JPS6143299B2 - - Google Patents
Info
- Publication number
- JPS6143299B2 JPS6143299B2 JP877379A JP877379A JPS6143299B2 JP S6143299 B2 JPS6143299 B2 JP S6143299B2 JP 877379 A JP877379 A JP 877379A JP 877379 A JP877379 A JP 877379A JP S6143299 B2 JPS6143299 B2 JP S6143299B2
- Authority
- JP
- Japan
- Prior art keywords
- sio
- glass
- pbo
- sealing
- zno
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011521 glass Substances 0.000 claims description 27
- 239000000203 mixture Substances 0.000 claims description 25
- 238000007789 sealing Methods 0.000 claims description 22
- 239000000843 powder Substances 0.000 claims description 19
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 14
- 239000000945 filler Substances 0.000 claims description 14
- 229910052878 cordierite Inorganic materials 0.000 claims description 11
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 claims description 11
- 238000002844 melting Methods 0.000 claims description 11
- 230000008018 melting Effects 0.000 claims description 10
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 7
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 5
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 claims description 5
- 229910000174 eucryptite Inorganic materials 0.000 claims description 4
- 229910052845 zircon Inorganic materials 0.000 claims description 4
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 2
- 229910052792 caesium Inorganic materials 0.000 claims description 2
- 229910052701 rubidium Inorganic materials 0.000 claims description 2
- -1 B 2 O 3 Substances 0.000 claims 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 10
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 9
- 238000010298 pulverizing process Methods 0.000 description 5
- 239000011787 zinc oxide Substances 0.000 description 5
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 238000004031 devitrification Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 238000003746 solid phase reaction Methods 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000005329 float glass Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000005394 sealing glass Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/24—Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Products (AREA)
- Glass Compositions (AREA)
- Sealing Material Composition (AREA)
Description
本発明は、低温度の熱処理により主として半失
透状態で封着を達成する低融点ガラスの粉末と低
膨脹性耐火物フイラーの粉末とからなり、特に
IC用のアルミナ質パツケージ(アルミナ基板)
の封着に好適に用いられる封着用組成物に関す
る。
従来、ICのアルミナ質パツケージの封着に
は、PbO―B2O3―ZnO―SiO2系の結晶性低融点
ハンダガラス(フリツト)が用いられ、これは約
480℃の熱処理によりガラス化(流動化)した結
