JPS6144241B2 - - Google Patents
Info
- Publication number
- JPS6144241B2 JPS6144241B2 JP6575178A JP6575178A JPS6144241B2 JP S6144241 B2 JPS6144241 B2 JP S6144241B2 JP 6575178 A JP6575178 A JP 6575178A JP 6575178 A JP6575178 A JP 6575178A JP S6144241 B2 JPS6144241 B2 JP S6144241B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- potential
- leg
- difference
- strain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本願発明は半導体歪ゲージを用いた歪量―電気
信号変換装置に係り、特に温度依存性を補償した
歪量―電気信号変換装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a strain-to-electrical signal conversion device using a semiconductor strain gauge, and more particularly to a strain-to-electrical signal conversion device that compensates for temperature dependence.
質量、応力あるいは流体の圧力等を測定するた
めに各種の歪ゲージが使用されていることは周知
である。
It is well known that various strain gauges are used to measure mass, stress, fluid pressure, and the like.
中でも近年は感度の高い、半導体のピエゾ抵抗
効果を応用した半導体歪ゲージを使用する例が増
している。 In recent years, there has been an increase in the use of highly sensitive semiconductor strain gauges that utilize the piezoresistance effect of semiconductors.
半導体歪ゲージは歪量に対する抵抗の変化率す
なわちゲージ率が高い利点を有する反面、ゲージ
の抵抗値及びゲージ棒の温度依存性が大きい欠点
を有する。 Semiconductor strain gauges have the advantage of a high rate of change in resistance with respect to the amount of strain, that is, a high gauge factor, but have the disadvantage that the resistance value of the gauge and the temperature dependence of the gauge rod are large.
温度依存性について詳しく述べると、半導体歪
ゲージの抵抗値Rは次式で与えられる。 To explain the temperature dependence in detail, the resistance value R of the semiconductor strain gauge is given by the following equation.
R=Ro(1+αT){1+sγ(1+βT)} (1)
(1)式において、Roは所定温度における無歪状
態における抵抗値、αは抵抗値の温度係数、Tは
歪ゲージの温度、sは歪量、γはゲージ棒、βは
ゲージ率の温度係数である。ゲージ棒は半導体単
結晶の結晶方位、ゲージ内の電流と応力のなす角
度等によつて、その極性と値が異なる。R=Ro(1+αT) {1+sγ(1+βT)} (1) In equation (1), Ro is the resistance value in the unstrained state at a given temperature, α is the temperature coefficient of the resistance value, T is the temperature of the strain gauge, and s is The amount of strain, γ is the gauge rod, and β is the temperature coefficient of the gauge factor. The polarity and value of a gauge rod vary depending on the crystal orientation of the semiconductor single crystal, the angle between the current and stress within the gauge, and other factors.
(1)式を展開すれば次式となる。 Expanding equation (1), we get the following equation.
R=Ro(1+αT)
+Ro(1+αT)(1+βT)S・γ (2)
=Ro(1+αT)+Ro
{1+(α+β)T}s.γ (2a)
2式の右変第2項は歪によるゲージ抵抗の変化
分である。一方、αは半導体歪ゲージの結晶中不
純物濃度に応じてシリコン単結晶の場合+
3000ppm〜600ppm/C゜の値を持ち、γは不純
物濃度にかかわらず、シリコン単結晶の場合―
2000ppm/C゜程度である。(2a)式第2項より
明らかなようにゲージ抵抗の変化分は結晶の不純
物濃度を適切に選び、αとβを相殺させることが
できるため温度依存性を小さくできる。したがつ
て、半導体歪ゲージを用いた歪量―電気信号変換
ブリツジは、抵抗値の如何にかかわらず、抵抗の
変化分のみを信号として得るためにいわゆる定電
流源によつて駆動されることが多い。高精度の歪
量―電気信号変換装置では温度依存性をさらに低
減するため、駆動電流を温度に応じて変化せしめ
て補償することがある。第1図はかかる温度依存
性を補償した歪量―電気信号変換装置の従来例で
ある。R=Ro(1+αT)
+Ro(1+αT)(1+βT)S・γ (2) =Ro(1+αT)+Ro
{1+(α+β)T}s.γ (2a) The right-variant second term in equation 2 is the change in gauge resistance due to strain. On the other hand, α is + in the case of silicon single crystal depending on the impurity concentration in the crystal of the semiconductor strain gauge.
It has a value of 3000ppm to 600ppm/C°, and γ is regardless of the impurity concentration in the case of silicon single crystal.
