JPS6143130A - Production of 1,2,3,4-tetrafluorobenzene - Google Patents
Production of 1,2,3,4-tetrafluorobenzeneInfo
- Publication number
- JPS6143130A JPS6143130A JP59164282A JP16428284A JPS6143130A JP S6143130 A JPS6143130 A JP S6143130A JP 59164282 A JP59164282 A JP 59164282A JP 16428284 A JP16428284 A JP 16428284A JP S6143130 A JPS6143130 A JP S6143130A
- Authority
- JP
- Japan
- Prior art keywords
- tetrafluorobenzene
- temperature
- reaction
- tetrafluorophthalic acid
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は水媒体中で3.4.5.6−テトラフルオロフ
タル酸を脱炭酸せしめて1.2.3.4−テトラフルオ
ロベンゼンをえる新規な製法に関する。Detailed Description of the Invention (Industrial Application Field) The present invention decarboxylates 3.4.5.6-tetrafluorophthalic acid in an aqueous medium to produce 1.2.3.4-tetrafluorobenzene. Regarding new manufacturing methods.
1、2.3.4−テトラフルオロベンゼンは、医薬、農
薬の中間体として有用表ものである。1,2.3.4-Tetrafluorobenzene is useful as an intermediate for pharmaceuticals and agricultural chemicals.
(従来の技術)
従来、水媒体中で7タル酸誘導体を脱炭酸する技術は数
多く開示されている〔例えばChemicalAbst
ract第41巻第2083頁(1947年)、アメリ
カ特許第1939212号等〕。しかしながら、いずれ
も安息香酸をえる方法であって、更に脱炭酸させてベン
ゼン誘導体をえる方法は数少ない。とくにハロゲン化フ
タル酸を脱炭酸させてハロゲン化ベンゼンをえる方法は
あまシ知られていない。しかし、アメリカ特許第243
9237号では、 3.4.5.6−テトラクロロ無水
フタル酸をアルカリ性水溶液中加圧下220〜280℃
の温度範囲で加熱して、1.2.3.4−テトラクロロ
ベンゼンをえている。しかしながらフッ素化物に関する
記載はない。(Prior Art) Conventionally, many techniques for decarboxylating heptatalic acid derivatives in an aqueous medium have been disclosed [for example, Chemical Abst
41, p. 2083 (1947), U.S. Patent No. 1,939,212, etc.]. However, all of these methods yield benzoic acid, and only a few methods yield benzene derivatives by further decarboxylation. In particular, there is no known method to obtain halogenated benzene by decarboxylating halogenated phthalic acid. However, U.S. Patent No. 243
In No. 9237, 3.4.5.6-tetrachlorophthalic anhydride was heated in an alkaline aqueous solution at 220-280°C under pressure.
1.2.3.4-tetrachlorobenzene is obtained by heating in the temperature range of . However, there is no description regarding fluorinated substances.
上記のアメリカ特許第2439237号の方法が、本発
明における出発原料である3、4,5.6−テトラフル
オロフタル酸にも適用できるかどうか、本発明者らKよ
って検討を行った。The present inventors K investigated whether the method of the above-mentioned US Pat. No. 2,439,237 could be applied to 3,4,5,6-tetrafluorophthalic acid, which is the starting material in the present invention.
上記の方法に従って、アルカリ性水溶液中で3、4.5
.6−テトラフルオロフタル酸を加熱して脱炭酸反応を
試みた。しかしながら、フッ素原子がヒドロキシル基と
置換したトリフルオロフェノールが主に生成し、選択的
に1.2,3.4−テトラフルオロベンゼンをえること
ができなかった。すなわち、−COOH基のような電子
吸引性基のあるベンゼン核のパラ位置のフッ素原子は、
同じ位置の塩素原子に比べ求核置換反応を受は易いと云
え、従って上記のアメリカ特許第2439237号で使
用しているアルカリ性物質は、フッ素原子と置換してフ
ェノール類を生成させると考えられる。すなわち、該方
法は、本発明における出発原料である3、 4.5.6
−テトラフルオロフタル酸においては副反応がおこり易
く適用できないと云える。また、3.4.5.6−テト
ラフルオロフタル酸を脱炭酸して1,2,3.4−テト
ラフルオロベンゼンをえる方法については、唯一イギリ
ス特許第2122190号に記載がある。この方法の詳
細は不明であるが、ただ反応温度の記載はあり、200
℃の温度で反応させているが、1.2.3.4−テトラ
フルオロベンゼンは、0.5−の収率でしかえられてお
らず、工業的な方法ではない。3,4.5 in alkaline aqueous solution according to the method described above.
