[go: up one dir, main page]

JPS6142766B2 - - Google Patents

Info

Publication number
JPS6142766B2
JPS6142766B2 JP15524679A JP15524679A JPS6142766B2 JP S6142766 B2 JPS6142766 B2 JP S6142766B2 JP 15524679 A JP15524679 A JP 15524679A JP 15524679 A JP15524679 A JP 15524679A JP S6142766 B2 JPS6142766 B2 JP S6142766B2
Authority
JP
Japan
Prior art keywords
less
temperature
rolling
hot
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15524679A
Other languages
Japanese (ja)
Other versions
JPS5677333A (en
Inventor
Rikuro Ogawa
Takaaki Yuzutori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15524679A priority Critical patent/JPS5677333A/en
Publication of JPS5677333A publication Critical patent/JPS5677333A/en
Publication of JPS6142766B2 publication Critical patent/JPS6142766B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、複合組織型高延性高強度冷延鋼板の
製造法に関し、特に箱型焼続法による製造法にお
いて、熱間圧延工程での圧延制御により、得られ
る鋼板の強度―延性バランスを改善したものであ
る。 従来の高強度冷延鋼板は、その強化法として、
析出強化、細粒強化、置換型元素の固溶強化等が
一般に適用されているが、これら高強度鋼板は、
冷間加工割れを生じ易く、形状凍結性に劣るほ
か、工具摩耗が大きく、型かじりを生じ易い等、
冷間加工性の面で難点がある。 これに対処するため、近年複合組織型高延性高
強度冷延鋼板が実用化されつつある。この鋼板
は、降伏強度を低くすることにより形状凍結性や
型かじりを改善するとともに、均一押びを高める
ことによつて張出し成形性を向上させたものであ
る。しかしながら、その反面、前記従来鋼板にく
らべ、局所伸び、絞り等の不均一伸びの低下を生
じ易く、全伸びの改善効果が得られないため、伸
びフランジ成形性の要求される用途への適用が制
限されることも少なくない。 また、この複合組織型鋼板の製造過程において
は、連続焼鈍炉または箱型焼鈍炉により、フエラ
イト相(α)およびオーステナイト相(γ)から
なる2相域温度での焼鈍処理が行なわれる。連続
焼鈍法により複合組織を得るには、(α+γ)の
2相域温度から急速冷却を行なわねばならない。
その必要な冷却速度は、鋼の合金元素添加量が多
ければ比較的緩慢であつてよいが、コスト低減を
目的として添加量を節減する場合には、高い冷却
速度を与えなければならない。しかし、あまり冷
却速度を高めると、得られる鋼板の不均一伸びが
低下し、強度―延性バランスが著しく悪化する。
一方、箱型焼鈍により、(α+γ)の2相域温度
から徐冷して複合組織を得るには、Mn、Cr、Mo
等の合金元素を多量に添加する必要がある。しか
し、かかる合金元素を多量に加えると、製造コス
トの上昇だけでなく、鋼板の溶接性、表面性状お
よび延性等の材質特性面で問題が生ずる。 本発明者等は、複合組織型鋼板の上記材質特性
の問題を解決し、かつ製造コストの低減を図るべ
く、その製造工程での各条件について詳細な研究
を重ねた結果、熱間圧延工程において、未再結晶
オーステナイト域(オーステナイトの再結晶が著
しく遅滞する温度域)での累積圧下率を、鋼の合
金成分組成に応じて調整する圧延制御を行なうこ
とにより、比較的少量の合金元素で、強度および
延性を高め、かつ強度―延性バランスを改善し得
ることを見出し本発明を完成するに到つた。 すなわち、本発明は、熱間圧延、冷間圧延およ
び焼鈍処理を経て、複合組織型冷延鋼板を製造す
る方法において、C、MnおよびSiを基本成分と
し、所望によりNb、V、TiおよびZrの群(以
下、「A群元素」という)から選らばれる1種も
しくは2種以上の元素およびその他の元素を含む
成分組成の鋼を用い、その熱間圧延工程におい
て、(i)A群元素を含まない鋼の場合は、温度約
950℃以下での累積圧下率が約50%以上の圧下、
(ii)A群元素を含む鋼の場合には、同圧下率約30%
以上の圧下、を含む熱間圧延を行ない、得られた
熱延鋼板を冷間加工したのち、(α+γ)の2相
域温度にて箱型焼鈍するようにした新規製造法を
提供するものであり、かかる処理により、(i)フエ
ライト地に、第2相としてベイナイト、マルテン
サイトまたは残留オーステナイト等の共存する2
相組織となし、低降伏比化により、均一伸びを増
大させるとともに、(ii)フエライト結晶粒の極微細
化とフエライトの純化促進、およびフエライトと
第2相の強度比の調整効果により不均一伸びを増
大させて、高延性・高強度と良好な強度―延性バ
ランスを具備せしめたものである。 以下、本発明方法について詳しく説明する。 本発明によれば、オーステナイト域における熱
間圧延工程において、未再結晶オーステナイト域
での累積圧下率を高めることにより、変態前のオ
ーステナイトに強加工が加えられる。この未再結
晶オーステナイトの強加工の目的は、その後の変
態過程で高純度の微細フエライトの強制析出を促
がすことにある。この効果を得るには、未再結晶
オーステナイト域での累積圧下率を約30%以上と
すべきであり、好ましくは約50%以上となるよう
に圧延される。また、前記A群元素であるNb、
V、TiまたはZrのいづれの元素も含まない鋼の
場合には、温度約950℃以下での累積圧下率が約
50%以上、好ましくは60%以上となるように熱延
を行ない、一方該A群元素の1種または2種以上
を含む鋼では、該元素によりオーステナイト再結
晶が抑制され、未再結晶オーステナイト温度域が
高温側へ広がるので、温度約950℃以下での累積
圧下率が約30%以上、好ましくは約50%以上とな
るように熱延を行なうことにより前記効果を十分
に得ることができる。熱間圧延に際しての鋼片熱
温度は、パススケジユールに応じ、上記温度域で
所定の圧下率が得られるように適宜調整すればよ
いが、A群元素を含まない鋼では約1000℃以上と
し、A群元素を含む鋼では約1050℃以上としてよ
い。なお、この熱間圧延における加熱および圧延
は、通常のスラブ加熱炉を用い、あるいは分塊圧
延ののち、直送圧延を行なう等の適宜の方法で行
なつてよい。 熱間圧延の仕上温度はAr3変態点温度以上と
し、オーステナイト単相で圧延を終了することが
必要である。未再結晶オーステナイトの加工度が
増大する程α変態が活発化し、その変態開始の温
度と時間は高温短時間側に移行する結果(α+
γ)2相域の圧延となりやすい。2相域での圧延
はα相の温間圧延に相当し、最終鋼板に{001}
集合組織を顕著に発達させることになる。このよ
うな鋼板は冷間加工性、特に深絞り加工性が悪
い。また、未再結晶オーステナイト域圧延後の
(α+γ)域圧延は熱延板のバンド組織(フエラ
イト相と第2相)の形成を助長し、最終鋼板の強
度―延性バランスを悪くする。 熱間圧延後の熱延鋼板の巻取りは、通常の温度
域(一般に約560〜710℃)で行なつてよい。巻取
温度を550℃以下とすることにより、パーライト
変態を抑制して、フエライトとベイナイト組織、
またはフエライトとマルテンサイト組織またはそ
れらの混合した組織とすることも目的としてお
り、これらの冷延前組織は最終鋼板の組織を効果
的に微細化せしめる。また最終焼鈍短時間に効率
化できる。2次的現象として残留オーステナイト
等の量も増大することから低降伏比で強度―延性
バランスに優れている。得られた熱延鋼板は、以
後常法に従つて、酸洗い等の前処理後、通常の冷
間圧延を行ない、ついで(α+γ)の2相域にお
ける箱型焼鈍処理に付される。 通常の熱間圧延された、多量の合金元素を含有
しない鋼を冷間圧延・箱焼鈍すると、焼鈍処理時
の冷却速度が著しく遅い(0.01℃/秒)ため、得
られる冷延板製品の組織はフエライト、パーライ
ト(セメンタイト)となり、前記複合組織とはな
らない。したがつて、降伏比も0.7以上となり低
降伏比鋼板を得ることはできない。前記低温圧延
(制御圧延)、950℃以下における50%以上の加
工、あるいはNb、V、Ti、Zr等を含有する鋼に
おいては950℃以下において30%以上の加工を施
すことによつて、箱焼鈍のごとき冷却速度の遅い
熱処理でも複合組織とすることが可能となり、低
降伏比冷延板製品を得ることができる。 他方、上記低温圧延が(α+γ)2相域で強加
工したのちに終了する時は、(α+γ)2相共存
状態でのα相の加工に伴い熱延板の{200}集合
組織が発達する。この熱延板を冷延・焼鈍する
と、複合組織を得ることができるが、{200}集合
組織が強く残存するために深絞り加工性を損なう
ことがある。したがつて、深絞り加工性を重視す
る製品では圧延終了温度をAr3以上とすることが
望ましい。 通常、熱間圧延後の巻取りは、低温巻取、普通
巻取、高温巻取を含めて、560〜710℃の温度範囲
で行なわれることから、熱延板の組織は、フエラ
イト、パーライト(セメンタイト)となる。550
℃以下の従来よりも低い温度で巻取ると、上記の
組織はフエライトとベイナイトやマルテンサイト
(一部残留オーステナイトを含む)の低温変態生
成相の複合組織もしくは低温変態生成相主体の組
織へと変化する。このような組織を有する熱延板