It is about 2000ppm/C°. As is clear from the second term of equation (2a), the temperature dependence of the change in gauge resistance can be reduced by appropriately selecting the impurity concentration of the crystal and canceling out α and β. Therefore, a strain-to-electrical signal conversion bridge using a semiconductor strain gauge can be driven by a so-called constant current source in order to obtain only the change in resistance as a signal, regardless of the resistance value. many. In order to further reduce temperature dependence in a highly accurate strain-to-electrical signal converter, the drive current may be changed in accordance with the temperature to compensate. FIG. 1 shows a conventional example of a strain-to-electrical signal converter that compensates for such temperature dependence.
同図において半導体歪ゲージ1〜4があり、
各々に与えられた歪量により、半導体歪ゲージ1
と半導体歪ゲージ3に対し半導体歪ゲージ2と半
導体歪ゲージ4が互いに逆に抵抗値が変化するも
のとする。感温抵抗5及び6は基準歪量に対応す
る第1図に示す装置の出力の温度依存性を補償す
る目的に使用される。補償の大きさは感温抵抗
5,6の値及びその温度係数、可変抵抗7〜10
の値によつて定まる。通常上記基準歪量は零歪量
に対応する点に選ばれることが多いため、以下で
はかかる温度依存性補償を零点温度補償と呼ぶこ
とにする。前記半導体歪ゲージ1,2,感温抵抗
5,可変抵抗7,9は歪量―電気信号変換ブリツ
ジの1つの脚を成し、また、半導体歪ゲージ4,
3,感温抵抗6及び可変抵抗8,10は他の脚を
成す。2つの脚を流れる電流は半導体ゲージ2及
び3の接続点15で加えられ、抵抗11と感温抵
抗12を流れる。抵抗11と感温抵抗12による
回路の電圧降下は増幅器14により、基準電圧回
路13の電圧と比較され、両者が一致するごとく
増幅器14と半導体歪ゲージ1の接続点17の電
位を加減するものである。したがつて、抵抗1
1,感温抵抗12,基準電圧回路13および増幅
器14は該ブリツジの2つの脚を流れる電流の和
が各々の温度で所定値となるようにするためのも
のである。増幅器16は2つの脚の中点すなわ
ち、可変抵抗7,8の各摺動端子部における電位
差を増幅し、その出力を半導体ゲージ4側へ入力
させて一方の脚の一端へ負帰還する手段であり、
これにより各脚における中点の電位が等しく保た
れる。 In the figure, there are semiconductor strain gauges 1 to 4,
Semiconductor strain gauge 1
It is assumed that the resistance values of the semiconductor strain gauge 2 and the semiconductor strain gauge 4 change in opposite ways with respect to the semiconductor strain gauge 3 and the semiconductor strain gauge 3. The temperature-sensitive resistors 5 and 6 are used for the purpose of compensating for the temperature dependence of the output of the device shown in FIG. 1, which corresponds to the reference strain amount. The amount of compensation is determined by the values of temperature-sensitive resistors 5 and 6, their temperature coefficients, and variable resistors 7 to 10.
Determined by the value of Since the reference strain amount is usually selected at a point corresponding to the zero strain amount, such temperature-dependent compensation will hereinafter be referred to as zero-point temperature compensation. The semiconductor strain gauges 1 and 2, the temperature-sensitive resistor 5, and the variable resistors 7 and 9 constitute one leg of the strain amount-electrical signal conversion bridge, and the semiconductor strain gauges 4,
3. The temperature sensitive resistor 6 and the variable resistors 8 and 10 form the other legs. The current flowing through the two legs is added at the connection point 15 of the semiconductor gauges 2 and 3 and flows through the resistor 11 and the temperature-sensitive resistor 12. The voltage drop in the circuit caused by the resistor 11 and the temperature-sensitive resistor 12 is compared with the voltage of the reference voltage circuit 13 by the amplifier 14, and the potential at the connection point 17 between the amplifier 14 and the semiconductor strain gauge 1 is adjusted so that the two match. be. Therefore, resistance 1
1. The temperature sensitive resistor 12, the reference voltage circuit 13 and the amplifier 14 are used to ensure that the sum of the currents flowing through the two legs of the bridge is a predetermined value at each temperature. The amplifier 16 is a means for amplifying the potential difference at the midpoint of the two legs, that is, at each sliding terminal of the variable resistors 7 and 8, inputting the output to the semiconductor gauge 4 side, and negative feedback to one end of one leg. can be,
This keeps the potential at the midpoint of each leg equal.
与えられた歪が、例えば半導体歪ゲージ1,3
の抵抗値を増し、半導体歪ゲージ2,4の抵抗値
を減するごときものであるとすれば、半導体歪ゲ
ージ1および2を含む脚の電流が増し、半導体歪
ゲージ1と増幅器14との接続点17の電位を高
め、逆に半導体歪ゲージ4および3を含む脚の電
流が減り、半導体歪ゲージ4と増幅器16との接
続点18の電位が低下することは明らかである。 If the given strain is applied to semiconductor strain gauges 1 and 3, for example
If the resistance value of the semiconductor strain gauges 1 and 2 is increased and the resistance values of the semiconductor strain gauges 2 and 4 are decreased, the current in the legs including the semiconductor strain gauges 1 and 2 increases, and the connection between the semiconductor strain gauges 1 and the amplifier 14 increases. It is clear that by increasing the potential at point 17, the current in the leg containing semiconductor strain gauges 4 and 3 is reduced, and the potential at connection point 18 between semiconductor strain gauge 4 and amplifier 16 is reduced.