.. A decarboxylation reaction was attempted by heating 6-tetrafluorophthalic acid. However, trifluorophenol in which a fluorine atom was substituted with a hydroxyl group was mainly produced, and 1,2,3,4-tetrafluorobenzene could not be selectively obtained. That is, the fluorine atom at the para position of the benzene nucleus with an electron-withdrawing group such as -COOH group is
It can be said that it is more susceptible to nucleophilic substitution reactions than the chlorine atom at the same position, and therefore it is thought that the alkaline substance used in the above-mentioned US Pat. No. 2,439,237 replaces the fluorine atom to produce phenols. That is, the method uses 3, 4.5.6, which are the starting materials in the present invention.
-Tetrafluorophthalic acid is not applicable because side reactions are likely to occur. Furthermore, the only method for obtaining 1,2,3,4-tetrafluorobenzene by decarboxylating 3.4.5.6-tetrafluorophthalic acid is described in British Patent No. 2122190. The details of this method are unknown, but there is a description of the reaction temperature, which is 200
Although the reaction is carried out at a temperature of 1.2.3.4-tetrafluorobenzene, the yield is only 0.5-, and this is not an industrial method.
(発明が解決しようとする問題点)
すなわち、本発明の目的は、3.4.5.6−テトラフ
ルオロフタル酸を脱炭酸して1.2.3.4−テトラフ
ルオロベンゼンを工業的に高収率で製造する方法を提供
することである。(Problems to be Solved by the Invention) That is, the purpose of the present invention is to decarboxylate 3.4.5.6-tetrafluorophthalic acid to industrially produce 1.2.3.4-tetrafluorobenzene. It is an object of the present invention to provide a method for manufacturing with high yield.
(問題点を解決するための手段)
本発明者らは、1.2.3.4−テトラフルオロベンゼ
ンを製造するに際し、上記の一般的な脱炭酸方法は適用
できず、新規な方法を鋭意検討した結果、驚くべきこと
に単に3.4.5.6−テトラフルオロフタル酸を水に
溶解させてオートクレーブ中で210〜300℃の温度
範囲で加熱することによって、1.2.3.4−テトラ
フルオロベンゼンが容易に製造できることを見い出した
。(Means for Solving the Problems) When producing 1.2.3.4-tetrafluorobenzene, the above general decarboxylation method cannot be applied, and the present inventors have earnestly developed a new method. As a result of investigation, it was surprisingly found that 1.2.3.4 could be prepared by simply dissolving 3.4.5.6-tetrafluorophthalic acid in water and heating it in an autoclave at a temperature range of 210-300°C. - It has been discovered that tetrafluorobenzene can be easily produced.
また、触媒として、銅、亜鉛、カドミウム、鉄、コバル
トもしくはニッケルの各々の金属、酸化物、水酸化物ま
たは炭酸塩から選ばれた少なくとも一種の成分を存在さ
せると、100〜270℃の温度範囲でオートクレーブ
中で加熱することによって、よシ低い温度で脱炭酸させ
ることがで@、1,2,3,4−テトラフルオロベンゼ
ンを容易に製造できることを見い出し、本発明を完成さ
せた。In addition, when at least one component selected from copper, zinc, cadmium, iron, cobalt, or nickel metal, oxide, hydroxide, or carbonate is present as a catalyst, the temperature range is 100 to 270°C. The present inventors have discovered that 1,2,3,4-tetrafluorobenzene can be easily produced by decarboxylating it at a much lower temperature by heating it in an autoclave, and have completed the present invention.
すなわち、本発明は以下の如く特定される。That is, the present invention is specified as follows.
(113,4,s、 6−テトラフルオロフタル酸を水
媒体中210〜300℃の範囲の温度で自然発生圧力下
に脱炭酸せしめることを特徴とする1、2,3.4−テ
トラフルオロベンゼンの製法。(1,2,3,4-tetrafluorobenzene, characterized in that 113,4,s, 6-tetrafluorophthalic acid is decarboxylated in an aqueous medium at a temperature ranging from 210 to 300° C. under spontaneous pressure. manufacturing method.