晶化(失透化)し、アルミナの熱膨脹係数に合致
する封着部を形成する。しかしながら、このタイ
プのハンダガラスは、比較的高温度の処理を要す
る難点がある。
本発明の主な目的は、400〜430℃の温度で10分
間以内の熱処理により、充分流動し、アルミナに
対して気密な封着を完成すること、アルミナに整
合する熱膨脹係数の封着部を与えること、耐熱
性、耐水性、耐酸性、絶縁性、誘電率等要求され
る各特性条件を充分満足できる封着用組成物を提
供することである。
本発明者は、PbO―B2O3―ZnO―SiO2系の特
定範囲の低融点ガラス粉末に、低膨脹性耐火物フ
イラーとして、重量%表示で、少くとも15.1%の
コージエライト粉末を混入することにより、前記
目的を達成することを見い出した。
本発明は、重量%表示で本質的に
PbO 7.0〜86.0%
B2O3 6.0〜15.0%
ZnO 7.0〜12.0%
SiO2 0.5〜3.0%
Al2O3 0 〜3.0%
RO 0 〜2.0%
(ROはBaO,SrO,CaO,MgOのうちいずれか
1者又は2者以上)
SnO2 0 〜 1.5%
R2O 0 〜 1.0%
(R2Oは、Li2O,Na2O,K2O,Rb2O,Cs2Oの
うちいずれか1者又は2者以上)
の組成を有する低融点ガラス粉末と、重量%表示
で下記含有割合の低膨脹性耐火物フイラーの粉
末;
コージエライト 15.1〜30%
β―ユークリプタイト 0 〜30%
β―スポジユーメン 0 〜30%
ジルコン 0 〜50%
チタン酸鉛 0 〜50%
とからなる封着用組成物に関する。
前記低融点ガラスの組成限定の理由を説明す
る。
PbO<77%;ガラスの軟化点が高くなり低温で
の封着に適さない。PbO>86%;ガラス熱膨脹係
数が大きくなる。
B2O3<6%;ガラス熔解作業中に失透が生成
する。B2O3>15%;ガラスの軟化点が高くなり
低温での封着に適さない。
Zn<7%;ガラスの非失透傾向が強くなるが
軟化点が高くなり過ぎる。ZnO>12%;ガラスの
結晶化が速くなり過ぎ、また、ガラス熔解作業中
に失透が生成し易くなる。
SiO2<0.5%;ガラスの結晶化傾向が強くな
る。SiO2>3.0%;ガラスの軟化点が高くなり低
温での封着に適さない。
以上の必須成分の外に、3%までのAl2O3,1.5
%までのSnO2及び/又はBaO,CaO,MgO,
SrOのうちから選ばれる少くとも1種のアルカリ
土類金属酸化物を2.0%まで、SiO2と組合せて含
有させ、ガラスの結晶化傾向を調整することがで
きる。
また、Li2O,Na2O,K2O,Rb2O又はCs2Oか
ら選ばれるアルカリ金属酸化物は、1%以下含有
することにより、ガラスの軟化点を低下させ、封
着の際の熱処理条件をコントロールすることがで
きる。
必須成分に関し、より好ましい含有量の範囲は
重量%表示で次の通りである。
PbO 78.5〜85.0%
B2O3 7.0〜13.0%
ZnO 7.0〜11.0%
SiO2 1.0〜2.5%
以上の組成を有するガラスは、400〜430℃の低
温度、10分以内の熱処理で充分流動し、通常、そ
の後結晶化し、あるいは添加成分の有無によつて
は非結晶化状態で気密なシールを達成するけれど
も、熱膨脹係数が比較的高く、アルミナの如き65
〜70×10-7℃-1(25〜400℃)の材料に整合的に
即ちマツチングして封着することができない。
本発明の封着用ガラス組成物においては、前記
ガラスの粉末に対して、低膨脹の無機耐火物の添
加剤いわゆる「フイラー」として、重量%で15.1
〜30%のコージエライトの粉末を混合する。15.1
%より少ないと、Al2O3との整合封着ができず、
30%を越えると組成物の流動性が減少するので好
ましくない。より好ましい添加割合は、重量%表
示で、15.1〜22%である。
コージエライト(菫青石、2MgO・2Al2O3・
5SiO2)は、天然鉱物としても存在し入手できる
が、通常は熔融合成されたものが用いられる。即
ち化学量論的にMgO,Al2O3,SiO2を混合した原
料を1500℃又はそれ以上の高温で熔融ガラス化し
た後急冷し、粉砕したものを約1350℃で再加熱し
結晶化して製造する。
コージエライトは、10〜20×10-7℃-1(50〜
350℃)の熱膨脹係数を有すると共に、IC用アル
ミナパツケージのシールに用いるときには、要求
される電気的特性に関し、他の公知のフイラーの
中では最も適しているので、この目的のために
は、コージエライト単独の添加が望ましい。しか
し、コージエライトと共に他のフイラー即ち30%
までのβ―ユークリプタイト、30%までのβ―ス
ポジユーメン、50%までのジルコン又は50%まで
のチタン酸鉛を組成物に所定量以下混合してもよ
い。
β―ユークリプタイト(Li2O・Al2O3・
2SiO2)、β―スポジユーメン(Li2O・Al2O3・
4SiO2)、化学量論理的組成の原料配合物を1500
℃程度で熔融ガラス化し、冷却、粉砕した後900
℃で再加熱して製造する。
ジルコン(ZrO2・SiO2)は通常天然品が使用さ
れるが、ZrO2粉末とSiO2粉末とを固相反応によ
つて合成したものを用いることができる。
チタン酸鉛(PbO・TiO2)は、PbO粉末とTiO2
粉末の等モル混合物を1000〜1200℃の高温で焼成
し固相反応により合成し、得られた焼結体を微粉
砕して製造される。
これらのフイラーの熱膨脹係数は次の通りであ
る。
The present invention consists of a low-melting point glass powder and a low-expansion refractory filler powder that achieve sealing mainly in a semi-devitrified state through low-temperature heat treatment.