これら各接続点17,18の電位差は差動増幅
回路19により増幅され、この差動増幅回路19
の出力信号電圧Eoutを得ることができる。な
お、図中20は所定歪量に対応する出力電圧を設
定する回路である。 The potential difference between these connection points 17 and 18 is amplified by a differential amplifier circuit 19.
The output signal voltage Eout can be obtained. Note that 20 in the figure is a circuit for setting an output voltage corresponding to a predetermined amount of distortion.
以上の説明で明らかなごとく、第1図に示す装
置は標準的な演算増幅器と受動素子のみで構成さ
れるため容易に実現できる利点を有する。
As is clear from the above description, the device shown in FIG. 1 has the advantage that it can be easily implemented because it is comprised of only a standard operational amplifier and passive elements.
しかし、上述した従来例では極性およびその大
きさが装置毎に異なる零点の温度係数の補償を行
うために比較的高価な感温素子5,6および可変
抵抗子9,10をそれぞれ2個必要とする点にお
いて配慮されていなかつた。また、増幅器16と
差動増幅回路19の入力換算オフセツト電圧、あ
るいは該電圧の温度変化等の増幅器誤差要因が同
様の影響を与えるものであつた。通常、半導体集
積回路で作られた演算増幅器のオフセツト電圧の
100℃の温度変化に対する変化量は0.3〜1mV程度
であり、増幅器16と差動増幅回路19の温度変
化が加算された場合にはその分だけ零点温度補償
の負担を増す欠点を有する。 However, in the conventional example described above, two relatively expensive temperature sensing elements 5, 6 and two variable resistors 9, 10 are required in order to compensate for the temperature coefficient of the zero point, which varies in polarity and size depending on the device. There was no consideration given to this point. In addition, amplifier error factors such as input equivalent offset voltages of the amplifier 16 and the differential amplifier circuit 19, or temperature changes in these voltages had similar effects. Normally, the offset voltage of an operational amplifier made with a semiconductor integrated circuit is
The amount of change for a temperature change of 100° C. is about 0.3 to 1 mV, and when the temperature changes of the amplifier 16 and the differential amplifier circuit 19 are added, there is a drawback that the burden of zero point temperature compensation increases accordingly.
さらに、各々の脚に印加される電圧はゲージ棒
の温度係数と逆極性でかつ同じ値の温度係数で変
化する。すなわち、例えば100℃の温度変化に対
し、約20%の変化を示し、この値は最大歪量に対
応する接続点17と18間の電位差の4〜5倍程
度に相当する。一方、作動増幅回路19の同相電
圧排除比を大きくすることは難しく、例えば差動
増幅率を定める抵抗の設定精度を各々0.25%とし
ても同相電圧排除比は40dBでしかない。 Additionally, the voltage applied to each leg varies in opposite polarity and with the same value of temperature coefficient as the temperature coefficient of the gauge rod. That is, for example, the temperature changes by about 20% with respect to a temperature change of 100° C., and this value corresponds to about 4 to 5 times the potential difference between the connection points 17 and 18 corresponding to the maximum amount of strain. On the other hand, it is difficult to increase the common-mode voltage rejection ratio of the operational amplifier circuit 19. For example, even if the setting accuracy of each resistor that determines the differential amplification factor is 0.25%, the common-mode voltage rejection ratio is only 40 dB.
例えば、各々の脚に印加される電圧の温度によ
る変化を該電圧の20%とし、歪による変化を5%
とし、かつ差動増幅回路19の同相電圧排除比を
40dBとするとき、該脚電圧の温度変化による零
点の変化は前記差動増幅回路19の出力端におい
て4%もの大きな値となることを意味する。 For example, assume that the change in voltage applied to each leg due to temperature is 20% of the voltage, and the change due to strain is 5%.
and the common mode voltage rejection ratio of the differential amplifier circuit 19 is
When it is 40 dB, this means that the change in the zero point of the leg voltage due to temperature change becomes as large as 4% at the output end of the differential amplifier circuit 19.
上記説明で明らかなごとく、上述の従来例は零
点温度補償回路が高価になるだけでなく、ブリツ
ジ出力信号を増幅する手段において零点の温度変
化を増し易いという点が配慮されていなかつた。 As is clear from the above description, the conventional example described above does not take into consideration the fact that not only the zero point temperature compensation circuit is expensive, but also that the means for amplifying the bridge output signal tends to increase the temperature change at the zero point.
