[go: up one dir, main page]

JPS6144137B2 - - Google Patents

Info

Publication number
JPS6144137B2
JPS6144137B2 JP57166835A JP16683582A JPS6144137B2 JP S6144137 B2 JPS6144137 B2 JP S6144137B2 JP 57166835 A JP57166835 A JP 57166835A JP 16683582 A JP16683582 A JP 16683582A JP S6144137 B2 JPS6144137 B2 JP S6144137B2
Authority
JP
Japan
Prior art keywords
less
mechanical strength
intergranular
resistance
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57166835A
Other languages
Japanese (ja)
Other versions
JPS5956557A (en
Inventor
Koichiro Osozawa
Rikio Nemoto
Yoshihito Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP16683582A priority Critical patent/JPS5956557A/en
Publication of JPS5956557A publication Critical patent/JPS5956557A/en
Publication of JPS6144137B2 publication Critical patent/JPS6144137B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、耐粒界腐食性、耐応力腐食割れ性お
よび機械的強度に優れるNi基合金に関するもの
であり、特に本発明は、高温水中での粒界型応力
腐食割れを改善した高Cr含有Ni基合金に関する
ものである。 近年化学工業、エネルギー産業の発展によつて
装置材料の受ける使用環境は多岐にわたり厳しい
条件下で使用される場合が多くなつており、安全
性に対する信頼性要求の高まりと共に安定した耐
食性を有する材料が要求されている。このような
理由から、環境の厳しい条件下ではステンレス鋼
やNi基合金が広く使用されている。 Crを含有するNi基合金は一般耐食性に優れ特
に塩化物環境における粒内応力腐食割れに対して
優れた耐食性を有するが粒界に炭化物が析出し鋭
敏化することがあり、粒界腐食や粒界応力腐食割
れが生ずることがある。これら粒界鋭敏化に対し
ては従来TiまたはNbなど安定化元素を添加して
固溶Cを予め固定する安定化処理を施す対策がと
られているが、溶接熱影響部、特に高温熱影響部
においては上記安定化効果が消えて溶接時及びそ
の後の歪取り焼鈍などの熱処理により粒界が鋭敏
化することがあつた。 Crを含むNi基合金のうち、インコネル600のよ
うにCr含有量が比較的少ない場合は粒界鋭敏化
を抑止するためのNb含有量を多く必要とし、溶
接部を含めて粒界鋭敏化を抑止するためには、さ
らに多量のNbが必要となる。 インコネル600の耐粒界腐食性および耐粒界応
力腐食割れ性の改善については、1981年4月の日
本金属学会講演会講演概要集第268頁に記載され
ているようにCを0.01%以下にするか、あるいは
Nbを添加することが有効であり、またNは0.01
%以上のとき粒界鋭敏化が促進されることが知ら
れている。 しかしながら、C,Nが低下すると機械的強度
なかでも0.2%耐力が低下するという欠点があ
る。 また、1982年5月の腐食防食協会春期学術講演
大会講演概要集第160頁に記載されているよう
に、インコネル600合金の溶着金属の耐粒界腐食
性に対してNbとTiが有効であることが知られて
いる。 しかしながら、前記記載は溶着金属に関するも
のであり、機械的強度については何等の記載もな
く、またNの影響についても何等の記載もない。 さらに、上記2つの講演概要集によれば、試験
片のCr含有量は21%以下と低いためCによる粒
界鋭敏化を抑止するに必要なNb量を多くする必
要があり、このようにNbが多くなると熱間加工
性が劣化して製造性が悪くなるばかりでなく、コ
ストアツプにつながるという欠点がある。また、
インコネル600ベースの場合多量のNbを含有させ
てもCr含有量が比較的低いため粒界鋭敏化を完
全に抑止することは非常に困難である。 従来化学プラント、エネルギー産業における各
種装置に対する高度の安全性要求にこたえるため
に極めて優れた耐粒界腐食性および耐応力腐食割
れ性を有する合金が要望されている。 ところで、高CrのNi基合金であるインコネル
690については、防食技術28巻(1979)第82頁に
記載されているように、Cを0.02%まで下げるこ
とにより粒界の鋭敏化が抑止できることが知られ
ている。しかしながら、上記合金にはNの含有量
についての記載はなく、単にCを低下させただけ
では機械的強度が低下するという欠点がある。 本発明は、従来知られた上記合金の有する欠点
を除去、改善した合金を提供することを目的と
し、特許請求の範囲記載の合金を提供することに
よつて前記目的を達成することができる。 次に本発明を詳細に説明する。 本発明者等は、粒界鋭敏化を抑止するための低
C化によつて生ずる機械的強度の劣化に対してN
が非常に有効であり、しかもNは粒界鋭敏化を促
進しないことを新規に知見した。さらに、Nbは
C,Nと同様機械的強度に有効でありC,Nの和
が低くても、Nb添加によつて、機械的強度を充
分有することを知見した。 すなわち、C,NおよびC,N,Nbの適切な
成分バランスをとることによつて、耐粒界腐食
性、耐粒界応力腐食割れ性および機械的強度に優
れるNi基合金に想到して本発明を完成した。す
なわち本発明合金は、従来のインコネル690に比
べて耐粒界腐食性、耐粒界応力腐食割れ性および
機械的強度の点において優れた合金である。 次に本発明を実験データについて説明する。 第1表に成分組成を示す本発明合金1〜6と比
較合金7〜8をそれぞ大気誘導炉で溶解して6Kg
鋼塊とし、鍛造によつて厚さ10mm、巾70mmにし、
素材熱処理として1100℃×1h加熱後水冷し、さ
らに870℃×2h加熱後水冷した。かくして得られ
た鋼片を機械試験に供した。一方、耐食性試験用
として第1図に示すように開先加工して多層肉盛
し、600℃×20h熱処理した後空冷し、さらに、
500℃×40h熱処理後空冷した鋼片を作つた。溶
接はTIG溶接で行ない、フイラーメタルの成分組
成は第2表のものを用いた。試片はいずれも溶接
部断面を切り出し、最終湿式#800まで研摩し
た。第3表に0.2%耐力、粒界腐食試験および高
温水応力腐食割れ試験のそれぞれの結果を示す。 粒界腐食および高温水応力腐食割れ試験後試験
片の断面を光学顕微鏡で観察し、粒界腐食の場合
は、最大侵食度dを測定した。また高温水応力腐
食割れの場合は、割れの有無を調べた。
