膜法電解槽の垂直縦断面図および陰極液循環
系統を示す概略図である。
1……陽極室、2……陰極室、3……陽イオン
交換膜、4……蓋体、5……陽極室側壁、6……
陽極、7……陽極懸垂装置、8……陽極ブスバ
ー、9……陽極導電棒、10……孔、11……シ
ート、12……陽極板、13……陽極液導入口、
14……陽極液排出口、15……陽極ガス排出
口、16……陰極底板、17……陰極室側壁、1
8……陰極ブスバー、19……陰極液導入口、2
0……陰極混相液排出口、21……分離器、22
……ポンプ、23……パツキング、24……陰
極、24a……棒状陰極、25……支持部、26
……横桟。
Figures 1, 2, and 3 are side views, vertical longitudinal cross-sectional views, and vertical cross-sectional views, respectively, showing one embodiment of the electrolytic cell according to the present invention, and Figure 4 is a mercury method electrolytic cell for cation exchange. FIG. 1 is a vertical cross-sectional view of a horizontal cation exchange membrane electrolytic cell converted to a membrane electrolytic cell and a schematic diagram showing a catholyte circulation system. 1... Anode chamber, 2... Cathode chamber, 3... Cation exchange membrane, 4... Lid, 5... Anode chamber side wall, 6...
Anode, 7... Anode suspension device, 8... Anode bus bar, 9... Anode conductive rod, 10... Hole, 11... Sheet, 12... Anode plate, 13... Anolyte inlet,
14...Anolyte discharge port, 15...Anode gas discharge port, 16...Cathode bottom plate, 17...Cathode chamber side wall, 1
8... Cathode busbar, 19... Cathode fluid inlet, 2
0...Cathode mixed phase liquid outlet, 21...Separator, 22
... Pump, 23 ... Packing, 24 ... Cathode, 24a ... Rod-shaped cathode, 25 ... Support part, 26
...Horizontal beam.
Claims (1)
より上部の陽極室と下部の陰極室とに区画さ
れ、前記陽極室は実質的に水平な陽極を有して
なり、蓋体と、該陽極を囲むように周設された
陽極室側壁と、該陽イオン交換膜の上面とによ
り囲繞され、且つ陽極液の導入口および排出口
並に陽極ガス排出口とを具備してなり、前記陰
極室は陰極底板と該底板の周縁上に周設された
陰極室側壁と該陽イオン交換膜の下面とにより
囲繞され、かつ陰極室は該陰極底板上の支持部
を介して該底板より適宜間隔を離して設置され
た陰極を有し、且つ陰極液の導入口および陰極
ガスと陰極液との混相液の排出口を具備してな
ることを特徴とする水平型電解槽。 2 支持部が導電性である実用新案登録請求の範
囲第1項記載の電解槽。 3 前記電解槽が水銀法電解槽より転換されたこ
とを特徴とする実用新案登録請求の範囲第1項
記載の電解槽。[Claims for Utility Model Registration] 1. An upper anode chamber and a lower cathode chamber are divided by a cation exchange membrane stretched substantially horizontally, and the anode chamber has a substantially horizontal anode. It is surrounded by a lid, an anode chamber side wall surrounding the anode, and the upper surface of the cation exchange membrane, and has an anolyte inlet and outlet as well as an anode gas outlet. The cathode chamber is surrounded by a cathode bottom plate, a side wall of the cathode chamber provided around the periphery of the bottom plate, and a lower surface of the cation exchange membrane, and the cathode chamber is surrounded by a support part on the cathode bottom plate. A horizontal type, characterized in that it has a cathode installed at an appropriate distance from the bottom plate via the bottom plate, and is also equipped with an inlet for catholyte and an outlet for a mixed phase liquid of cathode gas and catholyte. electrolytic cell. 2. The electrolytic cell according to claim 1, wherein the supporting portion is conductive. 3. The electrolytic cell according to claim 1, wherein the electrolytic cell is converted from a mercury method electrolytic cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1982145475U JPS5951065U (en) | 1982-09-24 | 1982-09-24 | horizontal electrolyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1982145475U JPS5951065U (en) | 1982-09-24 | 1982-09-24 | horizontal electrolyzer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5951065U JPS5951065U (en) | 1984-04-04 |
JPS6145160Y2 true JPS6145160Y2 (en) | 1986-12-19 |
Family
ID=30324099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1982145475U Granted JPS5951065U (en) | 1982-09-24 | 1982-09-24 | horizontal electrolyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5951065U (en) |
-
1982
- 1982-09-24 JP JP1982145475U patent/JPS5951065U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5951065U (en) | 1984-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59190379A (en) | Vertical type electrolytic cell and electrolyzing method using said cell | |
SU971110A3 (en) | Electrolyzer for producing chlorine and alkali | |
JPH0561356B2 (en) | ||
JP2001271193A (en) | Synthesis of tetramethylammonium hydroxide | |
JPH05195275A (en) | Electrolytic apparatus | |
IE904464A1 (en) | Process for electrochemically regenerating chromosulfuric acid | |
US4596639A (en) | Electrolysis process and electrolytic cell | |
JPS6145160Y2 (en) | ||
US4568433A (en) | Electrolytic process of an aqueous alkali metal halide solution | |
CA1175780A (en) | Internal downcomer for electrolytic recirculation | |
US4556470A (en) | Electrolytic cell with membrane and solid, horizontal cathode plate | |
US5593553A (en) | Electrolytic cell and electrode therefor | |
US3923614A (en) | Method of converting mercury cathode chlor-alkali electrolysis cells into diaphragm cells and cells produced thereby | |
US4586994A (en) | Electrolytic process of an aqueous alkali metal halide solution and electrolytic cell used therefor | |
JPS624469B2 (en) | ||
JPS6239089Y2 (en) | ||
JPS6239094Y2 (en) | ||
JPS59193291A (en) | Electrolysis and electrolytic cell | |
JPS6239093Y2 (en) | ||
JPS6239091Y2 (en) | ||
JPS6239090Y2 (en) | ||
JPS59197581A (en) | Horizontal type electrolytic cell and method for mounting cation exchange membrane to the same | |
JPS59197578A (en) | Electrolytic method and apparatus using said method | |
JPS6239092Y2 (en) | ||
JPS59197583A (en) | Horizontal type electrolytic cell and electrolytic method using the same |