本発明の目的とするところは、安価な零点温度
補償回路を備えた歪量―電気信号変換装置を提供
するにある。 An object of the present invention is to provide a strain-to-electrical signal converter equipped with an inexpensive zero-point temperature compensation circuit.
このような目的を達成するために、本発明は、
脚の中点と所定電位点との間に歪ゲージを含む2
つの脚からなる歪量―電気信号変換ブリツジと、
2つの脚の電流の和を所定値にする手段と、2つ
の脚の中点電位を等しくする手段と、該中点電位
から出力を取り出す手段とを備えた歪量―電気信
号変換装置において、歪ゲージが基準温度状態に
あるときの脚の中点電位に等しい基準電位を発生
する手段と、該基準電位発生手段と前記脚の中点
との間を流れる電流の差を前記歪ゲージの温度と
前記基準温度との差にほぼ比例せしめる手段とを
備えるようにしたものである。
In order to achieve such an objective, the present invention
2 including a strain gauge between the midpoint of the leg and a predetermined potential point
A distortion amount-electrical signal conversion bridge consisting of two legs,
A strain amount-to-electrical signal conversion device comprising means for setting the sum of currents of two legs to a predetermined value, means for equalizing midpoint potentials of the two legs, and means for extracting an output from the midpoint potential, Means for generating a reference potential equal to the midpoint potential of the leg when the strain gauge is at the reference temperature state, and the difference between the current flowing between the reference potential generating means and the midpoint of the leg as the temperature of the strain gauge. and means for making the temperature substantially proportional to the difference between the temperature and the reference temperature.
また、脚の中点と所定電位点との間に歪ゲージ
を含む2つの脚からなる歪量―電気信号変換ブリ
ツジと、2つの脚の電流の和を所定値にする手段
と、2つの脚の中点電位を等しくする手段と、該
中点電位から出力を取り出す手段とを備えた歪量
―電気信号変換位置において、該中点電位を等し
くする手段が、2つの脚の中点電位の差を増幅手
段と、該増幅手段の出力電圧と基準電位との差に
比例した電圧を電流に変換し、この電流を該増幅
手段に負帰還する手段とから構成され、且つ該増
幅手段の出力電圧を出力電圧したものである。 Further, a strain amount-to-electrical signal conversion bridge consisting of two legs including a strain gauge between the midpoint of the legs and a predetermined potential point, means for setting the sum of currents of the two legs to a predetermined value, and In a strain-electrical signal conversion position that includes means for equalizing the midpoint potentials and means for extracting an output from the midpoint potentials, the means for equalizing the midpoint potentials is configured to equalize the midpoint potentials of the two legs. It is comprised of a difference amplifying means, a means for converting a voltage proportional to the difference between the output voltage of the amplifying means and a reference potential into a current, and feeding back this current negatively to the amplifying means, and an output of the amplifying means. It is the output voltage of the voltage.
以下に本願発明の詳細を実施例によつて説明す
る。
The details of the present invention will be explained below using Examples.
第2図において、抵抗11,感温素子12,基
準電圧回路13及び増幅器14は第1図の従来例
と同じく半導体歪ゲージ1ないし4を含むブリツ
ジの電流の和が所定値になるようにする手段であ
る。 In FIG. 2, a resistor 11, a temperature sensing element 12, a reference voltage circuit 13, and an amplifier 14 are arranged so that the sum of the currents of the bridge including semiconductor strain gauges 1 to 4 becomes a predetermined value, as in the conventional example of FIG. It is a means.
また、半導体ゲージ1ないし4に歪が加えられ
た場合、各脚の中点すなわち増幅器30の入力端
子との接続点38,39に電圧差が生ずることは
従来例と同様の作用から説明を要しないであろ
う。 Further, when strain is applied to the semiconductor gauges 1 to 4, a voltage difference is generated at the midpoint of each leg, that is, at the connection points 38 and 39 with the input terminal of the amplifier 30. This requires explanation because of the same effect as in the conventional example. probably won't.