(2)230〜270℃の範囲の温度で脱炭酸せしめる
ことを特徴とする上記(1)記載の方法。(2) The method described in (1) above, wherein decarboxylation is carried out at a temperature in the range of 230 to 270°C.
(3) 3,4,5.6−5−ドラフルオロフタル酸
を水媒体中、銅、亜鉛、カドミウム、鉄、コノ(ルトも
しくはニッケルの各々の金属、酸化物、水酸化物または
炭酸塩から選ばれた少なくとも一種の触媒の存在下、1
00〜270℃の範囲の温度で自然発生圧力下に脱炭酸
せしめることを特徴とする1、 2.3.4−テトラフ
ルオロベンゼンの製法。(3) 3,4,5.6-5-Drafluorophthalic acid in an aqueous medium from each metal, oxide, hydroxide or carbonate of copper, zinc, cadmium, iron, copper or nickel. In the presence of at least one selected catalyst, 1
A process for producing 1,2.3.4-tetrafluorobenzene, which comprises decarboxylation under spontaneous pressure at a temperature in the range of 00 to 270°C.
(41160〜240℃の範囲の温度で脱炭酸せしめる
ことを特徴とする上記(3)記載の方法。(The method described in (3) above, wherein the decarboxylation is carried out at a temperature in the range of 41,160 to 240°C.
(5) 触媒が鋼粉、酸化第二銅または酸化亜鉛から
選ばれた少なくとも一種であることを特徴とする上記(
3)または(4)記載の方法。(5) The above (wherein the catalyst is at least one selected from steel powder, cupric oxide, and zinc oxide)
3) or the method described in (4).
以下、本発明の具体的態様を説明する。Hereinafter, specific embodiments of the present invention will be explained.
本発明で使用するテトラフルオロフタル酸は、たとえば
、フタロニトリルを塩素と共に活性炭上に270〜35
0℃の温度範囲で供給して、テトラクロロフタロニトリ
ルを合成して、見られたテトラクロロフタロニトリルを
特願昭58−202590号記載の方法(実施例2)に
よってフッ素化してテトラフルオロフタロニトリルを合
成して、見られたテトラフルオロフタロニトリルを硫酸
水溶液中で150〜180 ’C忙加熱することにより
加水分解反応を行う方法など忙よって合成できる。Tetrafluorophthalic acid used in the present invention can be prepared, for example, by applying phthalonitrile to activated carbon with chlorine at 270 to 35
Tetrachlorophthalonitrile is synthesized by supplying it in a temperature range of 0°C, and the resulting tetrachlorophthalonitrile is fluorinated by the method described in Japanese Patent Application No. 58-202590 (Example 2) to obtain tetrafluorophthalonitrile. The resulting tetrafluorophthalonitrile can be synthesized by a method of carrying out a hydrolysis reaction by heating the resulting tetrafluorophthalonitrile in an aqueous sulfuric acid solution at 150-180'C.
本発明において触媒を存在させないでテトラフルオロフ
タル酸を水に溶解させてオートクレーブを使用して加熱
する場合の反応温度としては、210〜300℃の範囲
が好ましいが、特に230〜270℃の温度範囲が好ま
しい。反応温度が高い場合、急減に反応がおこシ、発熱
反応であるため温度制御が困難になる。また反応温度が
低い場合、脱炭酸反応の速度が低下し、モノカルボキシ
ル基を有する中間体が生成しやすく、さらに競争的にテ
トラフルオロフタル酸のヒト胃キシル化反応もおこシ易
くなり、1,2゜3.4−?)ラフルオロベンゼンの収
率が低下するので好ましくない。In the present invention, when tetrafluorophthalic acid is dissolved in water without the presence of a catalyst and heated using an autoclave, the reaction temperature is preferably in the range of 210 to 300°C, particularly in the temperature range of 230 to 270°C. is preferred. When the reaction temperature is high, the reaction rapidly decreases and is an exothermic reaction, making temperature control difficult. In addition, when the reaction temperature is low, the rate of decarboxylation reaction decreases, intermediates having monocarboxyl groups are likely to be produced, and the competitive human stomach xylation reaction of tetrafluorophthalic acid is also likely to occur. 2゜3.4-? ) This is not preferred because the yield of lafluorobenzene decreases.