The present invention relates to a Ni-based alloy with excellent intergranular corrosion resistance, stress corrosion cracking resistance, and mechanical strength.In particular, the present invention relates to a Ni-based alloy with high Cr content that improves intergranular stress corrosion cracking in high-temperature water. This relates to Ni-based alloys. In recent years, due to the development of the chemical and energy industries, equipment materials are being used in a wide variety of environments and are often used under harsh conditions.As demands for safety and reliability have increased, materials with stable corrosion resistance have been needed. requested. For these reasons, stainless steel and Ni-based alloys are widely used in harsh environmental conditions. Ni-based alloys containing Cr have excellent corrosion resistance in general and particularly against intragranular stress corrosion cracking in chloride environments, but carbides may precipitate at grain boundaries and become sensitive, resulting in intergranular corrosion and intergranular corrosion. Interfacial stress corrosion cracking may occur. Conventionally, measures have been taken to prevent these grain boundary sensitizations by adding stabilizing elements such as Ti or Nb and performing stabilization treatment to fix solid solute C in advance. In some areas, the above-mentioned stabilizing effect disappeared and the grain boundaries became sensitized during welding and subsequent heat treatment such as strain relief annealing. Among Ni-based alloys containing Cr, when the Cr content is relatively low, such as Inconel 600, a large amount of Nb is required to suppress grain boundary sensitization, and grain boundary sensitization is required, including in welded areas. In order to suppress this, an even larger amount of Nb is required. In order to improve the intergranular corrosion resistance and intergranular stress corrosion cracking resistance of Inconel 600, C should be reduced to 0.01% or less, as described in page 268 of the Japan Institute of Metals lecture abstracts held in April 1981. or
It is effective to add Nb, and N is 0.01
% or more, it is known that grain boundary sensitization is promoted. However, when the C and N content decreases, there is a drawback that the 0.2% yield strength among mechanical strength decreases. In addition, as stated in page 160 of the Abstracts of the Spring Academic Conference of the Corrosion Prevention Association held in May 1982, Nb and Ti are effective in improving the intergranular corrosion resistance of the deposited metal of Inconel 600 alloy. It is known. However, the above description relates to welded metal, and there is no description of mechanical strength, nor is there any description of the influence of N. Furthermore, according to the two lecture summaries mentioned above, since the Cr content of the test piece is low at 21% or less, it is necessary to increase the amount of Nb required to suppress grain boundary sensitization due to C. If the number increases, hot workability deteriorates, which not only impairs manufacturability but also increases costs. Also,
In the case of Inconel 600 base, even if a large amount of Nb is contained, it is extremely difficult to completely suppress grain boundary sensitization because the Cr content is relatively low. In order to meet the high safety requirements for various types of equipment in conventional chemical plants and the energy industry, there is a demand for alloys with extremely excellent intergranular corrosion resistance and stress corrosion cracking resistance. By the way, Inconel, which is a high Cr Ni-based alloy,
