[go: up one dir, main page]

JPS6144123Y2 - - Google Patents

Info

Publication number
JPS6144123Y2
JPS6144123Y2 JP16512378U JP16512378U JPS6144123Y2 JP S6144123 Y2 JPS6144123 Y2 JP S6144123Y2 JP 16512378 U JP16512378 U JP 16512378U JP 16512378 U JP16512378 U JP 16512378U JP S6144123 Y2 JPS6144123 Y2 JP S6144123Y2
Authority
JP
Japan
Prior art keywords
water
compressor
cooled condenser
air
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16512378U
Other languages
Japanese (ja)
Other versions
JPS5579755U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16512378U priority Critical patent/JPS6144123Y2/ja
Publication of JPS5579755U publication Critical patent/JPS5579755U/ja
Application granted granted Critical
Publication of JPS6144123Y2 publication Critical patent/JPS6144123Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【考案の詳細な説明】 この考案は、空冷式凝縮器と水冷式凝縮器とを
直列に接続してなる冷凍装置の改良構造に関する
ものである。
Detailed Description of the Invention This invention relates to an improved structure for a refrigeration system in which an air-cooled condenser and a water-cooled condenser are connected in series.

従来の冷凍装置における凝縮器は、空冷式凝縮
器または水冷式凝縮器のみで構成されていたが、
冷凍装置を据付ける周囲の状況により空冷式また
は水冷式または空水冷式に自動的に切換えて使用
できる冷凍装置が要望されていた。例えば周囲温
度が低いときには熱交換能力の余裕と凍結のおそ
れがないので空冷式にし、周囲温度が高くなると
自動的に水冷式に切換えたい場合があるが、この
考案はこのようにして1つの台枠上に空冷式凝縮
器と水冷式凝縮器とを設置し、これらを冷媒回路
中において直列に接続した冷凍装置に関するもの
である。以下この考案の一実施例を図について説
明する。
The condenser in conventional refrigeration equipment consisted only of air-cooled condensers or water-cooled condensers,
There has been a demand for a refrigeration system that can be used by automatically switching between an air-cooled type, a water-cooled type, or an air-water-cooled type depending on the surrounding conditions in which the refrigeration system is installed. For example, when the ambient temperature is low, you may want to use an air-cooled type because it has enough heat exchange capacity and there is no risk of freezing, and when the ambient temperature rises, you may want to automatically switch to a water-cooled type. This invention relates to a refrigeration system in which an air-cooled condenser and a water-cooled condenser are installed on a frame and connected in series in a refrigerant circuit. An embodiment of this invention will be described below with reference to the drawings.

第1図において、1は冷媒圧縮機、2は空冷式
凝縮器、3は送風機、4は2重管の水冷式凝縮
器、5は第1の冷媒通路、6は第2の冷媒通路、
7はオイルクーラバイパス用電磁弁、8は水回路
用電磁弁、9は液溜、10はオイルクーラ、11
は液出口操作弁、12は絞り装置、13は冷却
器、14は吸入口操作弁である。
In FIG. 1, 1 is a refrigerant compressor, 2 is an air-cooled condenser, 3 is a blower, 4 is a double-pipe water-cooled condenser, 5 is a first refrigerant passage, 6 is a second refrigerant passage,
7 is a solenoid valve for oil cooler bypass, 8 is a solenoid valve for water circuit, 9 is a liquid reservoir, 10 is an oil cooler, 11
1 is a liquid outlet operating valve, 12 is a throttle device, 13 is a cooler, and 14 is an inlet operating valve.

第2図,第3図において、21R1は電磁弁8
のコイル部分、52Fは送風機3の接触器のコイ
ル部分、21R2は電磁弁7のコイル部分、23
Rは周囲温度を感知して接点を開閉する感温素
子、52Cは圧縮機用電動機の接触器のコイル部
分、15は上記接触器のa接点、16は安全器の
b接点である。
In Figures 2 and 3, 21R 1 is the solenoid valve 8.
, 52F is the coil part of the contactor of blower 3, 21R 2 is the coil part of solenoid valve 7, 23
R is a temperature sensing element that senses the ambient temperature and opens and closes the contacts, 52C is a coil portion of a contactor of a compressor motor, 15 is an a contact of the contactor, and 16 is a b contact of a safety device.