反応時間としては、脱炭酸反応が優先的におこり競争的
におこるヒドロキシル化反応が抑えられるような反応温
度で行う必要があるので、210〜320℃の温度範囲
、好ましくは230〜270℃の温度範囲で約10時間
以内の短時間に反応を完結させるのが好ましい。As for the reaction time, it is necessary to conduct the reaction at a temperature such that the decarboxylation reaction occurs preferentially and the hydroxylation reaction that occurs competitively is suppressed, so the temperature range is 210 to 320°C, preferably 230 to 270°C. It is preferable to complete the reaction within a short time, within about 10 hours.
触媒存在下における反応温度としては、100〜270
℃の温度範囲が好ましいが、特に160〜240℃の温
度範囲が好ましい。反応温度が高い場合、触媒を必要と
しない。また反応温度が低い場合反応速度が低下し生産
性が落ちるので好ましくない。The reaction temperature in the presence of a catalyst is 100 to 270
A temperature range of 160°C to 240°C is particularly preferred. If the reaction temperature is high, no catalyst is required. Furthermore, if the reaction temperature is low, the reaction rate decreases and productivity decreases, which is not preferable.
触媒を存在させる場合の利点として、ひとつには脱炭酸
反応の速度が高まるため、ヒドロキシル化反応が制御さ
れ収率を向上できる。又、低い反応温度で反応を行うこ
とができるため、自然発生圧が低くなりオートクレーブ
の耐圧性を低くできるので、オートクレーブの設備費を
安価にすることができる。反応時間は反応温度忙よって
異なり、特に限定しないが一般的には1〜30時間の範
囲が望ましい。One advantage of the presence of a catalyst is that it increases the rate of decarboxylation, thereby controlling the hydroxylation reaction and improving yield. Furthermore, since the reaction can be carried out at a low reaction temperature, the naturally occurring pressure is low, and the pressure resistance of the autoclave can be lowered, so that the equipment cost of the autoclave can be reduced. The reaction time varies depending on the reaction temperature and is not particularly limited, but is generally preferably in the range of 1 to 30 hours.
本発明における脱i酸反応の触媒として銅、亜鉛、カド
ミウム、鉄、コバルトもしくはニッケルの各々の金属、
酸化物、水酸化物または炭酸塩から選ばれた少なくとも
一種存在させるのが良い。特に鋼粉、酸化第二銅または
酸化亜鉛から選ばれた少なくとも一種存在させるのが良
い。As a catalyst for the deoxidation reaction in the present invention, each metal of copper, zinc, cadmium, iron, cobalt or nickel,
At least one selected from oxides, hydroxides, and carbonates is preferably present. In particular, it is preferable to include at least one selected from steel powder, cupric oxide, and zinc oxide.
触媒量としては、原料のテトラフルオロ7タル酸100
重量部に対して約0.1〜10重量部存在させるのが良
い。特゛に0.3〜2重量部存在させるのが良い。原料
のテトラフルオロフタル酸は、水100重量部に対して
約3部〜30部仕込むのが良い。The amount of catalyst is 100
It is preferable that it is present in an amount of about 0.1 to 10 parts by weight. In particular, it is preferably present in an amount of 0.3 to 2 parts by weight. The starting material, tetrafluorophthalic acid, is preferably added in an amount of about 3 to 30 parts per 100 parts by weight of water.
以下、本発明を実施例により更に具体的に説明するが、
本発明はこれらに限定されるものではない。Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these.
実施例1
100ccのオートクレーブに3.4,5.6−テトラ
フルオロフタル酸5.Of!(0,021モル)および
水soyを仕込み、250℃で3時間加熱撹拌し、反応
せしめた。反応終了後、室温まで冷却して、その後分液
し、下層(油層)を取り出した。この油層をカラム充填
剤y 8B52 2m。Example 1 3.4,5.6-tetrafluorophthalic acid 5. Of! (0,021 mol) and water soy were charged and heated and stirred at 250° C. for 3 hours to react. After the reaction was completed, the mixture was cooled to room temperature, and then separated into layers, and the lower layer (oil layer) was taken out. This oil layer was packed with column packing material y8B52 2m.
カラム槽温度50℃のガスクロマトグラフで分析したと
ころ、仕込みのテトラフルオロフタル酸に対して、1,
2,3.4−テトラフルオロベンゼン82.4そル%、
)リフルオロフェノール3.3モルチ、2.3.4.5
−テトラフルオロ安息香酸5.8モルチが見られた。こ
の油層を精密分留装置を用いて目的生成物1.2.3.