各脚の中点すなわち増幅器30の入力端子との
接続点38と39の電位差は増幅器30で増幅さ
れ、抵抗31と32で分圧されて電流源回路35
に与えられる。該電流源回路35は抵抗31と3
2との接続点33と図中接続点34の電位差に比
例した電流差を持つ2つの電流を夫々抵抗36及
び37に与え、抵抗36と半導体歪ゲージ1との
接続点46と抵抗37と半導体歪ゲージ4と接続
点47に電位差を発生し、該電位差が半導体歪ゲ
ージ1,2の接続点38と半導体歪ゲージ3,4
の接続点39の電位を等しくする。また、前記接
続点34の電位は可変抵抗41によつて調整でき
るようになつている。すなわち、増幅器30,抵
抗31,32,電流源回路35,抵抗36及び3
7は復帰還増幅回路を構成することが理解でき
る。したがつて、増幅器30の出力電圧変化分に
対し、前記接続点46,47の電位差変化分が減
衰せしめられるように抵抗31,32,電流源回
路35、抵抗36及び37を定めれば前記接続点
46と47の電位差を該減衰率の逆数だけ増幅さ
れた出力が増幅器30の出力端に得られることが
理解できよう。また、電流源回路35と抵抗3
6,37は前記接続点33と34を入力端とし、
前記接続点46,47を出力端とする電圧増幅率
が1より小さい電圧増幅回路と見なし得るが、抵
抗36,37の値をそれぞれ1kΩ以下に選ぶこ
とができ、前記電流源回路35を構成するトラン
ジスタとしてコレクタの動抵抗が1MΩよりも充
分大きいものを容易に選ぶことができるため該低
増幅率電圧増幅器の同相排除比は60dBより十分
大きい値になし得ることは明らかである。したが
つて、前記接続点46と47の平均電位の温度に
よる変化が増幅器30の出力端子に与える影響を
−60dBすなわち千分の1よりも十分小さくなし
得る。 The potential difference between the middle point of each leg, that is, the connection point 38 and 39 with the input terminal of the amplifier 30 is amplified by the amplifier 30, divided by the resistors 31 and 32, and then sent to the current source circuit 35.
given to. The current source circuit 35 includes resistors 31 and 3.
Two currents having a current difference proportional to the potential difference between the connection point 33 with the semiconductor strain gauge 1 and the connection point 34 in the figure are applied to the resistors 36 and 37, respectively, and the connection point 46 between the resistor 36 and the semiconductor strain gauge 1, the resistance 37 and the semiconductor A potential difference is generated between the strain gauge 4 and the connection point 47, and this potential difference is generated between the connection point 38 of the semiconductor strain gauges 1 and 2 and the semiconductor strain gauges 3 and 4.
The potentials at the connection point 39 are made equal. Further, the potential of the connection point 34 can be adjusted by a variable resistor 41. That is, the amplifier 30, the resistors 31 and 32, the current source circuit 35, the resistors 36 and 3
It can be understood that 7 constitutes a feedback amplifier circuit. Therefore, if the resistors 31 and 32, the current source circuit 35, and the resistors 36 and 37 are determined so that the potential difference change at the connection points 46 and 47 is attenuated with respect to the output voltage change of the amplifier 30, the connection It will be understood that an output obtained by amplifying the potential difference between points 46 and 47 by the reciprocal of the attenuation factor is obtained at the output terminal of the amplifier 30. In addition, the current source circuit 35 and the resistor 3
6 and 37 have the connection points 33 and 34 as input ends,
Although the connection points 46 and 47 can be regarded as a voltage amplification circuit with a voltage amplification factor smaller than 1 as output terminals, the values of the resistors 36 and 37 can be selected to be 1 kΩ or less, respectively, and the current source circuit 35 is configured. It is clear that the common mode rejection ratio of the low amplification factor voltage amplifier can be set to a value sufficiently larger than 60 dB since a transistor whose collector dynamic resistance is sufficiently larger than 1 MΩ can be easily selected. Therefore, the effect that a change in the average potential of the connection points 46 and 47 due to temperature has on the output terminal of the amplifier 30 can be made sufficiently smaller than -60 dB, that is, one thousandth.
また、前記電流源回路35の入力端である前記
接続点33と34に与えられる電位差は、歪量―
電気信号変換ブリツジの出力端に相当する点46
と47電位差よりも十分大きくすることができる
ため、前記電流源回路35の入力オフセツト電圧
及びその温度変化の影響は前記増幅器30のそれ
に比べ十分小さくなし得ることがあきらかであ
り、逆にその分だけ前記電流源回路35の入力オ
フセツト電圧およびその温度変化の許容量は前記
増幅器30のそれに比べ大きくとも良いことを意
味する。 Further, the potential difference applied to the connection points 33 and 34, which are the input terminals of the current source circuit 35, is equal to the amount of distortion -
Point 46 corresponding to the output end of the electrical signal conversion bridge
It is clear that the influence of the input offset voltage of the current source circuit 35 and its temperature change can be made sufficiently smaller than that of the amplifier 30, and vice versa. This means that the input offset voltage of the current source circuit 35 and its tolerance for temperature change may be larger than that of the amplifier 30.
半導体歪ゲージ1〜4を含むブリツジ回路は第
1図の従来例と同様に2つの脚を流れる電流の和
が温度に応じた所定値であり、かつ、各々の脚の
中点である前記接続点38,39の電位がほぼ等
しく保たれていることは上記説明で明らかであ
る。 In the bridge circuit including the semiconductor strain gauges 1 to 4, the sum of the currents flowing through the two legs is a predetermined value depending on the temperature, and the connection point is the midpoint of each leg, as in the conventional example shown in FIG. It is clear from the above description that the potentials at points 38 and 39 are maintained approximately equal.