Alumina package for IC (alumina substrate)
The present invention relates to a sealing composition suitably used for sealing. Conventionally, PbO--B 2 O 3 -- ZnO--SiO 2 -based crystalline low melting point solder glass (frit) has been used to seal alumina packages for ICs, and this is approximately
Heat treatment at 480°C results in vitrification (fluidization) and crystallization (devitrification), forming a sealed portion that matches the coefficient of thermal expansion of alumina. However, this type of solder glass has the disadvantage of requiring relatively high temperature processing. The main object of the present invention is to complete a sufficiently fluid and airtight seal to alumina by heat treatment at a temperature of 400 to 430 degrees Celsius for less than 10 minutes, and to create a sealed part with a coefficient of thermal expansion matching that of alumina. It is an object of the present invention to provide a sealing composition that can sufficiently satisfy each required property condition such as heat resistance, water resistance, acid resistance, insulation property, and dielectric constant. The present inventor mixes at least 15.1% cordierite powder in weight percentage as a low expansion refractory filler into a specific range of low melting point glass powder of PbO- B2O3 - ZnO - SiO2 system. It has been found that the above object can be achieved by doing so. The present invention essentially consists of PbO 7.0-86.0% B 2 O 3 6.0-15.0% ZnO 7.0-12.0% SiO 2 0.5-3.0% Al 2 O 3 0-3.0% RO 0-2.0% (RO is one or more of BaO, SrO, CaO, MgO) SnO 2 0 to 1.5% R 2 O 0 to 1.0% (R 2 O is Li 2 O, Na 2 O, K 2 O, (one or more of Rb 2 O, Cs 2 O) and low-expansion refractory filler powder having the following content in weight percent: Cordierite 15.1 to 30% The present invention relates to a sealing composition comprising: β-eucryptite 0-30% β-spodiume 0-30% zircon 0-50% lead titanate 0-50%. The reason for limiting the composition of the low melting point glass will be explained. PbO<77%; The softening point of the glass is high, making it unsuitable for sealing at low temperatures. PbO>86%; Glass thermal expansion coefficient increases. B 2 O 3 <6%; devitrification occurs during the glass melting operation. B 2 O 3 >15%; The softening point of the glass becomes high, making it unsuitable for sealing at low temperatures. Zn<7%: The glass tends to be less devitrified, but the softening point becomes too high. ZnO>12%; Glass crystallization becomes too rapid, and devitrification tends to occur during glass melting. SiO 2 <0.5%; Glass crystallization tendency becomes stronger. SiO 2 >3.0%; The softening point of the glass becomes high, making it unsuitable for sealing at low temperatures. In addition to the above essential components, up to 3% Al 2 O 3 , 1.5
up to % SnO2 and/or BaO, CaO, MgO,
The crystallization tendency of the glass can be adjusted by containing up to 2.0% of at least one alkaline earth metal oxide selected from SrO in combination with SiO 2 . In addition, by containing an alkali metal oxide selected from Li 2 O, Na 2 O, K 2 O, Rb 2 O, or Cs 2 O in an amount of 1% or less, it lowers the softening point of the glass and is used during sealing. heat treatment conditions can be controlled. Regarding the essential components, more preferable content ranges expressed in weight % are as follows. PbO 78.5-85.0% B 2 O 3 7.0-13.0% ZnO 7.0-11.0% SiO 2 1.0-2.5% Glass with a composition of 1.0-2.5% or more can flow sufficiently by heat treatment at a low temperature of 400-430°C for less than 10 minutes. Although it usually crystallizes afterwards or, depending on the presence or absence of additives, achieves an airtight seal in an amorphous state, it has a relatively high coefficient of thermal expansion, such as 65
It is not possible to match and seal materials at temperatures between 25 and 400°C. In the sealing glass composition of the present invention, a low-expansion inorganic refractory additive, so-called "filler", is added to the glass powder in a proportion of 15.1% by weight.