4−テトラフルオロベンゼン2.3 JF (常圧94
〜95℃における留分)を回収できた。When analyzed using a gas chromatograph at a column tank temperature of 50°C, it was found that 1,
2,3.4-tetrafluorobenzene 82.4 mol%,
) Lifluorophenol 3.3 molti, 2.3.4.5
- 5.8 moles of tetrafluorobenzoic acid were found. This oil layer was purified using a precision fractionator to obtain the desired product 1.2.3.
4-tetrafluorobenzene 2.3 JF (normal pressure 94
The fraction at ~95°C) could be recovered.
実施例2
100eCのオートクレーブにテトラフルオロフタル酸
10.0.9 (0,042モル)、水sagおよび触
媒として鋼粉0.15 Ifを仕込み、180℃で5時
間加熱撹拌し反応せしめた。反応終了後、室温まで冷却
し、懸濁している触媒を濾過で除去した。2層に分離し
ている母液を分液し実施例1と同様に分析して1.2.
3.4−テトラフルオロベンゼン86.1モルチが見う
レタ。Example 2 10.0.9 (0,042 mol) of tetrafluorophthalic acid, sag of water, and 0.15 If of steel powder as a catalyst were placed in an autoclave at 100 eC, and the mixture was heated and stirred at 180° C. for 5 hours to react. After the reaction was completed, the mixture was cooled to room temperature and the suspended catalyst was removed by filtration. The mother liquor separated into two layers was separated and analyzed in the same manner as in Example 1. 1.2.
3.4-Tetrafluorobenzene 86.1 mol.
実施例3
触媒として酸化第二銅0.1gを仕込み、200℃で3
時間加熱撹拌した以外は、実施例2と同様に仕込み反応
してその後発離し同様に分析して1.2.3.4−テト
ラフルオロベンゼン91.2モルチがえられた。Example 3 0.1 g of cupric oxide was charged as a catalyst, and 3
The mixture was charged and reacted in the same manner as in Example 2, except that it was heated and stirred for a period of time, and then separated and analyzed in the same manner to obtain 91.2 mol of 1.2.3.4-tetrafluorobenzene.
実施例4
触媒として酸化亜鉛0.05 、Fを仕込み、220℃
で2時間加熱撹拌した以外は、実施例2と同様に仕込み
反応して分離し同様に分析して!、2゜3.4−テトラ
フルオロベンゼン79.6モル%75f見られた。−
比較例1
実施例1と同様に仕込み、205℃で4時間加熱撹拌し
反応せしめた。反応終了後、室温まで冷却し、懸濁して
いる沈殿物を濾過で取シ出し、2.3.4.5−テトラ
フルオロ安息香酸3.4.9’がえられた。これは、仕
込みの3.4.5.6−テトラフルオロフタル酸に対し
て収率83.5モルチに相当した。2.3.4.5−テ
トラフルオロ安息香酸であることは、NMR,マススペ
クトル、元素分析より確認できた。Example 4 0.05% zinc oxide and F were charged as a catalyst, and the temperature was 220°C.
Prepare, react, separate, and analyze in the same manner as in Example 2, except that the mixture was heated and stirred for 2 hours. , 2°3.4-tetrafluorobenzene 79.6 mol% 75f was observed. - Comparative Example 1 It was prepared in the same manner as in Example 1, and heated and stirred at 205° C. for 4 hours to react. After the reaction was completed, the reaction mixture was cooled to room temperature, and the suspended precipitate was filtered out to obtain 2.3.4.5-tetrafluorobenzoic acid 3.4.9'. This corresponded to a yield of 83.5 molti based on the starting 3.4.5.6-tetrafluorophthalic acid. It was confirmed by NMR, mass spectrum, and elemental analysis that it was 2.3.4.5-tetrafluorobenzoic acid.
一方、母液は、分液しその後ガスクロマトグラフで分析
したところ仕込みの3.4.5.6−テトラフルオロフ
タル酸に対して1.2.3.4−テトラフルオロベンゼ
ン9.2モルチが見られた。On the other hand, when the mother liquor was separated and then analyzed by gas chromatography, it was found that 9.2 mol of 1.2.3.4-tetrafluorobenzene was found relative to the charged 3.4.5.6-tetrafluorophthalic acid. Ta.