を冷延・焼鈍することにより極めて均一で微細な
複合組織を有する冷延板を得ることが可能とな
り、強度、延性バランスを一層向上させ得る。 次に、本発明に用いられる鋼の成分組成につい
て説明する。 本発明が適用される鋼は、C、MnおよびSiを
基本成分系とし、所望により、該基本成分系に(a)
A群元素であるNb、V、TiおよびZrの1種また
は2種以上の元素、または(b)Cr、Ni、Mo、Cu、
P、CaおよびCeの群から選らばれる1種もしく
は2種以上の元素を含む。該(a)および(b)の元素は
それぞれ単独で添加してよく、あるいは複合して
加えてもよい。 Cは、強度を高める効果を有する。添加量が約
0.01%に満たないと強度が不足する。一方約0.2
%を越えると溶接性が悪化する。従つて、約0.01
〜0.2%とする。 Mnは、複合組織を得るのに有効である。この
ために約1.0%以上加えられる。但し、多量の添
加は、鋼の溶製上問題があり、また溶接性をも悪
くするので、約2.5%を上限とする。 Siは、熱間圧延工程でのフエライト変態を促進
し、フエライトを純化する効果を有する。また、
未再結晶オーステナイトの強加工との相乗効果に
より、良好な強度―延性バランスを与える。たゞ
し、これらの効果は、添加量約1.0%でほゞ飽和
するので、それ以上加える必要はない。 A群元素であるNb、V、TiおよびZrは、熱間
圧延工程でのオーステナイト再結晶を抑止し、未
再結晶オーステナイト温度域を高温側に広くする
効果を有する。これら各元素の効果は、添加量と
ともに増加するが、あまり多く加えても効果が飽
和し、あるいは却つて減少するので、Nbは約0.1
%、Vは約0.15%、Tiは約0.2%、Zrは約0.3%を
それぞれ上限とする。これら元素は、該各範囲内
で、任意の1種を単独で、または2種以上を複合
して添加してよい。 Cr、MoおよびNiは、いづれも焼入性向上元素
および強化元素として、必要に応じ単独もしくは
複合的に用いられる。但し、多量に加えると、溶
接性を悪くするので、Crは約1.5%以下、Moは約
0.6%以下、Niは約1.5%以下の各範囲内で加えら
れる。 Cuは、耐候性の改善に有効である。但し、約
0.6%を越えると熱間割れを起し易くなるので、
上限を約0.6%とする。 Pは、固溶体の強化、延性向上の効果を有す
る。但し、多く加えると、脆化を伴ない、溶接性
にも悪影響を及ぼすので、約0.2%以下の範囲で
加えられる。 CaおよびCeは、いづれも材質特性に有害な非
金属介在物(特に硫化物系介在物)の形状を制御
し、これを無害なものにする働きを有する。但
し、多量に加えると、これら元素の非金属化合物
の増加により延性が損われるので、各元素とも約
0.02%を上限とし、単独または複合して添加す
る。 上記組成を有する鋼の溶製法には特別の制限は
なく、Siキルド、AlキルドあるいはSi―Alキルド
などのいづれであつてもよい。また、必要に応
じ、溶製過程で、RH方式またはDH方式等の脱ガ
ス処理を施してよい。 更に、鋼片の製造は、通常の造塊―分塊工程に
よつてもよく、あるいは連続鋳造法のいづれであ
つてもよい。 次に実施例を挙げて本発明について具体的に説
明する。 実施例 第1表に示す化学成分組成の供試材(成分組成
は、いづれも本発明の前記規定を満す)を用い、
熱間圧延し、ついで圧下率70%の冷間加工にて板
厚0.8mmの冷延鋼板となしたのち、温度750℃にて
箱型焼鈍を行ない、その後冷却速度26℃/Hrで
徐冷して製品鋼板を得た。第2表に熱間圧延条件
および熱延鋼板巻取条件、並びに機械的諸性質の
測定結果を示す。なお、第2表中、「圧延条件」
の欄の「CR」は本発明により温度約950℃以下の
累積圧下率を調整する制御圧延を行なつたもの、
「HR」は通常の熱間圧延を行なつた比較材であ
り、本発明による供試材No.1では、加熱温度1100
℃、同No.2〜7は1150℃同No.9〜15は1100℃と
し、950℃以下での累積圧下率は、いづれも60〜
78%に調整した。比較材であるNo.8の950℃以下
における累積圧下率は20%以下である。また、
「巻取条件」の欄の「通常」とは温度570〜710℃
で、「低温」とは温度180〜550℃で、それぞれ熱
延板の巻取りを行なつたことを示す。
The present invention relates to a method for manufacturing a composite structure type high ductility high strength cold rolled steel sheet, and in particular, in a manufacturing method using a box sintering method, the strength-ductility balance of the obtained steel sheet is improved by controlling rolling in the hot rolling process. This is what I did. Conventional high-strength cold-rolled steel sheets are strengthened by
Precipitation strengthening, fine grain strengthening, solid solution strengthening with substitutional elements, etc. are generally applied, but these high strength steel plates are
In addition to being prone to cold processing cracks and poor shape fixability, tool wear is large and mold galling is likely to occur.
There is a drawback in terms of cold workability. In order to deal with this problem, composite structure type high ductility high strength cold rolled steel sheets are being put into practical use in recent years. This steel plate has improved shape fixability and mold galling by lowering the yield strength, and improved stretch formability by increasing uniform pressing. However, on the other hand, compared to the conventional steel sheets, local elongation, reduction in uneven elongation due to reduction, etc. are more likely to occur, and the effect of improving total elongation cannot be obtained, making it difficult to apply to applications requiring stretch flange formability. There are often restrictions. Further, in the manufacturing process of this composite structure steel sheet, annealing treatment is performed at a temperature in a two-phase region consisting of a ferrite phase (α) and an austenite phase (γ) in a continuous annealing furnace or a box-type annealing furnace. In order to obtain a composite structure by continuous annealing, rapid cooling must be performed from a temperature in the two-phase region of (α+γ).
The required cooling rate may be relatively slow if the steel has a large amount of alloying elements added, but if the amount added is to be reduced for cost reduction purposes, a high cooling rate must be provided. However, if the cooling rate is increased too much, the non-uniform elongation of the obtained steel sheet will decrease, and the strength-ductility balance will deteriorate significantly.
On the other hand, in order to obtain a composite structure by slow cooling from the two-phase region temperature of (α + γ) by box annealing, Mn, Cr, Mo