Regarding 690, it is known that grain boundary sensitization can be suppressed by lowering the C content to 0.02%, as described in Corrosion Prevention Technology Vol. 28 (1979), page 82. However, there is no description of the N content in the above alloy, and there is a drawback that mechanical strength decreases simply by lowering the C content. The object of the present invention is to provide an alloy that eliminates and improves the disadvantages of the above-mentioned conventionally known alloys, and the above object can be achieved by providing the alloy described in the claims. Next, the present invention will be explained in detail. The present inventors have investigated the effects of N to reduce mechanical strength caused by lowering C to suppress grain boundary sensitization.
It was newly discovered that N is very effective and that N does not promote grain boundary sensitization. Furthermore, it was found that Nb, like C and N, is effective in improving mechanical strength, and even if the sum of C and N is low, sufficient mechanical strength can be obtained by adding Nb. In other words, by achieving an appropriate balance of C, N, and C, N, and Nb, we have developed a Ni-based alloy that has excellent intergranular corrosion resistance, intergranular stress corrosion cracking resistance, and mechanical strength. Completed the invention. That is, the alloy of the present invention is an alloy superior to the conventional Inconel 690 in terms of intergranular corrosion resistance, intergranular stress corrosion cracking resistance, and mechanical strength. Next, the present invention will be explained using experimental data. Inventive alloys 1 to 6 and comparative alloys 7 to 8, whose compositions are shown in Table 1, were each melted in an atmospheric induction furnace and weighed 6 kg.
A steel ingot is forged to a thickness of 10 mm and a width of 70 mm.
As a material heat treatment, the material was heated at 1100°C for 1 hour and then cooled with water, and further heated at 870°C for 2 hours and then cooled with water. The thus obtained steel pieces were subjected to mechanical tests. On the other hand, for corrosion resistance testing, as shown in Fig. 1, the bevel was processed and multi-layer overlay was applied, heat treated at 600°C for 20 hours, then air cooled.
A steel billet was made by heat-treating at 500℃ for 40 hours and cooling it in air. Welding was performed by TIG welding, and the filler metal composition shown in Table 2 was used. For each specimen, the cross section of the welded part was cut out and wet-polished to a final #800. Table 3 shows the results of the 0.2% proof stress, intergranular corrosion test, and high temperature water stress corrosion cracking test. After the intergranular corrosion and high temperature water stress corrosion cracking tests, the cross section of the test piece was observed with an optical microscope, and in the case of intergranular corrosion, the maximum degree of corrosion d was measured. In the case of high-temperature water stress corrosion cracking, the presence or absence of cracking was investigated.