比較例2
実施例1と同様に仕込み、205℃で24時間加熱撹拌
し反応せしめた。反応終了後、実施例1と同様にして油
層を分離した。実施例1と同様にガスクer¥トゲラフ
で分析したところ、仕込みの3.4.5.6−テトラフ
ルオo7タル酸に対して、1,2,3.4−テトラフル
オロベンゼン61.2モルチ゛、トリフルオロフエ、ノ
ール24.9モル−12,3,4,5−テトラフルオロ
安息香酸7.4モルチがえられた。Comparative Example 2 A mixture was prepared in the same manner as in Example 1, and the mixture was heated and stirred at 205° C. for 24 hours to react. After the reaction was completed, the oil layer was separated in the same manner as in Example 1. As in Example 1, analysis using a gas probe revealed that 61.2 moles of 1,2,3,4-tetrafluorobenzene and 61.2 moles of 1,2,3,4-tetrafluorobenzene and 24.9 mol of fluoropheol and 7.4 mol of 12,3,4,5-tetrafluorobenzoic acid were obtained.
特許出願人 日本触媒化学工業株式会社手続補正
書(自発)
昭和59年lO月q日
特許庁長官 志 賀 学 殿
1、事件の表示
昭和59年特許願第164282号
25 発明の名称
1、2.394−テトラフルオロベンゼンの製法3、補
正をする者Patent applicant: Nippon Shokubai Kagaku Kogyo Co., Ltd. Procedural amendment (spontaneous) Date: 10/1/1980 Manabu Shiga, Commissioner of the Patent Office 1, Indication of the case: 1982 Patent Application No. 164282 25 Name of the invention 1, 2. 394-Tetrafluorobenzene manufacturing method 3, person making the correction
Claims (5)
体中210〜300℃の範囲の温度で自然発生圧力下に
脱炭酸せしめることを特徴とする1,2,3,4−テト
ラフルオロベンゼンの製法。(1) 1,2,3,4-tetrafluorophthalic acid, which is characterized by decarboxylating 3,4,5,6-tetrafluorophthalic acid in an aqueous medium at a temperature in the range of 210 to 300°C under spontaneous pressure. Manufacturing method of fluorobenzene.
ことを特徴とする特許請求の範囲(1)記載の方法。(2) The method according to claim (1), wherein the decarboxylation is carried out at a temperature in the range of 230 to 270°C.
体中、銅、亜鉛、カドミウム、鉄、コバルトもしくはニ
ッケルの各々の金属、酸化物、水酸化物または炭酸塩か
ら選ばれた少なくとも一種の触媒の存在下、100〜2
70℃の範囲の温度で自然発生圧力下に脱炭酸せしめる
ことを特徴とする1,2,3,4−テトラフルオロベン
ゼンの製法。(3) 3,4,5,6-tetrafluorophthalic acid in an aqueous medium, containing at least one metal selected from copper, zinc, cadmium, iron, cobalt, or nickel, an oxide, a hydroxide, or a carbonate. In the presence of one type of catalyst, 100-2
1. A process for the preparation of 1,2,3,4-tetrafluorobenzene, characterized in that it is decarboxylated under autogenous pressure at a temperature in the range of 70°C.
ことを特徴とする特許請求の範囲(3)記載の方法。(4) The method according to claim (3), wherein the decarboxylation is carried out at a temperature in the range of 160 to 240°C.