It is necessary to add a large amount of alloying elements such as. However, adding a large amount of such alloying elements not only increases manufacturing costs, but also causes problems in material properties such as weldability, surface texture, and ductility of the steel sheet. In order to solve the problem of the above-mentioned material properties of composite structure type steel sheets and reduce manufacturing costs, the present inventors conducted detailed research on various conditions in the manufacturing process, and as a result, in the hot rolling process. By performing rolling control that adjusts the cumulative reduction rate in the unrecrystallized austenite region (temperature region where austenite recrystallization is significantly delayed) according to the alloy composition of the steel, with a relatively small amount of alloying elements, We have completed the present invention by discovering that strength and ductility can be increased and the strength-ductility balance can be improved. That is, the present invention provides a method for producing a cold-rolled steel sheet with a composite structure through hot rolling, cold rolling and annealing treatment, in which C, Mn and Si are the basic components, and Nb, V, Ti and Zr are optionally added. (hereinafter referred to as "Group A elements") and other elements, and in the hot rolling process, (i) Group A elements are added to the steel. For steel not containing, the temperature approx.
Rolling with a cumulative reduction rate of approximately 50% or more at temperatures below 950℃,
(ii) In the case of steel containing group A elements, the same reduction rate is approximately 30%.
The present invention provides a new manufacturing method in which hot rolling including the above reduction is performed, the obtained hot rolled steel sheet is cold worked, and then box-type annealing is performed at a temperature in the two-phase region of (α + γ). By this treatment, (i) 2 coexisting bainite, martensite, retained austenite, etc. as a second phase is formed in the ferrite area.
(ii) Non-uniform elongation is achieved by ultra-fine ferrite grains, promotion of ferrite purification, and adjustment of the strength ratio of ferrite and the second phase. It has high ductility, high strength, and a good strength-ductility balance. The method of the present invention will be explained in detail below. According to the present invention, in the hot rolling process in the austenite region, strong working is applied to the austenite before transformation by increasing the cumulative reduction rate in the unrecrystallized austenite region. The purpose of this strong working of unrecrystallized austenite is to promote forced precipitation of high-purity fine ferrite in the subsequent transformation process. To obtain this effect, the cumulative rolling reduction in the unrecrystallized austenite region should be about 30% or more, preferably about 50% or more. In addition, Nb, which is the group A element,
In the case of steel that does not contain any of the elements V, Ti or Zr, the cumulative reduction rate at temperatures below about 950°C is about
On the other hand, in steels containing one or more of the group A elements, austenite recrystallization is suppressed by the elements, and the unrecrystallized austenite temperature is Since the range expands to the high temperature side, the above effect can be sufficiently obtained by performing hot rolling so that the cumulative reduction ratio at a temperature of about 950° C. or less is about 30% or more, preferably about 50% or more. The thermal temperature of the steel billet during hot rolling may be adjusted appropriately according to the pass schedule so that a predetermined reduction rate can be obtained in the above temperature range, but for steels that do not contain group A elements, it should be approximately 1000 ° C or more, For steels containing group A elements, the temperature may be approximately 1050°C or higher. The heating and rolling in this hot rolling may be carried out by any appropriate method, such as using a normal slab heating furnace or by performing direct rolling after blooming. The finishing temperature of hot rolling must be higher than the Ar 3 transformation point temperature, and it is necessary to finish the rolling with a single austenite phase. As the degree of working of unrecrystallized austenite increases, the α transformation becomes more active, and the temperature and time at which the transformation starts shifts to the high temperature and short time side (α +