次に前記接続点38と39の電位の温度変化に
ついて検討する。第2図に示す実施例は該ブリツ
ジを定流駆動しているものであり、該ブリツジの
出力電圧は半導体歪ゲージ1ないし4の歪による
抵抗値変化すなわち第2式右辺第2項に相当する
分に該駆動電流の値を乗じたものすなわち〔R0
(1+αT)(1+βT)s.γ〕Iに等しい。した
がつて、温度依存項をなくすためには該電流値I
を次式のごとくなせば該ブリツジ出力電圧の温度
依存性を補償できることになる。 Next, consider temperature changes in the potentials of the connection points 38 and 39. In the embodiment shown in FIG. 2, the bridge is driven with a constant current, and the output voltage of the bridge corresponds to the change in resistance value due to strain in the semiconductor strain gauges 1 to 4, that is, the second term on the right side of the second equation. multiplied by the value of the drive current, that is, [R 0
(1+αT)(1+βT)s.γ]Equal to I. Therefore, in order to eliminate the temperature dependent term, the current value I
The temperature dependence of the bridge output voltage can be compensated by formulating as shown in the following equation.
I=I0/(1+αT)(1+βT) (3)
ここでI0は一定電流値である。かかる電流がブ
リツジ(図中接続点15)に与えられたとき、半
導体歪ゲージ2および3の電圧降下VGは次式で
示されることは明らかである。 I=I 0 /(1+αT)(1+βT) (3) Here, I 0 is a constant current value. It is clear that when such a current is applied to the bridge (connection point 15 in the figure), the voltage drop V G across the semiconductor strain gauges 2 and 3 is expressed by the following equation.
VG=R0(1+αT)×1 (4)
=R0I0/1+βT
=R0I0(1−βT) (4)′
一方、発明者らの測定によれば、抵抗の温度係
数α、抵抗変化分の温度係数β―α、及びゲージ
率の温度係数は特定の不純物濃度の半導体歪ゲー
ジの場合、第3図に示すごとく温度により値が異
なる。ここで該βは温度にかかわらずほぼ一定で
ある。したがつて、第(4)式から明らかなごとく、
接続点38と39の電位はほぼ−βの温度係数で
変化する。 V G = R 0 (1+αT)×1 (4) = R 0 I 0 /1+βT = R 0 I 0 (1−βT) (4)' On the other hand, according to the inventors' measurements, the temperature coefficient of resistance α , the temperature coefficient β-α of the resistance change, and the temperature coefficient of the gauge factor vary depending on the temperature as shown in FIG. 3 in the case of a semiconductor strain gauge with a specific impurity concentration. Here, β is approximately constant regardless of temperature. Therefore, as is clear from equation (4),
The potential at the connection points 38 and 39 changes with a temperature coefficient of approximately -β.
そこで、補正回路42により所定温度における
前記接続点38と39の電位に等しい基準電位点
43を設け、この基準電位点43と前記接続点3
8あるいは39のいずれか一方を可変抵抗44で
接続すれば、前記接続点38もしくは39の電位
の温度変化により生じた前記接続点38もしくは
39と基準電位点43間の電位差に比例し可変抵
抗44の抵抗値に比例した電位差を生ぜしめるこ
とは明らかである。また、該電位差の極性は前記
可変抵抗44を前記接続点38と39のいずれに
接続するかによつて決定される。しかも、前記接
続点38と39の電位差は極めて小さいため可変
抵抗44をいずれに接続してもこの可変抵抗44
を流れる電流はほぼ等しく、したがつて極性は異
なるがほぼ当量の補償をなし得る。 Therefore, a reference potential point 43 equal to the potential of the connection points 38 and 39 at a predetermined temperature is provided by the correction circuit 42, and this reference potential point 43 and the connection point 3 are
If either one of 8 or 39 is connected with a variable resistor 44, the potential difference between the connection point 38 or 39 and the reference potential point 43 caused by a temperature change in the potential of the connection point 38 or 39 is proportional to the potential difference. It is clear that a potential difference proportional to the resistance value is generated. Further, the polarity of the potential difference is determined depending on which of the connection points 38 and 39 the variable resistor 44 is connected to. Moreover, since the potential difference between the connection points 38 and 39 is extremely small, the variable resistor 44 does not matter where the variable resistor 44 is connected.
The currents flowing through the two electrodes are approximately equal, so although the polarities are different, approximately equivalent compensation can be achieved.