Mix ~30% cordierite powder. 15.1
If it is less than %, consistent sealing with Al 2 O 3 cannot be achieved,
If it exceeds 30%, the fluidity of the composition decreases, which is not preferable. A more preferable addition ratio is 15.1 to 22% by weight. Cordierite (cordierite, 2MgO・2Al 2 O 3・
Although 5SiO 2 ) exists and can be obtained as a natural mineral, it is usually synthesized by melting. In other words, a raw material consisting of a stoichiometric mixture of MgO, Al 2 O 3 and SiO 2 is melted and vitrified at a high temperature of 1500°C or higher, then rapidly cooled, and the crushed material is reheated at about 1350°C to crystallize it. Manufacture. Cordierite has a temperature of 10~20×10 -7 ℃ -1 (50~
For this purpose, cordierite is the most suitable filler, as it has a coefficient of thermal expansion of 350°C) and has the required electrical properties when used to seal alumina packages for ICs. Addition alone is desirable. However, along with cordierite other fillers i.e. 30%
Up to a predetermined amount of β-eucryptite, up to 30% β-spodiumen, up to 50% zircon, or up to 50% lead titanate may be mixed into the composition. β-eucryptite (Li 2 O・Al 2 O 3・
2SiO 2 ), β-spodium (Li 2 O・Al 2 O 3・
4SiO 2 ), stoichiometric raw material formulation 1500
After melting and vitrifying at around 900℃, cooling and crushing
Produced by reheating at °C. Zircon (ZrO 2 ·SiO 2 ) is usually a natural product, but it is also possible to use one synthesized by solid-phase reaction of ZrO 2 powder and SiO 2 powder. Lead titanate (PbO・TiO 2 ) is a combination of PbO powder and TiO 2
It is produced by firing an equimolar mixture of powders at a high temperature of 1000 to 1200°C, synthesizing it by solid-phase reaction, and pulverizing the resulting sintered body. The coefficient of thermal expansion of these fillers is as follows.
【表】
ユーメン
ジルコン 42〜48 〃 ( 〃 )
チタン酸鉛 −40〜−53 〃 ( 〃 )
次に本発明の封着用組成物の製造方法の一例を
説明する。
各成分原料例えば鉛丹、無水硼酸、酸化亜鉛、
珪砂を目標組成に従つて配合し混合してバツチを
調整し、バツチを白金るつぼに入れ電気炉中で
1000〜1250℃で1〜2時間加熱炉解する。熔融ガ
ラスを水砕し、又は板状に成形した後、ボールミ
ルで粒径1〜8μ程度まで粉砕する。
フイラーの混合は、ガラスの粉砕時ボールミル
中に所定量のフイラーを混入し、粉砕混合を同時
に行なつてもよく、前以つて1〜8μ程度に粉砕
したフイラーをガラス粉末に加えてミキサーで混
合してもよい。
本発明の封着用組成物は、主として、結晶化状
態で、アルミナパツケージの封着に用いられる
が、ガラス中の添加成分の調整により、非結晶化
状態でも使用することもでき、ソーダ石灰ガラス
例えばフロートガラス板あるいは金属材料の封着
にも使用できる。
実施例
表の上段に示す試料No.1〜No.7の組成のガラス
を前述の方法で製造し、その粉砕時に表に示す種
類のフイラーを表に示す量だけ加えて一緒に粉砕
混合し、封着用の粉末試料を調整し、下記の特性
値を測定した。尚、各試料において、ガラスの含
有量は、フイラーの残量になる。
ガラス転移点:Tg(℃)
各粉末試料1.0gを示差熱分析機のホルダーに
入れ、室温により10℃/minの昇温速度で温度を
上昇させ熱分析曲線を描き、その曲線に現われる
最初の吸熱開始温度を、転移点(℃)として、表
に示した。
熱膨脹係数:α(10-7・℃-1)
各粉末試料を棒状に圧縮成形した後、表に示す
各熱処理条件(400〜430℃,10分間)で、加熱し
て得た棒状試料の各々について、50℃〜ガラス転
移点間の熱膨脹係数を測定した。
IC封止用アルミナの場合、その熱膨脹係数は
65〜70×10-7℃-1(25〜400℃)の範囲内にあ
る。封着用組成物の熱処理後の熱膨脹係数は、ア
ルミナのそれに対して+2×10-7乃至−10×10-7
の範囲内にあると、アルミナとの整合性の要請を
満足する。従つて、各試料はアルミナとの整合性
を満たす。
流動性(フローボタン径)
封着用組成物としては、熱処理時、充分に軟化
流動し被封着面に充分濡れ、封着部の気密性を確
保することを要す。この流動性の測定のため、各
粉末試料を、その比重に相当するg数を採取し、
12.5mmφの円柱状に加圧成形した後、表に示した
熱処理条件で加熱し、そのフローボタン径を測定
した。