γ) Rolling tends to occur in the two-phase region. Rolling in the two-phase region corresponds to α-phase warm rolling, and the final steel plate has {001}
This results in a remarkable development of collective tissue. Such steel sheets have poor cold workability, particularly poor deep drawing workability. Furthermore, rolling in the (α+γ) region after rolling in the unrecrystallized austenite region promotes the formation of a band structure (ferrite phase and second phase) in the hot-rolled sheet, worsening the strength-ductility balance of the final steel sheet. The hot-rolled steel sheet after hot rolling may be coiled at a normal temperature range (generally about 560 to 710°C). By controlling the coiling temperature to 550℃ or less, pearlite transformation is suppressed, and ferrite and bainite structures are formed.
Alternatively, the purpose is to create a ferrite and martensitic structure or a mixed structure thereof, and these structures before cold rolling effectively refine the structure of the final steel sheet. In addition, final annealing can be done more efficiently in a shorter time. As a secondary phenomenon, the amount of retained austenite increases, resulting in a low yield ratio and excellent strength-ductility balance. Thereafter, the obtained hot rolled steel sheet is subjected to pretreatment such as pickling in a conventional manner, followed by ordinary cold rolling, and then subjected to box annealing in the (α+γ) two-phase region. When ordinary hot-rolled steel that does not contain large amounts of alloying elements is cold-rolled and box-annealed, the cooling rate during annealing is extremely slow (0.01°C/sec), so the structure of the resulting cold-rolled sheet product is becomes ferrite and pearlite (cementite), and does not form the above-mentioned composite structure. Therefore, the yield ratio is also 0.7 or more, making it impossible to obtain a low yield ratio steel plate. By performing the above-mentioned low-temperature rolling (controlled rolling), 50% or more processing at 950°C or less, or 30% or more processing at 950°C or less for steel containing Nb, V, Ti, Zr, etc. It becomes possible to form a composite structure even by heat treatment with a slow cooling rate such as annealing, and a cold-rolled sheet product with a low yield ratio can be obtained. On the other hand, when the above-mentioned low-temperature rolling ends after strong working in the (α + γ) two-phase region, the {200} texture of the hot-rolled sheet develops due to the working of the α phase in the (α + γ) two-phase coexistence state. . When this hot-rolled sheet is cold-rolled and annealed, a composite structure can be obtained, but deep drawability may be impaired because the {200} texture remains strongly. Therefore, for products where deep drawability is important, it is desirable to set the rolling end temperature to Ar 3 or higher. Normally, winding after hot rolling is carried out at a temperature range of 560 to 710°C, including low-temperature winding, normal winding, and high-temperature winding. cementite). 550
When coiled at a temperature lower than the conventional temperature of ℃ or below, the above structure changes to a composite structure of ferrite and low-temperature transformation phases such as bainite and martensite (including some residual austenite) or a structure consisting mainly of low-temperature transformation phases. do. By cold rolling and annealing a hot rolled sheet having such a structure, it is possible to obtain a cold rolled sheet having an extremely uniform and fine composite structure, and the balance between strength and ductility can be further improved. Next, the composition of the steel used in the present invention will be explained. The steel to which the present invention is applied has a basic composition system of C, Mn, and Si, and if desired, (a) is added to the basic composition system.
One or more elements of group A elements Nb, V, Ti and Zr, or (b) Cr, Ni, Mo, Cu,
Contains one or more elements selected from the group of P, Ca, and Ce. The elements (a) and (b) may be added singly or in combination. C has the effect of increasing strength. The amount added is approx.
If it is less than 0.01%, the strength will be insufficient. On the other hand, about 0.2