れた少なくとも一種であることを特徴とする特許請求の
範囲(3)または(4)記載の方法。(5) The method according to claim (3) or (4), wherein the catalyst is at least one selected from steel powder, cupric oxide, and zinc oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59164282A JPS6143130A (en) | 1984-08-07 | 1984-08-07 | Production of 1,2,3,4-tetrafluorobenzene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59164282A JPS6143130A (en) | 1984-08-07 | 1984-08-07 | Production of 1,2,3,4-tetrafluorobenzene |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6143130A true JPS6143130A (en) | 1986-03-01 |
Family
ID=15790130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59164282A Pending JPS6143130A (en) | 1984-08-07 | 1984-08-07 | Production of 1,2,3,4-tetrafluorobenzene |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6143130A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4847442A (en) * | 1988-07-18 | 1989-07-11 | Allied-Signal Inc. | Process for the preparation of difluorobenzenes |
EP0767157A1 (en) * | 1995-09-26 | 1997-04-09 | Nippon Shokubai Co., Ltd. | Method for production of benzene halide |
US5872283A (en) * | 1996-07-09 | 1999-02-16 | Bayer Aktiengesellschaft | Process for decarboxylation of halogenated aromatic carboxylic acids |
CN103467237A (en) * | 2013-09-13 | 2013-12-25 | 浙江大学 | Method for preparing aromatic hydrocarbons by catalytic decarboxylation of terephthalic acid residues |
JP2016056161A (en) * | 2014-09-11 | 2016-04-21 | 国立研究開発法人産業技術総合研究所 | Method for producing benzene or naphthalene |
JP2016179950A (en) * | 2015-03-23 | 2016-10-13 | 国立研究開発法人産業技術総合研究所 | Method for producing aromatic compound |
CN110437056A (en) * | 2019-07-17 | 2019-11-12 | 浙江华基生物技术有限公司 | The method of preparation of industrialization 2,3,4,5 tetra fluoro benzoic acid |
-
1984
- 1984-08-07 JP JP59164282A patent/JPS6143130A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4847442A (en) * | 1988-07-18 | 1989-07-11 | Allied-Signal Inc. | Process for the preparation of difluorobenzenes |
EP0767157A1 (en) * | 1995-09-26 | 1997-04-09 | Nippon Shokubai Co., Ltd. | Method for production of benzene halide |
US5763702A (en) * | 1995-09-26 | 1998-06-09 | Nippon Shokubai Co., Ltd. | Method for production of benzene halilde |
US5872283A (en) * | 1996-07-09 | 1999-02-16 | Bayer Aktiengesellschaft | Process for decarboxylation of halogenated aromatic carboxylic acids |
CN103467237A (en) * | 2013-09-13 | 2013-12-25 | 浙江大学 | Method for preparing aromatic hydrocarbons by catalytic decarboxylation of terephthalic acid residues |
JP2016056161A (en) * | 2014-09-11 | 2016-04-21 | 国立研究開発法人産業技術総合研究所 | Method for producing benzene or naphthalene |
JP2016179950A (en) * | 2015-03-23 | 2016-10-13 | 国立研究開発法人産業技術総合研究所 | Method for producing aromatic compound |
CN110437056A (en) * | 2019-07-17 | 2019-11-12 | 浙江华基生物技术有限公司 | The method of preparation of industrialization 2,3,4,5 tetra fluoro benzoic acid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61293932A (en) | Aromatic compound and manufacture | |
US5569760A (en) | Process for preparing nevirapine | |
JPS6143130A (en) | Production of 1,2,3,4-tetrafluorobenzene | |
JPH0113700B2 (en) | ||
JPS5925779B2 (en) | Isomerization method for stereoisomeric alicyclic diamines | |
JP2020512310A (en) | Process for producing halo-substituted benzoic acid compound and intermediate thereof | |
JP3012705B2 (en) | Method for producing (2-hydroxyphenyl) acetic acid | |
JP2000256280A (en) | Preparation of trifluoromethylbenzyl amines | |
EP0034413A1 (en) | Process for the preparation of diphenylether carboxylic acids | |
JP4074356B2 (en) | Decarboxylation of halogenated aromatic carboxylic acids | |
JPH11130723A (en) | Dicyclohexyl-2,3,3 ', 4'-tetracarboxylic acid compound or dianhydride thereof and method for producing the same | |
JPS6136244A (en) | Production of 2,4,6-trifluorobenzoic acid | |
JPH05279305A (en) | Production of 3'-amino-2'-hydroxyacetophenone | |
JP2001172221A (en) | Method for producing highly pure 4,4- biphenyldicarboxylic acid | |
JPH0377844A (en) | Production of bisnaphthalic acids | |
JPH0655719B2 (en) | Method for producing N, N'-m-phenylene bismaleimide | |
JPS61251659A (en) | Production of 2-or 3-aminomethylpiperidine | |
JPS63295529A (en) | Production of 2,3,4,5-tetrafluorobenzoic acid | |
JPS5935907B2 (en) | Production method of aromatic polycarboxylic acid | |
JP4122527B2 (en) | Method for producing dimerized aromatic compound and catalyst for production thereof | |
JPH01121268A (en) | Production of 3,5-dichloropyridine | |
JPH02255633A (en) | Production of bis(trifluoromethylphenyl)methanol | |
JP3545807B2 (en) | Method for producing 3,3'-diphenyl-4,4'-dihydroxybiphenyl | |
JP2001002645A (en) | Method for producing 2,6-diamino-3,5-difluoropyridine | |
JPH0259566A (en) | Production of 4-hydroxy-2h-pyran-2-one |