尚、アルミナとの封着に当つては、組成物のフ
ローボタン径は18mm以上であるのが好ましい。
体積抵抗率 ρ(ohm・cm)
各試料の熱処理品の150℃における体積抵抗
率:ρ(ohm・cm)を測定し、表にその常用対数
値(log ρ)を示した。
アルミナパツケージへの封着のためには、この
値は1010ohm・cm以上であるのが望ましい。
誘電率
各試料の熱処理品の20℃,1MHzにおける誘電
率(ε)を測定した。この値は、20以下であるこ
とが望ましい。
熱処理品の状態
各試料を熱処理したとき、熱処理品がガラス状
態を保つているものを「非晶質」とし、結晶化し
たものを「結晶化」として、表に示した。[Table] Yumenzircon 42-48 〃 ( 〃 )
Lead titanate −40 to −53 〃 ( 〃 )
Next, an example of a method for producing the sealing composition of the present invention will be explained. Raw materials for each component, such as red lead, boric anhydride, zinc oxide,
Blend and mix silica sand according to the target composition to adjust the batch, then put the batch into a platinum crucible and heat it in an electric furnace.
Decompose in a heating furnace at 1000-1250°C for 1-2 hours. After pulverizing the molten glass or forming it into a plate shape, it is pulverized with a ball mill to a particle size of about 1 to 8 μm. The filler may be mixed by mixing a predetermined amount of filler into a ball mill during glass pulverization and pulverizing and mixing at the same time, or by adding the filler, which has been previously pulverized to about 1 to 8 μm, to the glass powder and mixing with a mixer. You may. The sealing composition of the present invention is mainly used for sealing alumina packages in a crystallized state, but it can also be used in an amorphous state by adjusting the additive components in the glass. It can also be used for sealing float glass plates or metal materials. Example Glasses having the compositions of Samples No. 1 to No. 7 shown in the upper row of the table were manufactured by the above-mentioned method, and when they were crushed, fillers of the types shown in the table were added in the amounts shown in the table and mixed together by pulverization. A powder sample for sealing was prepared and the following characteristic values were measured. Note that in each sample, the glass content is the remaining amount of filler. Glass transition point: Tg (°C) Place 1.0 g of each powder sample in the holder of a differential thermal analyzer, raise the temperature at a rate of 10°C/min from room temperature, draw a thermal analysis curve, and calculate the initial temperature that appears on the curve. The endothermic start temperature is shown in the table as the transition point (°C). Thermal expansion coefficient: α ( 10-7・℃ -1 ) Each powder sample was compression molded into a rod shape, and then heated under each heat treatment condition shown in the table (400 to 430℃, 10 minutes) to obtain each rod-shaped sample. The coefficient of thermal expansion was measured between 50°C and the glass transition point. In the case of alumina for IC encapsulation, its coefficient of thermal expansion is
It is within the range of 65 to 70 × 10 -7 °C -1 (25 to 400 °C). The thermal expansion coefficient of the sealing composition after heat treatment is +2×10 -7 to -10×10 -7 compared to that of alumina.