【表】【table】

【表】【table】

【表】【table】

【表】 第3表によれば、本発明合金1〜6は比較合金
7〜8と比べると機械的強度すなわち0.2%耐力
および耐粒界腐食性、耐粒界応力腐食割れ性にお
いていずれかで優れた性質を具備しており、0.2
%耐力はいずれも目標値27Kg/mm2を上回り、粒界
腐食試験においてはいずれも最大侵食度は40μ
m/day未満であり、高温水応力腐食割れ試験に
おいては何れも割れは全く発生しない。これに対
して比較合金7は、0.2%耐力は充分有するもの
の、粒界腐食試験においては最大侵食度が630μ
m/dayになつており、高温水応力腐食割れ試験
においては割れが発生した。比較合金8の場合
は、粒界腐食試験および高温水応力腐食割れ試験
においては充分な耐食性を有するが機械的強度
0.2%耐力は27Kg/mm2を下回つている。 第2図はNbを含有しない場合の機械的強度す
なわち0.2%耐力σ0.2に及ぼすC,N含有量の影
響を示す図であり、0.2%耐力が27Kg/mm2を上回
るためには、CとNの和を0.040%以上にする必
要がある。 第3図は機械的強度0.2%耐力に及ぼすNb,
C,Nの影響を示す図であり、NbはC,Nと同
様機械的強度に有効であり、Nbを含有する場合
は0.2%耐力が27Kg/mm2を上回るためには、Nbと
C,Nとの間に下記の式、すなわち %Nb+50(%C+%N)2.0 の関係を満足する必要がある。 第4図は粒界腐食試験における最大侵食度dに
及ぼすCおよびNb含有量の影響を示す図であ
り、耐粒界腐食性を充分保持させるためには、
Nbを50(%C−0.03)%以上含有させる必要が
ある。また、Cが0.03%以下の場合には必ずしも
Nbを含有させる必要はない。 次に本発明合金の成分組成を限定する理由を説
明する。 CはNbを含有しないときはC量が0.03%を超
え、あるいはNbを含有するときはC量が0.080%
を超えると溶接熱影響部の耐食性が劣化するので
C量は、Nbを含有しないときには0.030%以下と
する必要があり、Nbを含有するときは0.080%以
下とする必要がある。 Siは1.0%を超えると耐粒界腐食性が劣化する
ので、Siは1.0%以下にする。 Mnは1.0%を超えると耐粒界腐食性が劣化する
のでMnは1.0%以下とする必要がある。 Pは0.030%を超えると熱間加工性、溶接性が
劣化するのでPは0.030%以下とする必要があ
る。 Sは0.030%を超えると熱間加工性が劣化する
ので0.030%以下とする必要がある。 Crは耐食性を発揮させるのには不可欠の元素
であり、Crが26%以下になると、耐食性が充分
ではなく、Crが35%を超えると熱間加工がきわ
めて困難となるのでCrは26%を超え35%以下に
する必要がある。 Feは25%より多いとNi基合金の特徴である塩
化物環境における耐粒内応力腐食割れ性が劣化す
るので25%以下とする必要がある。 Nは機械的強度の向上に有効であるが、0.2%
を超えると鋼塊中にブローホールが生ずるおそれ
があり、製造性が劣化するのでNは0.2%以下に
する必要がある。 Nbは耐粒界腐食性および機械的強度に有効な
元素である。耐粒界腐食性の観点からCが0.030
%以下の場合はNbを必ずしも含有させる必要は
なくまたCが0.030%を超える場合は、Nbを必ず
50(%C−0.030)%以上含有させる必要があ
る。さらに、機械的強度の観点から、Nbを含有
する場合はNbおよびC,Nの含有量の間には下
記の式、すなわち、 %Nb+50(%C+%N)2.0 の関係を満足する必要がある。 Ti,Zr,Alはそれぞれ脱酸剤として熱間加工
性の改善に有効な元素であり、なかでもTi,Zr
はブローホール発生を抑止する効果が大きく、か
つ溶接高温熱影響部の耐食性を向上させる元素で
あるが、Ti,Zr,Alのなかから選ばれるいずれ
か1種又は2種以上が合計で1%より多いと上記
諸効果が期待されないので1%以下にする必要が
ある。 B,Mgは熱間加工性を向上するが、B,Mgは
それぞれ0.005%、0.05%を超えると逆に熱間加
工性が劣化するのでB,Mgはそれぞれ0.005%以
下、0.05%以下にする必要がある。 以上本発明のNi基合金は0.2%耐力は27Kg/mm2
以上と機械的強度に優れ、また、耐粒界腐食性並
びに耐応力腐食割れ性に優れる合金であり、化学
工業並びにエネルギー産業、なかでも原子力発電
用機器として優れた諸特性を有する合金である。
[Table] According to Table 3, alloys 1 to 6 of the present invention are superior to comparative alloys 7 to 8 in terms of mechanical strength, that is, 0.2% proof stress, intergranular corrosion resistance, and intergranular stress corrosion cracking resistance. It has excellent properties and 0.2
The % proof stress exceeds the target value of 27Kg/ mm2 , and the maximum corrosion degree in the intergranular corrosion test is 40μ.
m/day, and no cracking occurred in any of the high temperature water stress corrosion cracking tests. Comparative Alloy 7, on the other hand, has a sufficient 0.2% yield strength, but in the intergranular corrosion test, the maximum corrosion rate was 630μ.
m/day, and cracking occurred in the high temperature water stress corrosion cracking test. Comparative alloy 8 has sufficient corrosion resistance in intergranular corrosion tests and high-temperature water stress corrosion cracking tests, but has poor mechanical strength.
The 0.2% proof stress is below 27Kg/ mm2 . Figure 2 shows the influence of C and N contents on mechanical strength, that is, 0.2% proof stress σ0.2 when Nb is not included. The sum of and N must be 0.040% or more. Figure 3 shows the effect of Nb on mechanical strength 0.2% proof stress,
This is a diagram showing the influence of C and N. Nb is effective for mechanical strength like C and N. When containing Nb, in order for the 0.2% yield strength to exceed 27 Kg/ mm2 , Nb, C, It is necessary to satisfy the relationship between N and the following formula, %Nb+50(%C+%N)2.0. Figure 4 is a diagram showing the influence of C and Nb contents on the maximum corrosion degree d in intergranular corrosion tests. In order to maintain sufficient intergranular corrosion resistance,