以上の説明で明らかなごとく、基準電位を与え
る前記基準電位点43,抵抗44及び前記接続点
38と中点39の一方を選び接続する切換手段4
5は零点の温度依存性を補償する回路42を実現
する。 As is clear from the above explanation, the switching means 4 selects and connects one of the reference potential point 43, the resistor 44, and the connection point 38 and the middle point 39 that provide the reference potential.
5 implements a circuit 42 that compensates for the temperature dependence of the zero point.
上述した零点温度補償回路は感温素子を必要と
しないため安価であるだけでなく、調整を要する
素子が可変抵抗44ただ一個で良いため補正量の
調整が容易である点でかかる装置を工業化するに
際し効果が大である。 The above-mentioned zero-point temperature compensation circuit is not only inexpensive because it does not require a temperature sensing element, but also the amount of correction can be easily adjusted because the only element that requires adjustment is the variable resistor 44, which makes such a device industrialized. It is highly effective.
また、入力オフセツト電圧等の増幅器誤差要因
の影響が大なものは増幅器30ただ1個のみであ
り、また、電流源回路35と抵抗36,37が成
す復帰還回路は第1図従来例の付号19に示す差
動増幅器の如く高精度の素子を使用しなくとも高
い同相電圧排除比が実現できるため半導体集積回
路化が容易であり、小形、かつ低価格である。 Furthermore, only one amplifier 30 is affected by amplifier error factors such as input offset voltage, and the return circuit formed by the current source circuit 35 and resistors 36 and 37 is similar to the conventional example shown in FIG. Since a high common-mode voltage rejection ratio can be achieved without using high-precision elements like the differential amplifier shown in No. 19, it is easy to integrate into a semiconductor integrated circuit, and it is small and inexpensive.
第4図は他の実施例であり、前述したスイツチ
45を設ける代わりに、値の異なる抵抗51と5
2を設けたものである。すなわち、抵抗51と5
2の値を違えることにより、半導体歪ゲージ1及
び4を流れる電流にわずかの差を生ずることは明
らかである。したがつて、接続点46と47に生
ずる電位差を相殺せしめ得る。 FIG. 4 shows another embodiment, in which instead of providing the switch 45 described above, resistors 51 and 5 of different values are used.
2. That is, resistors 51 and 5
It is clear that different values of 2 will result in slight differences in the currents flowing through the semiconductor strain gauges 1 and 4. Therefore, the potential difference occurring between the connection points 46 and 47 can be canceled out.
以上述べたように本発明によれば安価な零点温
度保償の可能な歪量―電気信号変換装置が提供で
きる。
As described above, according to the present invention, it is possible to provide an inexpensive strain-to-electrical signal conversion device that can guarantee zero point temperature.
第1図は従来の歪量―電気信号変換装置の電気
回路図、第2図は本発明の実施零を示す歪量―電
気信号変換装置の気回路図、第3図は温度と各係
数との関係を示す図、第4図は本発明の他の例を
示す要部回路図である。
1,2,3,4…半導体歪ゲージ、13…基準
電圧回路、14,16…増幅器、35…電流源回
路、50…駆動電流、42…零点補償回路、44
…可変抵抗。
Fig. 1 is an electric circuit diagram of a conventional strain-electric signal converter, Fig. 2 is an electric circuit diagram of a strain-electric signal converter showing zero implementation of the present invention, and Fig. 3 is a diagram showing temperature and each coefficient. FIG. 4 is a main circuit diagram showing another example of the present invention. 1, 2, 3, 4... Semiconductor strain gauge, 13... Reference voltage circuit, 14, 16... Amplifier, 35... Current source circuit, 50... Drive current, 42... Zero point compensation circuit, 44
...variable resistance.