If it is within the range of , it satisfies the requirement of compatibility with alumina. Therefore, each sample satisfies the consistency with alumina. Fluidity (Flow Button Diameter) The sealing composition must sufficiently soften and flow during heat treatment, sufficiently wet the surface to be sealed, and ensure airtightness of the sealed portion. To measure this fluidity, each powder sample was collected in grams corresponding to its specific gravity.
After being pressure-molded into a cylindrical shape with a diameter of 12.5 mm, it was heated under the heat treatment conditions shown in the table, and the diameter of the flow button was measured. In addition, when sealing with alumina, it is preferable that the diameter of the flow button of the composition is 18 mm or more. Volume resistivity ρ (ohm cm) The volume resistivity ρ (ohm cm) of each heat-treated sample at 150°C was measured, and the common logarithm value (log ρ) is shown in the table. For sealing to an alumina package, this value is desirably 10 10 ohm·cm or more. Dielectric constant The dielectric constant (ε) of each heat-treated sample was measured at 20°C and 1MHz. This value is preferably 20 or less. Condition of heat-treated products When each sample was heat-treated, those in which the heat-treated product remained in a glass state were classified as "amorphous," and those that became crystallized were classified as "crystallized," as shown in the table.
【表】【table】
Claims (1)
1者又は2者以上) SnO2 0 〜1.5% R2O 0 〜1.0% (R2Oは、Li2O,Na2O,K2O,Rb2O,Cs2Oの
うちいずれか1者又は2者以上) の組成を有する低融点ガラス粉末と、重量%表示
で下記含有割合の低膨脹性耐火物フイラーの粉
末; コージエライト 15.1〜30% β―ユークリプタイト 0 〜30% β―スポジユーメン 0 〜30% ジルコン 0 〜50% チタン酸鉛 0 〜50% とからなる封着用組成物。 2 前記低融点ガラスにおいて、PbO,B2O3,
ZnO及びSiO2は、それぞれ、重量%表示で、 PbO 78.5〜85.0% B2O3 7.0〜13.0% ZnO 7.0〜11.0% SiO2 1.0〜2.5% の範囲内にある特許請求の範囲第1項記載の封着
用組成物。 3 前記低融点ガラスにおいて、PbO,B2O3,
ZnO及びSiO2は、 PbO 80.0〜85.0% B2O3 7.0〜13.0% ZnO 7.0〜11.0% SiO2 1.0〜2.5% の範囲内にあり、前記低膨脹性耐火物フイラーと
してはコージエライトが単独に用いられ、かつ重
量%表示で、 低融点ガラス粉末 78 〜84.9% コージエライト粉末 15.1〜22 % の組成を有する特許請求の範囲第1項記載の封着
用組成物。[Claims] 1. Essentially PbO 77.0-86.0% B 2 O 3 6.0-15.0% ZnO 7.0-12.0% SiO 2 0.5-3.0% Al 2 O 3 0-3.0% RO 0-2.0 % (PO is one or more of BaO, SrO, CaO, MgO) SnO 2 0 ~ 1.5% R 2 O 0 ~ 1.0% (R 2 O is Li 2 O, Na 2 O, K 2 O, Rb 2 O, Cs 2 O) and a low-expansion refractory filler powder having the following content in weight percent: Cordierite 15.1 A sealing composition comprising ~30% β-eucryptite 0-30% β-spodium 0-30% zircon 0-50% and lead titanate 0-50%. 2 In the low melting point glass, PbO, B 2 O 3 ,
Claim 1 states that ZnO and SiO 2 are in the range of PbO 78.5 to 85.0% B 2 O 3 7.0 to 13.0% ZnO 7.0 to 11.0% SiO 2 1.0 to 2.5%, respectively. A composition for sealing. 3 In the low melting point glass, PbO, B 2 O 3 ,