It is necessary to contain 50 (%C - 0.03)% or more of Nb. Also, if C is less than 0.03%,
It is not necessary to contain Nb. Next, the reason for limiting the composition of the alloy of the present invention will be explained. When C does not contain Nb, the amount of C exceeds 0.03%, or when it contains Nb, the amount of C exceeds 0.080%.
Since the corrosion resistance of the weld heat-affected zone deteriorates if it exceeds 100%, the amount of C needs to be 0.030% or less when it does not contain Nb, and it needs to be 0.080% or less when it contains Nb. If Si exceeds 1.0%, intergranular corrosion resistance deteriorates, so Si should be 1.0% or less. If Mn exceeds 1.0%, intergranular corrosion resistance deteriorates, so Mn must be kept at 1.0% or less. If P exceeds 0.030%, hot workability and weldability deteriorate, so P must be kept at 0.030% or less. If S exceeds 0.030%, hot workability deteriorates, so it must be kept at 0.030% or less. Cr is an essential element for exhibiting corrosion resistance. If Cr is less than 26%, corrosion resistance is insufficient, and if Cr exceeds 35%, hot working becomes extremely difficult. It is necessary to exceed 35% or less. If Fe exceeds 25%, the intragranular stress corrosion cracking resistance in a chloride environment, which is a characteristic of Ni-based alloys, will deteriorate, so it must be kept at 25% or less. N is effective in improving mechanical strength, but 0.2%
If the N content exceeds 0.2%, blowholes may occur in the steel ingot and productivity will deteriorate, so the N content must be 0.2% or less. Nb is an effective element for intergranular corrosion resistance and mechanical strength. C is 0.030 from the viewpoint of intergranular corrosion resistance.
% or less, it is not necessary to include Nb, and if C exceeds 0.030%, Nb must be included.
It is necessary to contain 50 (%C - 0.030)% or more. Furthermore, from the viewpoint of mechanical strength, when Nb is included, the following formula must be satisfied between the Nb, C, and N contents: %Nb + 50 (%C + %N) 2.0 . Ti, Zr, and Al are effective elements for improving hot workability as deoxidizers, and among them, Ti, Zr, and
is an element that has a large effect of suppressing the occurrence of blowholes and improves the corrosion resistance of the welded high-temperature heat-affected zone, but one or more selected from Ti, Zr, and Al must be present in a total of 1%. If the amount is more, the above-mentioned effects cannot be expected, so it is necessary to keep it at 1% or less. B and Mg improve hot workability, but if B and Mg exceed 0.005% and 0.05%, hot workability deteriorates, so B and Mg should be 0.005% or less and 0.05% or less, respectively. There is a need. As mentioned above, the 0.2% yield strength of the Ni-based alloy of the present invention is 27Kg/mm 2
As described above, it is an alloy with excellent mechanical strength, intergranular corrosion resistance, and stress corrosion cracking resistance, and has excellent properties in the chemical industry and energy industry, especially as equipment for nuclear power generation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は腐食試験に供した溶接試験片の斜視
図、第2図は機械的強度に及ぼすC含有量および
N含有量の影響を示す図、第3図は機械的強度に
及ぼす(C+N)含有量およびNb含有量の影響
を示す図、第4図は粒界腐食試験における最大侵
食度dに及ぼすC含有量およびNb含有量の影響
を示す図である。
Figure 1 is a perspective view of a welded specimen subjected to a corrosion test, Figure 2 is a diagram showing the influence of C content and N content on mechanical strength, and Figure 3 is a diagram showing the effect of (C+N) on mechanical strength. FIG. 4 is a diagram showing the influence of C content and Nb content on the maximum corrosion degree d in intergranular corrosion tests.