Claims (1)
のうち相隣合う2個の抵抗を一個の脚およびこの
各抵抗の接続点を中心とするとともに、この各中
点と他の一の接続点間の各抵抗を歪ゲージまたは
前記各抵抗の全てを歪ゲージとしたブリツジと、
このブリツジの各脚にそれぞれ流れる電流の和を
検出するとともに基準値と比較してその基準値と
同じ値の電流が前記各脚に分割させて流れるよう
にする手段と、前記各脚のそれぞれの中点の電位
差を検出しその差に応じた電圧を出力させるとと
もに、その出力値に基づいて前記中点の電位差を
0とする手段と、前記中点の少なくとも一方から
出力を取り出す手段と、歪ゲージが基準温度状態
にあるときの脚の中点電位に等しい基準電位を発
生する手段と、該基準電位発生手段と前記脚の中
点との間を流れる電流を前記歪ゲージの温度と前
記基準温度との差にほぼ比例せしめる手段とを備
えたことを特徴とする歪量―電気信号変換装置。 2 前記中点の電位差を0とする手段が、2つの
脚の中点電位の差を増幅する手段と、該増幅手段
の出力電圧と基準電位との差に比例した電圧を電
流に変換し、この電流を該増幅手段に負帰還する
手段とから構成され、且つ該増幅手段の出力電圧
を出力電圧とした特許請求の範囲第1項記載の歪
量―電気信号変換装置。[Claims] 1. Four resistors are connected in sequence to form a closed circuit, and two adjacent resistors are connected to one leg and the connecting point of each resistor is the center. A bridge in which each resistance between a point and another connection point is a strain gauge, or all of the resistances are strain gauges;
means for detecting the sum of currents flowing through each leg of the bridge and comparing it with a reference value so that the same value of current as the reference value is divided and flowing through each leg; means for detecting a potential difference at midpoints, outputting a voltage according to the difference, and setting the potential difference at midpoints to 0 based on the output value; means for extracting an output from at least one of the midpoints; means for generating a reference potential equal to the midpoint potential of the leg when the gauge is at a reference temperature state, and a current flowing between the reference potential generating means and the midpoint of the leg at a temperature of the strain gauge and the reference 1. A strain-to-electrical signal conversion device characterized by comprising means for making the difference approximately proportional to the temperature. 2. The means for setting the midpoint potential difference to 0 includes means for amplifying the difference between the midpoint potentials of the two legs, and converting a voltage proportional to the difference between the output voltage of the amplifying means and a reference potential into a current; 2. The distortion amount-to-electrical signal conversion device according to claim 1, further comprising means for negatively feeding back this current to the amplifying means, and the output voltage is the output voltage of the amplifying means.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6575178A JPS54157651A (en) | 1978-06-02 | 1978-06-02 | Strain quantity-electric signal converter |
US05/971,358 US4233848A (en) | 1978-01-06 | 1978-12-20 | Strain gauge pressure transducer apparatus having an improved impedance bridge |
FR7900154A FR2414193B1 (en) | 1978-01-06 | 1979-01-04 | CONSTRAINED GAUGE TRANSDUCER HAVING IMPROVED IMPEDANCE BRIDGE |
IT19104/79A IT1109944B (en) | 1978-01-06 | 1979-01-05 | EXTENSIMETRIC PRESSURE TRANSDUCTION EQUIPMENT WITH A PERFECTED IMPEDENCE BRIDGE |
GB79438A GB2012967B (en) | 1978-01-06 | 1979-01-05 | Strain gauge pressure transducer apparatus |
DE2900382A DE2900382C2 (en) | 1978-01-06 | 1979-01-05 | Voltmeter pressure transducer device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6575178A JPS54157651A (en) | 1978-06-02 | 1978-06-02 | Strain quantity-electric signal converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54157651A JPS54157651A (en) | 1979-12-12 |
JPS6144241B2 true JPS6144241B2 (en) | 1986-10-02 |
Family
ID=13296028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6575178A Granted JPS54157651A (en) | 1978-01-06 | 1978-06-02 | Strain quantity-electric signal converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS54157651A (en) |
-
1978
- 1978-06-02 JP JP6575178A patent/JPS54157651A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS54157651A (en) | 1979-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4202218A (en) | Bridge circuit | |
JPS6144242B2 (en) | ||
JPH0351733A (en) | Amplification compensation circuit for semiconductor pressure sensor | |
JP2928526B2 (en) | POWER SUPPLY CIRCUIT AND BRIDGE TYPE MEASUREMENT OUTPUT COMPENSATION CIRCUIT COMPRISING THE CIRCUIT | |
JPH02177566A (en) | Semiconductor distortion detection device | |
JPH0719807A (en) | Distortion amount detecting device and driving circuit and amplification circuit for it | |
US6101883A (en) | Semiconductor pressure sensor including a resistive element which compensates for the effects of temperature on a reference voltage and a pressure sensor | |
JPS59122923A (en) | Pressure transmitting device | |
WO2022209720A1 (en) | Sensor output compensation circuit | |
JP5440521B2 (en) | Sensitivity temperature compensation circuit | |
JPS6144241B2 (en) | ||
JP3352006B2 (en) | Sensor temperature compensation circuit | |
JPH05110350A (en) | Input offset voltage correction device | |
JPS6255629B2 (en) | ||
JPH06294664A (en) | Nonlinear circuit | |
JPS6336447B2 (en) | ||
KR830001352B1 (en) | Semiconductor pressure detector with zero temperature compensation | |
JP2516647Y2 (en) | Temperature compensation circuit | |
JPH0473085B2 (en) | ||
JPH0611625Y2 (en) | Amplifier for strain gauge | |
JP2610736B2 (en) | Amplification compensation circuit of semiconductor pressure sensor | |
JPH01138433A (en) | semiconductor sensor circuit | |
RU2165602C2 (en) | Semiconductor pressure transducer | |
JP2536822B2 (en) | Temperature compensation circuit for weighing device | |
SU1064156A1 (en) | Semiconducor temperature pickup |