ZnO and SiO 2 are in the range of PbO 80.0-85.0% B 2 O 3 7.0-13.0% ZnO 7.0-11.0% SiO 2 1.0-2.5%, and cordierite is used alone as the low expansion refractory filler. The sealing composition according to claim 1, having a composition of 78 to 84.9% low melting point glass powder and 15.1 to 22% cordierite powder, expressed in weight percent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP877379A JPS55104945A (en) | 1979-01-30 | 1979-01-30 | Seal bonding composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP877379A JPS55104945A (en) | 1979-01-30 | 1979-01-30 | Seal bonding composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55104945A JPS55104945A (en) | 1980-08-11 |
JPS6143299B2 true JPS6143299B2 (en) | 1986-09-26 |
Family
ID=11702199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP877379A Granted JPS55104945A (en) | 1979-01-30 | 1979-01-30 | Seal bonding composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS55104945A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63132293U (en) * | 1987-02-21 | 1988-08-30 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58213682A (en) * | 1982-06-03 | 1983-12-12 | 岩城硝子株式会社 | Low temperature sealing composition |
KR100446865B1 (en) * | 1999-08-23 | 2004-09-04 | 조선내화 주식회사 | Batch composition of injection refractories for tap hole area of blast furnace |
JP4918722B2 (en) * | 2007-07-09 | 2012-04-18 | 東芝コンシューマエレクトロニクス・ホールディングス株式会社 | Pull-out kitchenware dryer |
CN102070302A (en) * | 2010-11-22 | 2011-05-25 | 珠海彩珠实业有限公司 | A kind of transparent low-melting point glass powder for dielectric slurry and preparation method thereof |
-
1979
- 1979-01-30 JP JP877379A patent/JPS55104945A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63132293U (en) * | 1987-02-21 | 1988-08-30 |
Also Published As
Publication number | Publication date |
---|---|
JPS55104945A (en) | 1980-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4405722A (en) | Sealing glass compositions | |
JP5413562B2 (en) | Sealing material | |
JPS6331422B2 (en) | ||
JP2001048579A (en) | Silica phosphate tin-based glass and sealing material | |
JPS62191442A (en) | Low-melting sealing composition | |
JPH04288389A (en) | Sealing material and mil additive for use therefor | |
JPH06263478A (en) | Lead-free low melting point glass | |
US5116786A (en) | Low temperature sealing glass composition | |
US3000745A (en) | Vitreous materials | |
JPH02116643A (en) | Alkali zinc aluminophosphate glass ceramic | |
JP5545589B2 (en) | Manufacturing method of sealing material | |
JPS6143298B2 (en) | ||
JPS6049144B2 (en) | colored frit glass mixed glaze | |
JPS6143299B2 (en) | ||
JPS6124347B2 (en) | ||
JP3096136B2 (en) | Glass composition for low-temperature fired substrate and substrate obtained therefrom | |
JPS6210940B2 (en) | ||
JPH0144656B2 (en) | ||
KR100479688B1 (en) | Dielectric ceramic composition and method for preparing dielectric ceramic for low temperature co-fired ceramic | |
JPS638060B2 (en) | ||
SU1565344A3 (en) | Method of obtaining soldering borolead glass | |
JPH0375239A (en) | Sealing material | |
JPH0449497B2 (en) | ||
JP3519121B2 (en) | Sealing composition | |
JPH0419176B2 (en) |