Claims (1)

【特許請求の範囲】 1 C0.030%以下、Si1.0%以下、Mn1.0%以
下、Cr26%超え35%以下、Fe25%以下、P0.030
%以下、S0.030%以下、N0.2%以下CとNとの和
0.040%以上、B0.005%以下、Mg0.05%以下を含
み、残部実質的にNiよりなる耐粒界腐食性,耐
応力腐食割れ性および機械的強度に優れるNi基
合金。 2 C0.030%以下、Si1.0%以下、Mn1.0%以
下、Cr26%超え35%以下、Fe25%以下、P0.030
%以下、S0.030%以下、N0.2%以下、CとNとの
和0.040%以上、B0.005%以下、Mg0.05%以下、
Ti,Zr,Alのなかから選ばれる何れか1種また
は2種以上合計で1%以下を含み、残部実質的に
Niよりなる耐粒界腐食性,耐応力腐食割れ性お
よび機械的強度に優れるNi基合金。 3 C0.080%以下、Si1.0%以下、Mn1.0%以
下、Cr26%超え35%以下、Fe25%以下、P0.030
%以下、S0.030%以下、N0.2%以下、Nb4%以下
でかつ50(%C−0.030)%以上、さらに〔2.0−
50(%C+%N)〕%以上、B0.005%以下、
Mg0.05%以下を含み、残部実質的にNiよりなる
耐粒界腐食性、耐応力腐食割れ性および機械的強
度に優れるNi基合金。 4 C0.080%以下、Si1.0%以下、Mn1.0以下、
Cr26%超え35%以下、Fe25%以下、P0.030%以
下、S0.030%以下、N0.2%以下、Nb4%以下でか
つ50(%C−0.030)%以上、さらに〔2.0−50
(%C+%N)〕%以上、B0.005%以下、Mg0.05
%以下、Ti,Zr,Alのなかから選ばれる何れか
1種または2種以上合計で1%以下を含み、残部
実質的にNiよりなる耐粒界腐食性、耐応力腐食
割れ性および機械的強度に優れるNi基合金。
[Claims] 1 C0.030% or less, Si1.0% or less, Mn1.0% or less, Cr more than 26% and 35% or less, Fe25% or less, P0.030
% or less, S0.030% or less, N0.2% or less Sum of C and N
A Ni-based alloy containing 0.040% or more, B0.005% or less, and Mg 0.05% or less, with the remainder being essentially Ni, which has excellent intergranular corrosion resistance, stress corrosion cracking resistance, and mechanical strength. 2 C0.030% or less, Si1.0% or less, Mn1.0% or less, Cr26% or more and 35% or less, Fe25% or less, P0.030
% or less, S 0.030% or less, N 0.2% or less, sum of C and N 0.040% or more, B 0.005% or less, Mg 0.05% or less,
Contains 1% or less of any one or more selected from Ti, Zr, and Al in total, and the remainder is substantially
A Ni-based alloy made of Ni that has excellent intergranular corrosion resistance, stress corrosion cracking resistance, and mechanical strength. 3 C0.080% or less, Si1.0% or less, Mn1.0% or less, Cr26% or more and 35% or less, Fe25% or less, P0.030
% or less, S0.030% or less, N0.2% or less, Nb4% or less and 50(%C-0.030)% or more, and [2.0-
50(%C+%N)〕% or more, B0.005% or less,
A Ni-based alloy that contains 0.05% or less of Mg and the remainder is essentially Ni, and has excellent intergranular corrosion resistance, stress corrosion cracking resistance, and mechanical strength. 4 C0.080% or less, Si1.0% or less, Mn1.0 or less,
Cr26% or more and 35% or less, Fe25% or less, P0.030% or less, S0.030% or less, N0.2% or less, Nb4% or less, and 50(%C-0.030)% or more, and [2.0-50
(%C+%N)〕% or more, B0.005% or less, Mg0.05
% or less, containing any one or two or more selected from Ti, Zr, and Al in total of 1% or less, with the remainder consisting essentially of Ni. Intergranular corrosion resistance, stress corrosion cracking resistance, and mechanical properties. Ni-based alloy with excellent strength.
JP16683582A 1982-09-25 1982-09-25 Ni-based alloy with excellent intergranular corrosion resistance, stress corrosion cracking resistance, and mechanical strength Granted JPS5956557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16683582A JPS5956557A (en) 1982-09-25 1982-09-25 Ni-based alloy with excellent intergranular corrosion resistance, stress corrosion cracking resistance, and mechanical strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16683582A JPS5956557A (en) 1982-09-25 1982-09-25 Ni-based alloy with excellent intergranular corrosion resistance, stress corrosion cracking resistance, and mechanical strength