今第2図において、外気温度が低い場合、感温
素子23Rの接点はコイル部分52F,21R2
を励磁する側に閉じ、ユニツトは空冷式となり、
圧縮機1から吐出された冷媒ガスは空冷式凝縮器
2に導かれ、送風機3により強制冷却されて液化
する。そしてこの冷媒液は、水冷式凝縮器4の管
内を流れ、この凝縮器4の中間位置から第1の冷
媒通路5に導かれ、開放しているバイパス用電磁
弁7を通過した後、第2の冷媒通路6を経て再び
水冷式凝縮器4内を流れ、液溜9に貯溜される。
なお、このとき圧縮機1は送風機3により強制冷
却されるように配置されているので、オイルクー
ラ10に液冷媒を流す必要はない。
In Fig. 2, when the outside temperature is low, the contact point of the temperature sensing element 23R is connected to the coil portion 52F, 21R 2
is closed to the excitation side, and the unit becomes air-cooled.
Refrigerant gas discharged from the compressor 1 is guided to an air-cooled condenser 2, where it is forcibly cooled by a blower 3 and liquefied. The refrigerant liquid flows through the pipe of the water-cooled condenser 4, is guided from an intermediate position of the condenser 4 to the first refrigerant passage 5, passes through the open bypass solenoid valve 7, and then passes through the second refrigerant passage 5. The refrigerant passes through the refrigerant passage 6, flows through the water-cooled condenser 4 again, and is stored in the liquid reservoir 9.
Note that at this time, since the compressor 1 is arranged so as to be forcibly cooled by the blower 3, there is no need to flow liquid refrigerant to the oil cooler 10.

次に外気温度が高くなると、感温素子23Rの
接点はコイル部分21R1を励磁する側に閉じ、
電磁弁8が開き、水回路に冷却水が流れ、ユニツ
トは水冷式となり、圧縮機1から吐出された冷媒
ガスは、空冷式凝縮器2で自然放熱した後、2重
管式水冷凝縮器4に導かれる。そして、冷却水と
熱交換して液化した冷媒は、バイパス用電磁弁7
が閉止されているので、第1の冷媒通路5を経て
圧縮器1内のオイルクーラ10に流入してシエル
底部の油温を下げた後、第2の冷媒通路6を経て
再び水冷式凝縮器4内で冷却水と熱交換すること
により過冷却されて液溜9に貯溜される。なお、
上述した水冷式の場合は、上述したように送風機
3が停止しているので、圧縮機1がこれによつて
冷却されないため、バイパス電磁弁7を閉止して
オイルクーラ10へ全冷媒循環量を流すようにし
ている。また、液溜9に貯溜した液冷媒は、液出
口操作弁11を通過し、絞り装置12で減圧され
冷却器13において蒸発の後、吸入管から吸入口
操作弁14を経て圧縮機1の吸入口に戻される。
Next, when the outside temperature rises, the contact of the temperature sensing element 23R closes to the side that excites the coil portion 21R1 .
The solenoid valve 8 opens, cooling water flows into the water circuit, the unit becomes water-cooled, and the refrigerant gas discharged from the compressor 1 radiates heat naturally in the air-cooled condenser 2, and then flows into the double-pipe water-cooled condenser 4. guided by. Then, the refrigerant liquefied by heat exchange with the cooling water is transferred to the bypass solenoid valve 7.
Since the refrigerant is closed, it flows into the oil cooler 10 in the compressor 1 through the first refrigerant passage 5 to lower the oil temperature at the bottom of the shell, and then flows back into the water-cooled condenser through the second refrigerant passage 6. The liquid is supercooled by exchanging heat with the cooling water in the liquid reservoir 9 and stored in the liquid reservoir 9. In addition,
In the case of the water-cooled type described above, since the blower 3 is stopped as described above, the compressor 1 is not cooled by it, so the bypass solenoid valve 7 is closed and the entire amount of refrigerant is circulated to the oil cooler 10. I try to let it flow. Further, the liquid refrigerant stored in the liquid reservoir 9 passes through the liquid outlet operation valve 11, is depressurized by the throttling device 12, and evaporates in the cooler 13, after which it passes from the suction pipe to the suction port operation valve 14, and is then inhaled by the compressor 1. It is returned to the mouth.