%, weldability deteriorates. Therefore, about 0.01
~0.2%. Mn is effective in obtaining a composite tissue. For this purpose, about 1.0% or more is added. However, addition of a large amount causes problems in melting the steel and also impairs weldability, so the upper limit is set at about 2.5%. Si has the effect of promoting ferrite transformation during the hot rolling process and purifying ferrite. Also,
The synergistic effect with the strong deformation of unrecrystallized austenite provides a good strength-ductility balance. However, since these effects are almost saturated at an addition amount of about 1.0%, there is no need to add any more. Group A elements Nb, V, Ti, and Zr have the effect of suppressing austenite recrystallization during the hot rolling process and widening the temperature range of unrecrystallized austenite to the high temperature side. The effect of each of these elements increases with the amount added, but if too much is added, the effect will saturate or even decrease, so Nb is approximately 0.1
%, V is approximately 0.15%, Ti is approximately 0.2%, and Zr is approximately 0.3%. These elements may be added singly or in combination of two or more within the respective ranges. Cr, Mo, and Ni are all used as hardenability-improving elements and reinforcing elements, either singly or in combination as necessary. However, if added in large amounts, weldability will deteriorate, so Cr should be about 1.5% or less and Mo should be about 1.5% or less.
Ni is added within a range of 0.6% or less, and Ni is added within a range of about 1.5% or less. Cu is effective in improving weather resistance. However, approximately
If it exceeds 0.6%, hot cracking is likely to occur.
The upper limit is set at approximately 0.6%. P has the effect of strengthening the solid solution and improving ductility. However, if added in a large amount, it will cause embrittlement and have a negative effect on weldability, so it should be added within a range of about 0.2% or less. Both Ca and Ce have the function of controlling the shape of nonmetallic inclusions (especially sulfide inclusions) that are harmful to material properties and rendering them harmless. However, if large amounts are added, the ductility will be impaired due to the increase in nonmetallic compounds of these elements, so each element should be added in approx.
The upper limit is 0.02%, and it can be added singly or in combination. There are no particular restrictions on the melting method for steel having the above composition, and any method such as Si killed, Al killed, or Si-Al killed may be used. Further, if necessary, degassing treatment such as RH method or DH method may be performed during the melting process. Further, the steel billets may be manufactured by either a conventional ingot-blending process or a continuous casting method. Next, the present invention will be specifically explained with reference to Examples. Example Using a test material having a chemical composition shown in Table 1 (all compositions satisfying the above-mentioned provisions of the present invention),
After hot rolling and then cold working at a rolling reduction rate of 70% to form a cold rolled steel plate with a thickness of 0.8 mm, box annealing was performed at a temperature of 750°C, and then slowly cooled at a cooling rate of 26°C/Hr. A product steel plate was obtained. Table 2 shows hot rolling conditions, hot rolled steel sheet winding conditions, and measurement results of mechanical properties. In addition, in Table 2, "rolling conditions"
"CR" in the column indicates that controlled rolling was performed according to the present invention to adjust the cumulative reduction rate at a temperature of approximately 950°C or less;
"HR" is a comparison material that was subjected to normal hot rolling, and test material No. 1 according to the present invention was heated at a heating temperature of 1100.
℃, Nos. 2 to 7 are 1150℃, Nos. 9 to 15 are 1100℃, and the cumulative reduction rate at 950℃ or less is 60 to 60℃.
Adjusted to 78%. The cumulative reduction rate of comparative material No. 8 at temperatures below 950°C is 20% or less. Also,
``Normal'' in the ``Winding Conditions'' column means a temperature of 570 to 710℃.
Here, "low temperature" indicates that the hot-rolled sheet was wound at a temperature of 180 to 550°C.