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP12208988A Division JPH01132731A (en) 1988-05-20 1988-05-20 Ni-base alloy excellent in mechanical strength as well as in intergranular corrosion resistance and stress corrosion cracking resistance in high heat-affected zone in weld zone

Publications (2)

Publication Number Publication Date
JPS5956557A JPS5956557A (en) 1984-04-02
JPS6144137B2 true JPS6144137B2 (en) 1986-10-01

Family

ID=15838533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16683582A Granted JPS5956557A (en) 1982-09-25 1982-09-25 Ni-based alloy with excellent intergranular corrosion resistance, stress corrosion cracking resistance, and mechanical strength

Country Status (1)

Country Link
JP (1) JPS5956557A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4626408A (en) * 1984-09-20 1986-12-02 Nippon Yakin Kogyo Kabushiki Kaisha Ni-based alloy excellent in intergranular corrosion resistance, stress corrosion cracking resistance and hot workability
US4798633A (en) * 1986-09-25 1989-01-17 Inco Alloys International, Inc. Nickel-base alloy heat treatment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4942537A (en) * 1972-08-30 1974-04-22
JPS4942573A (en) * 1972-08-30 1974-04-22

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4942537A (en) * 1972-08-30 1974-04-22
JPS4942573A (en) * 1972-08-30 1974-04-22

Also Published As

Publication number Publication date
JPS5956557A (en) 1984-04-02

Similar Documents

Publication Publication Date Title
US10577680B2 (en) Fabricable, high strength, oxidation resistant Ni—Cr—Co—Mo—Al alloys
JP3329261B2 (en) Welding materials and welded joints for high temperature high strength steel
JPH0325496B2 (en)
US2985530A (en) Metallurgy
JPS61288041A (en) Ni-base alloy excellent in intergranular stress corrosion cracking resistance and pitting resistance
JP2622530B2 (en) Welding material for austenitic steel with excellent high-temperature strength
JPH07314178A (en) Gas shield welding wire for austenitic stainless steel
JP3382834B2 (en) Filler for Ni-base high Cr alloy
JPS6144137B2 (en)
JPS6144136B2 (en)
US2891859A (en) Alloy steel
JPS6211059B2 (en)
JPH0329859B2 (en)
JP3263378B2 (en) Heat treatment method for Co-based alloy
JPH0114991B2 (en)
JPH0195895A (en) Stainless steel wire for gas shielded arc welding
JPH01215491A (en) Covered arc welding electrode for cr-mo low alloy steel
JPH0328498B2 (en)
JPH07227693A (en) Welding wire for cryogenic steel
JP2660708B2 (en) Stainless steel gas shielded arc welding wire
JP3237132B2 (en) Stainless steel for concentrated nitric acid with excellent weld toughness and corrosion resistance
JPS6117903B2 (en)
JPH0832941B2 (en) Sheath heater coated pipe material for cooking
JPH0613157B2 (en) Welding material for high Si austenitic stainless steel
JPS58221695A (en) Wire for gas shielded metal arc welding of 9cr-1mo steel