以上述べた方法は外気温度の変化により空冷式
と水冷式に使い分けたが、本考案の他の実施例と
して第8図の如く、送風機3は圧縮機1とともに
ON,OFFし、外気温度が所定温度より上昇すれ
ば感温素子23Rにより水回路用電磁弁21R1
を開き、空水冷式とし、凝縮温度を下げ、一方、
バイパス電磁弁21R2を閉じ、液冷媒をオイル
クーラ10に導き、圧縮機1を冷却する。外気温
度が所定温度より低い場合は空冷式のみとし、水
冷式凝縮器4に冷却水を流さず、またオイルクー
ラ10にも液冷媒を流さず、送風機1によるフア
ンクールのみで圧縮機1を冷却するようにでき
る。
In the above-mentioned method, air-cooled type and water-cooled type are used depending on the change in outside temperature, but in another embodiment of the present invention, as shown in Fig. 8, the blower 3 is used together with the compressor 1.
ON and OFF, and when the outside temperature rises above a predetermined temperature, the water circuit solenoid valve 21R 1 is activated by the temperature sensing element 23R.
is opened and air-water cooled to lower the condensing temperature, while
Bypass solenoid valve 21R2 is closed, liquid refrigerant is guided to oil cooler 10, and compressor 1 is cooled. When the outside air temperature is lower than a predetermined temperature, only the air cooling system is used, and the compressor 1 is cooled only by fan cooling by the blower 1, without flowing cooling water to the water-cooled condenser 4, nor flowing liquid refrigerant to the oil cooler 10. You can do it like this.

さらに上記実施例では水回路制御弁として水回
路電磁弁を用いたものについて述べたが、この水
回路電磁弁8の代りに節水弁を用いて、高圧側圧
力が上昇すれば多量の冷却水を流し空水冷式と
し、高圧側圧力が下降すれば冷却水を止め空冷式
のみとするようにしても良い。バイパス電磁弁7
は感温素子により空水冷式となつたとき閉じ、オ
イルクーラに冷媒を流して圧縮機を冷却し、また
空冷式のみのときは開き、フアンクールで圧縮機
を冷却する方法もある。
Furthermore, in the above embodiment, a water circuit solenoid valve is used as the water circuit control valve, but a water saving valve can be used instead of the water circuit solenoid valve 8 to save a large amount of cooling water when the high pressure side pressure increases. It is also possible to use a sink air/water cooling type, and when the pressure on the high pressure side decreases, the cooling water is stopped and only the air cooling type is used. Bypass solenoid valve 7
There is also a method of closing when the system is air-water cooled using a temperature sensing element, and allowing refrigerant to flow through the oil cooler to cool the compressor, or opening when only air cooling is used, and cooling the compressor with fan cooling.