【表】【table】

【表】【table】

【表】【table】

【表】 第2表に示されるように、本発明方法により得
られた供試材No.1〜7および9〜15は、一定の降
伏強度および引張強さを備え、かつ比較材No.8に
くらべ、降伏比が低く、全伸びが高いことが判
る。第1図は、上記結果にもとづいて各供試材の
降伏強度(YP)と引張強さ(TS)の関係を示し
たグラフである。図中、「●」印は通常巻取り、
「〇」印は低温巻取りを行なつた本発明材(No.1
〜7)、「×」印は比較材(No.8)であり、直線
は降伏比(YR)0.5、は0.6、は0.7の各ライ
ンを示す。同図から、従来法による比較材No.8の
降伏比は0.7を越えるのに対し、本発明方法によ
るNo.1〜7および9〜15材は、ほゞ0.6以下と低
いことが判る。第2図は、各供試材の引張強度と
全伸びの関係を示したグラフである。図中のマー
クは前記第1図と同じであり、曲線イは本発明方
法で低温巻取した場合、ロは通常巻取を行なつた
場合の各強度―延性バランス、ハは該両者を包括
した強度―延性バランス(TS×El=1800)、ニは
従来法による比較材No.8の強度―延性バランスを
それぞれ表わす。 同図から、本発明による強度―延性バランス
は、従来法に比し、著しくすぐれ、特に低温巻取
りによつて一そう向上することが判る。 以上のように、本発明によれば、高強度ととも
に、延性および強度―延性バランスにすぐれた複
合組織型冷延鋼板が得られ、苛酷な成形加工が施
こされる用途に対しても好適な材料として供する
ことができる。また、かかる材質特性を満たすの
に、特別の合金元素の新たな添加もしくは増量を
必要とせず、経済的にも非常に有利である。
[Table] As shown in Table 2, sample materials Nos. 1 to 7 and 9 to 15 obtained by the method of the present invention have constant yield strength and tensile strength, and comparative material No. 8 It can be seen that the yield ratio is lower and the total elongation is higher compared to the above. FIG. 1 is a graph showing the relationship between yield strength (YP) and tensile strength (TS) of each sample material based on the above results. In the diagram, the "●" mark indicates normal winding.
The “〇” mark indicates the material of the present invention (No. 1) that was rolled at low temperature.
~7), the "x" mark is the comparative material (No. 8), and the straight lines indicate the yield ratio (YR) of 0.5, 0.6, and 0.7. From the same figure, it can be seen that the yield ratio of comparative material No. 8 produced by the conventional method exceeds 0.7, whereas that of materials Nos. 1 to 7 and 9 to 15 produced by the method of the present invention is as low as approximately 0.6 or less. FIG. 2 is a graph showing the relationship between the tensile strength and total elongation of each sample material. The marks in the figure are the same as in Figure 1 above, curve A is the strength-ductility balance when low-temperature winding is carried out using the method of the present invention, B is the strength-ductility balance when normal winding is carried out, and curve C is inclusive of both. The strength-ductility balance (TS x El = 1800) and D represent the strength-ductility balance of comparative material No. 8 obtained by the conventional method. From the figure, it can be seen that the strength-ductility balance according to the present invention is significantly superior to that of the conventional method, and is particularly improved by low-temperature winding. As described above, according to the present invention, a cold-rolled steel sheet with a composite structure that has high strength, ductility, and a good strength-ductility balance can be obtained, and is suitable for applications where severe forming processing is performed. It can be used as a material. Furthermore, in order to satisfy such material characteristics, it is not necessary to newly add or increase the amount of special alloying elements, which is very economically advantageous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は引張強さと降伏強度の関係を示すグラ
フおよび第2図は引張強さと全伸びの関係を示す
グラフである。
FIG. 1 is a graph showing the relationship between tensile strength and yield strength, and FIG. 2 is a graph showing the relationship between tensile strength and total elongation.