以上述べたように、この考案は、冷凍装置を据
付けている周囲温度を感温素子で感知し、周囲温
度が所定温度より低い場合は空冷式のみとし、圧
縮機1を送風機3で冷却し、圧縮機1のオイルク
ーラ10に液冷媒が流れないようにバイパス電磁
弁7を開放する。一方、周囲温度が所定温度より
高い場合は水冷式または空水冷式とし、圧縮機1
のオイルクーラ10に液冷媒を流入させるように
バイパス電磁弁7を閉止するようにしたものであ
る。
As described above, this invention detects the ambient temperature in which the refrigeration equipment is installed using a temperature sensing element, and when the ambient temperature is lower than a predetermined temperature, only air cooling is used, and the compressor 1 is cooled by the blower 3. The bypass solenoid valve 7 is opened so that liquid refrigerant does not flow into the oil cooler 10 of the compressor 1. On the other hand, if the ambient temperature is higher than the specified temperature, a water-cooled type or an air-water cooled type is used, and the compressor 1
The bypass solenoid valve 7 is closed to allow liquid refrigerant to flow into the oil cooler 10.

従つてこの考案によれば、周囲温度の変化に応
じて自動的に空冷式運転、または水冷式運転もし
くは空水冷式運転を行なうので、周囲温度上昇時
に高圧側圧力が異常に高くなり、圧縮機が高圧圧
力開閉器により停止するような不具合がなくな
る。また、空冷式、水冷式何れの場合において
も、冷媒圧縮機を効果的に冷却することができる
ばかりでなく、その構成も極めて簡単で、安価に
提供できる優れた実用的効果を有するものであ
る。
Therefore, according to this invention, air-cooled operation, water-cooled operation, or air-water-cooled operation is automatically performed in response to changes in ambient temperature, so when the ambient temperature rises, the pressure on the high pressure side becomes abnormally high, and the compressor This eliminates problems such as shutting down due to high-pressure switches. In addition, whether it is an air-cooled type or a water-cooled type, it is not only possible to effectively cool the refrigerant compressor, but also has an extremely simple configuration and has excellent practical effects that can be provided at low cost. .

なお、周囲温度を感知する代りに凝縮温度や凝
縮圧力を検知しても同等の効果を奏させうること
はいうまでもない。
It goes without saying that the same effect can be achieved by detecting the condensing temperature or condensing pressure instead of sensing the ambient temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の一実施例を示す冷媒回路
図、第2図,第3図はその制御用シーケンス図で
ある。 図において、1は冷媒圧縮機、2は空冷式凝縮
器、3は送風器機、4は水冷式凝縮器、5,6は
冷媒通路、7はバイパス用電磁弁、8は水回路電
磁弁、10はオイルクーラ、23Rは感温素子で
ある。
FIG. 1 is a refrigerant circuit diagram showing an embodiment of this invention, and FIGS. 2 and 3 are sequence diagrams for its control. In the figure, 1 is a refrigerant compressor, 2 is an air-cooled condenser, 3 is a blower, 4 is a water-cooled condenser, 5 and 6 are refrigerant passages, 7 is a bypass solenoid valve, 8 is a water circuit solenoid valve, 10 is an oil cooler, and 23R is a temperature sensing element.

Claims (1)

【実用新案登録請求の範囲】 (1) 冷媒圧縮機の吐出ガスを、空冷式凝縮器及び
これに直列に接続された水冷式凝縮器を経て上
記圧縮機のオイルクーラに導く第1の冷媒通路
と、上記オイルクーラからさらに上記水冷式凝
縮器至る第2の冷媒通路との間にバイパス用電
磁弁を設け、一方上記水冷式凝縮器の水配管途
中に水回路制御弁を設け、さらに外気温度、凝
縮温度または凝縮水力を感知する素子を備え、
外気温度、凝縮温度または凝縮圧力が所定値よ
り低下した場合には上記水回路制御弁を閉止し
て空冷式凝縮器を動作させ、上記バイパス用電
磁弁を解放して送風機により上記圧縮機を冷却
させ、外気温度、凝縮温度または凝縮圧力が所
定値より高くなつたときは上記バイパス用電磁
弁を閉止すると共に上記水回路制御弁を解放し
て上記水冷式凝縮器のみ、又は上記空冷式凝縮
器と共に動作させ、上記圧縮機のオイルクーラ
に液冷媒を流すことにより上記圧縮機を冷却さ
せるような制御回路を設けたことを特徴とする
冷凍装置。 (2) 水回路制御弁が水回路電磁弁であることを特
徴とする実用新案登録請求の範囲第1項記載の
冷凍装置。 (3) 水回路制御弁が冷凍サイクルの高圧側圧力に
応じて作動する節水弁であることを特徴とする
実用新案登録請求の範囲第1項記載の冷凍装
置。
[Claims for Utility Model Registration] (1) A first refrigerant passage that guides the discharge gas of the refrigerant compressor to the oil cooler of the compressor via an air-cooled condenser and a water-cooled condenser connected in series thereto. A bypass solenoid valve is provided between the oil cooler and a second refrigerant passage leading to the water-cooled condenser, and a water circuit control valve is provided in the middle of the water pipe of the water-cooled condenser, and , equipped with an element that senses the condensing temperature or condensing water force,
When the outside air temperature, condensation temperature, or condensation pressure drops below a predetermined value, the water circuit control valve is closed to operate the air-cooled condenser, and the bypass solenoid valve is released to cool the compressor using the blower. When the outside air temperature, condensation temperature, or condensation pressure becomes higher than a predetermined value, the bypass solenoid valve is closed and the water circuit control valve is opened to operate only the water-cooled condenser or the air-cooled condenser. 1. A refrigeration system comprising: a control circuit which operates together with the compressor and cools the compressor by flowing a liquid refrigerant through an oil cooler of the compressor. (2) The refrigeration system according to claim 1, wherein the water circuit control valve is a water circuit solenoid valve. (3) The refrigeration system according to claim 1, wherein the water circuit control valve is a water-saving valve that operates according to the pressure on the high pressure side of the refrigeration cycle.
JP16512378U 1978-11-29 1978-11-29 Expired JPS6144123Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16512378U JPS6144123Y2 (en) 1978-11-29 1978-11-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16512378U JPS6144123Y2 (en) 1978-11-29 1978-11-29

Publications (2)

Publication Number Publication Date
JPS5579755U JPS5579755U (en) 1980-06-02
JPS6144123Y2 true JPS6144123Y2 (en) 1986-12-12

Family

ID=29163243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16512378U Expired JPS6144123Y2 (en) 1978-11-29 1978-11-29

Country Status (1)

Country Link
JP (1) JPS6144123Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT506086B1 (en) * 2008-03-11 2009-06-15 Bhdt Gmbh COOLING DEVICE FOR A WORKFLUID
JP2012067947A (en) * 2010-09-22 2012-04-05 Keisei Jidosha Kogyo Kk Temperature control system and temperature control method

Also Published As

Publication number Publication date
JPS5579755U (en) 1980-06-02

Similar Documents

Publication Publication Date Title
US4932221A (en) Air-cooled cooling apparatus
US2713995A (en) Air heating and cooling system
JPS6144123Y2 (en)
JPH05157372A (en) Electric part box cooler for air conditioner
CN209181302U (en) A kind of sled block formula salt water water cooler
JP2003194427A (en) Cooling device
JP3024024B2 (en) Refrigeration dryer
JPS5843734Y2 (en) Refrigeration equipment
US5069040A (en) Coil bypass arrangement
JPH085172A (en) Cooler for refrigerator with deep freezer
JP3233799B2 (en) Cooling system
JPH0515595Y2 (en)
JPS5842842Y2 (en) Two-stage compression refrigeration equipment
CN114719506B (en) Refrigerator and control method thereof
JPS6032529Y2 (en) refrigerator
JPH0113968Y2 (en)
JPH025336Y2 (en)
JPS632858Y2 (en)
JPH0692849B2 (en) Turbo refrigerator
JPS6038850Y2 (en) Refrigeration cycle equipment
JPS6257910B2 (en)
JPS595815B2 (en) Two-stage compression refrigeration equipment
JPH025316Y2 (en)
JPH0240455Y2 (en)
SU759809A1 (en) Microrefrigerator