Claims (1)

【特許請求の範囲】 1 C0.01〜0.2%、Mn1.0〜2.5%、Si1.0%以
下、残部鉄および不可避の不純物から成る鋼の熱
延工程において、温度950℃以下での累積圧下率
が50%以上となるごとき圧下を含み、圧延仕上温
度Ar3点以上の熱間圧延を行ない、得られた熱延
板を冷間圧延したのち、フエライト相およびオー
ステナイト相の2相域温度にて箱型焼鈍処理を行
なうことを特徴とする複合組織型高延性高強度冷
延鋼板の製造法。 2 熱間圧延における熱延板巻取温度を550℃以
下に調節することを特徴とする上記第1項に記載
の製造法。 3 C0.01〜0.2%、Mn1.0〜2.5%、Si1.0%以
下、およびCr1.5%以下、Ni1.5%以下、Mo0.6%
以下、Cu0.6%以下、P0.2%以下、Ca0.02%以
下、Ce0.02%以下の群から選ばれる1種または
2種以上の元素を含み、残部鉄および不可避の不
純物から成る鋼の熱延工程において、温度950℃
以下での累積圧下率が50%以上となるごとき圧下
を含み、圧延仕上温度Ar3点以上の熱間圧延を行
ない、得られた熱延鋼板を冷間圧延したのち、フ
エライト相およびオーステナイト相の2相域温度
にて箱型焼鈍処理を行なうことを特徴とする複合
組織型高延性高強度冷延鋼板の製造法。 4 熱間圧延における熱延板巻取温度を550℃以
下に調整することを特徴とする上記第3項に記載
の製造法。 5 C0.01〜0.2%、Mn1.0〜2.5%、Si1.0%以
下、およびNb0.1%以下、V0.15%以下、Ti0.2%
以下もしくはZr0.3%以下の群から選ばれる1種
もしくは2種以上の元素を含み、残部鉄および不
可避の不純物から成る鋼の熱延工程において、温
度950℃以下での累積圧下率が30%以上の圧下を
含み、圧延仕上温度Ar3点以上の熱間圧延を行な
い、得られた熱延板を冷間圧延したのち、フエラ
イト相およびオーステナイト相の2相域温度にて
箱型焼鈍処理を施すことを特徴とする複合組織型
高延性高強度冷延鋼板の製造法。 6 熱間圧延における熱延板巻取温度を550℃以
下に調整することを特徴とする上記第5項に記載
の製造法。 7 C0.01〜0.2%、Mn1.0〜2.5%、Si1.0%以
下、および(i)Nb0.1%以下、V0.15%以下、Ti0.2
%以下もしくはZr0.3%以下の群から選ばれる1
種もしくは2種以上の元素、並びに(ii)Cr1.5%以
下、Ni1.5%以下、Mo0.6%以下、Cu0.6%以下、
P0.2%以下、Ca0.02%以下、Ce0.02%以下の群
から選ばれる1種または2種以上の元素を含み、
残部鉄および不可避の不純物から成る鋼の熱延工
程において、温度950℃以下での累積圧下率が30
%以上となるごとき圧下を含み、圧延仕上温度
Ar3点以上の熱間圧延を行ない、得られた熱延鋼
板を冷間圧延したのち、フエライト相およびオー
ステナイト相の2相域温度にて箱型焼鈍処理を行
なうことを特徴とする複合組織型高延性高強度冷
延鋼板の製造法。 8 熱間圧延における熱延板巻取温度を550℃以
下に調整することを特徴とする上記第7項に記載
の製造法。
[Claims] 1 Cumulative reduction at a temperature of 950°C or less in the hot rolling process of steel consisting of 0.01 to 0.2% C, 1.0 to 2.5% Mn, 1.0% or less Si, the balance iron and unavoidable impurities. Hot rolling is carried out at 3 points or more at finishing temperature Ar, including rolling reduction such that the rolling ratio is 50% or more, and the resulting hot rolled sheet is cold rolled to a temperature in the two-phase region of ferrite phase and austenite phase. A method for producing a complex structure type high ductility high strength cold rolled steel sheet characterized by performing box annealing treatment. 2. The manufacturing method according to item 1 above, characterized in that the winding temperature of the hot rolled sheet during hot rolling is adjusted to 550°C or less. 3 C0.01~0.2%, Mn1.0~2.5%, Si1.0% or less, and Cr1.5% or less, Ni1.5% or less, Mo0.6%
Steel containing one or more elements selected from the following groups: Cu 0.6% or less, P 0.2% or less, Ca 0.02% or less, Ce 0.02% or less, with the balance consisting of iron and unavoidable impurities. In the hot rolling process, the temperature is 950℃.
Hot rolling is carried out at 3 or more points of rolling finish temperature Ar, including rolling with a cumulative reduction ratio of 50% or more, and the resulting hot rolled steel sheet is cold rolled, and then the ferrite phase and austenite phase are removed. A method for producing a complex structure type high ductility high strength cold rolled steel sheet characterized by performing box annealing treatment at a temperature in a two-phase region. 4. The manufacturing method according to item 3 above, wherein the hot-rolled sheet winding temperature during hot rolling is adjusted to 550°C or lower. 5 C0.01~0.2%, Mn1.0~2.5%, Si1.0% or less, and Nb0.1% or less, V0.15% or less, Ti0.2%
In the hot rolling process of steel containing one or more elements selected from the group below or Zr0.3% or less, with the remainder iron and unavoidable impurities, the cumulative reduction rate at a temperature of 950°C or less is 30%. After performing hot rolling at a finishing temperature Ar of 3 points or more including the above rolling reduction, and cold rolling the obtained hot rolled sheet, box annealing is performed at a temperature in the two-phase region of ferrite phase and austenite phase. A method for manufacturing a composite structure type high ductility high strength cold rolled steel sheet characterized by applying 6. The manufacturing method according to item 5 above, characterized in that the hot rolled sheet winding temperature during hot rolling is adjusted to 550°C or less. 7 C0.01~0.2%, Mn1.0~2.5%, Si1.0% or less, and (i) Nb0.1% or less, V0.15% or less, Ti0.2
% or less or Zr0.3% or less 1
species or two or more elements, and (ii) Cr 1.5% or less, Ni 1.5% or less, Mo 0.6% or less, Cu 0.6% or less,
Contains one or more elements selected from the group of P0.2% or less, Ca0.02% or less, Ce0.02% or less,
In the hot rolling process of steel consisting of residual iron and unavoidable impurities, the cumulative reduction rate is 30 at temperatures below 950°C.
% or more, rolling finishing temperature
A composite structure type characterized by performing hot rolling at 3 or more Ar points, cold rolling the obtained hot rolled steel sheet, and then performing box annealing treatment at a temperature in the two-phase region of ferrite phase and austenite phase. A method for producing high-ductility, high-strength cold-rolled steel sheets. 8. The manufacturing method according to item 7 above, characterized in that the hot-rolled sheet winding temperature during hot rolling is adjusted to 550°C or less.
JP15524679A 1979-11-29 1979-11-29 Production of composite structure type high ductility high strength cold-rolled steel plate Granted JPS5677333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15524679A JPS5677333A (en) 1979-11-29 1979-11-29 Production of composite structure type high ductility high strength cold-rolled steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15524679A JPS5677333A (en) 1979-11-29 1979-11-29 Production of composite structure type high ductility high strength cold-rolled steel plate

Publications (2)

Publication Number Publication Date
JPS5677333A JPS5677333A (en) 1981-06-25
JPS6142766B2 true JPS6142766B2 (en) 1986-09-24

Family

ID=15601718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15524679A Granted JPS5677333A (en) 1979-11-29 1979-11-29 Production of composite structure type high ductility high strength cold-rolled steel plate

Country Status (1)

Country Link
JP (1) JPS5677333A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100496565B1 (en) * 2000-12-20 2005-06-23 주식회사 포스코 The making method for the cold rolled high strength sheet steel with excellent ductility
JP4051999B2 (en) * 2001-06-19 2008-02-27 Jfeスチール株式会社 High tensile hot-rolled steel sheet excellent in shape freezing property and durability fatigue property after forming, and method for producing the same
CN102534369B (en) * 2012-01-13 2013-05-01 北京科技大学 Method for preparing N80 steel-grade expansion tubes for petroleum and natural gas exploitation

Also Published As

Publication number Publication date
JPS5677333A (en) 1981-06-25

Similar Documents

Publication Publication Date Title
EP3144406B1 (en) High-strength cold rolled steel sheet having excellent ductility, hot-dip galvanized steel sheet and method for manufacturing the same
JP6846522B2 (en) High-strength cold-rolled steel sheets with excellent yield strength, ductility, and hole expansion properties, hot-dip galvanized steel sheets, and methods for manufacturing these.
KR100324892B1 (en) High-strength, high-strength superstructure tissue stainless steel and its manufacturing method
JP6766190B2 (en) Ultra-high-strength, high-ductility steel sheet with excellent yield strength and its manufacturing method
EP2647730B1 (en) A method for manufacturing a high strength formable continuously annealed steel strip
EP3438315A1 (en) High-strength cold rolled steel sheet with excellent yield strength and ductility, coated steel plate, and method for manufacturing same
JPS5827329B2 (en) Manufacturing method of low yield ratio high tensile strength hot rolled steel sheet with excellent ductility
JP4644075B2 (en) High-strength steel sheet with excellent hole expansibility and manufacturing method thereof
JP2652539B2 (en) Method for producing composite structure high strength cold rolled steel sheet with excellent stretch formability and fatigue properties
JPH01184226A (en) Production of steel sheet having high-ductility high-strength multiple structure
JPH0830212B2 (en) Manufacturing method of ultra high strength cold rolled steel sheet with excellent workability
JP4010131B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP3911972B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet
JPS6142766B2 (en)
JPH0665645A (en) Method for manufacturing high ductility hot rolled high strength steel sheet
JP3870840B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
JPS60184664A (en) High ductile and high tensile steel containing stable retained austenite
JP2007321169A (en) Method for producing high-strength hot-dip galvanized steel sheet having excellent formability
EP2980227A1 (en) Steel sheet and method for producing same
JPS638164B2 (en)
JP2582894B2 (en) Hot-rolled steel sheet for deep drawing and its manufacturing method
JP3925063B2 (en) Cold-rolled steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same
JPS6142767B2 (en)
JP2003013176A (en) High-ductility cold-rolled steel sheet superior in press formability and strain aging hardening characterisitics, and manufacturing method therefor