[go: up one dir, main page]

JPS6141785A - Manufacture of active cathode - Google Patents

Manufacture of active cathode

Info

Publication number
JPS6141785A
JPS6141785A JP59162852A JP16285284A JPS6141785A JP S6141785 A JPS6141785 A JP S6141785A JP 59162852 A JP59162852 A JP 59162852A JP 16285284 A JP16285284 A JP 16285284A JP S6141785 A JPS6141785 A JP S6141785A
Authority
JP
Japan
Prior art keywords
plating
particle size
size distribution
fine particles
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59162852A
Other languages
Japanese (ja)
Other versions
JPH0245719B2 (en
Inventor
Akihiro Sakata
昭博 坂田
Toshimasa Okazaki
岡崎 利昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP59162852A priority Critical patent/JPS6141785A/en
Publication of JPS6141785A publication Critical patent/JPS6141785A/en
Publication of JPH0245719B2 publication Critical patent/JPH0245719B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To stabilize plating operation and to obtain easily a cathode having low hydrogen overvoltage by carrying out electroplating with a plating bath for essentially depositing nickel while supplying fine solid particles having a particle size distribution in which the small particle size part is dense. CONSTITUTION:A plating bath for essentially depositing nickel is prepd. The plating bath contains dispersed fine solid particles having >=10mum width of the particle size distribution. A cathode substrate is electroplated with the plating bath, and in accordance with the progress of plating, fine solid particles having a particle size distribution in which the small particle size part is denser than that in the particle size distribution of said fine solid particles are supplied.

Description

【発明の詳細な説明】 (1)発明の構成 (産業上の利用分野) 本発明は、塩化アルカリ水溶液の電解、或は水電解に好
適に使用される低水素過電圧特性を持った活性陰極の製
造方法に関するものである。
Detailed Description of the Invention (1) Structure of the Invention (Field of Industrial Application) The present invention provides an active cathode with low hydrogen overvoltage characteristics suitable for electrolysis of aqueous alkali chloride solutions or water electrolysis. This relates to a manufacturing method.

〔従来の技術〕[Conventional technology]

オン交換膜の如き密隔膜を含む)を使用したアルカリ金
属塩水溶液の電解が知られており、又水電解もこれに該
当する。
Electrolysis of aqueous solutions of alkali metal salts is known, and water electrolysis also falls under this category.

近年省エネルギーの観点から、この糧技術において電解
電圧の低減化が望まれて来ておシ。
In recent years, from the perspective of energy conservation, there has been a desire to reduce the electrolysis voltage in this food technology.

か\る電解電圧低減の手段として各種活性陰極が提案さ
れている。
Various active cathodes have been proposed as a means for reducing the electrolysis voltage.

このような活性陰極は通常、鉄、銅、ニッケル及びこれ
らを含む合金、パルプ金属などの耐アルカリ性基材の表
面に低水素過電圧特性をもつ活性金属材料の層を溶射、
熱分解、溶融物への浸漬、電気メッキ、化学メッキ、蒸
着爆着などの手段で被覆することによって得られ、就中
この活性金属材料層の表面に細かい凹凸を形成して、多
孔性の粗なる活性表面を作るととKよシ活性金属材料層
本来の電気化学的触媒作用に加えて、活性表面積の増大
による水素過電圧低減の効用をより助長せしめることも
行なわれている。
Such active cathodes are typically made by thermally spraying a layer of an active metal material with low hydrogen overvoltage characteristics onto the surface of an alkali-resistant substrate such as iron, copper, nickel and their alloys, or pulp metal.
It is obtained by coating by means such as pyrolysis, immersion in a melt, electroplating, chemical plating, vapor deposition explosion deposition, etc., and, among other things, forming fine irregularities on the surface of this active metal material layer to create a porous and rough surface. In addition to the inherent electrochemical catalytic action of the active metal material layer, attempts have also been made to create an active surface that is more effective in reducing hydrogen overvoltage by increasing the active surface area.

この様な活性陰極として固体微粒子を分散せしめたメッ
キ浴を使用し、その中めメッキ金属成分と共に該固体微
粒子を陰極基材表面にメッキするいわゆる分散メッキに
よる活性陰極も提案されている。(例えば、特開昭57
−35689゜同57−89491 、同57−945
82 、同57−94583など)。
An active cathode has also been proposed in which a plating bath in which solid fine particles are dispersed is used as the active cathode, and the solid fine particles are plated on the surface of a cathode base material together with an intermediate plating metal component. (For example, Japanese Unexamined Patent Publication No. 57
-35689゜57-89491, 57-945
82, 57-94583, etc.).

〔発明が屏決しようとする問題点〕[Problems that the invention attempts to resolve]

この様罠して得た水素発生陰極の性能は2格段の進歩を
示すに至っているが、一方か\る陰極の製造をよシ効率
的に行い安価にして活性持続性に優れ九陰極を得んとす
ることも必要不可欠な事柄でおる。実際問題として電極
の製造コニ)%<、2>、っ効率よく行、2は例えば、
化アルカリ水溶液電解に要する総合的な経費にも反映す
るもので、決して無視することの出来ない重要な問題で
ある。
The performance of the hydrogen generating cathode obtained in this way has shown remarkable progress, but on the other hand, it has been possible to manufacture the cathode more efficiently, at a lower cost, and with excellent long-lasting activity. It is also essential to do so. As a practical matter, when manufacturing electrodes, %<, 2> is efficiently carried out, and 2 is, for example,
This is an important issue that cannot be ignored, as it is reflected in the overall cost required for aqueous alkali electrolysis.

本発明は上記した分散メッキによる陰極の製法において
そのメッキ効率を向上せしめ・製造コストを低減せしめ
んとするものである。
The present invention aims to improve the plating efficiency and reduce the manufacturing cost in the method for manufacturing a cathode using the above-mentioned dispersion plating.

〔問題点を鱗決するための手段〕[Means for determining the problem]

本発明は、固体微粒子を分散させたメッキ浴を使用して
電気メッキにより活性陰極を製造する際に、大巾にコス
ト低減を計り、かつメッキ操作を安定化して容易に優れ
た低水素過電圧陰極を製造することが出来る方法である
The present invention provides an excellent low hydrogen overvoltage cathode that can significantly reduce costs and stabilize the plating operation when producing an active cathode by electroplating using a plating bath in which solid fine particles are dispersed. This is a method that can produce.

本発明におけるメッキ浴は鍍着されるべき金属成分の主
体がニッケルであるようなメッキ成分を含み、かつ固体
微粒子を分散させたメッキ浴であり、か\るメッキ浴を
使用して陰極基材に電気メッキを施すものである。
The plating bath in the present invention is a plating bath containing a plating component in which the main metal component to be plated is nickel, and in which solid fine particles are dispersed. Electroplating is applied to.

上記の如く固体微粒子を分散させたメッキ浴によるメッ
キを前記の通り一般に分散メッキと称するが1本発明方
法は、主としてか\る分散メッキにおける固体微粒子を
規定することによりメッキの効率化をはからんとするも
のである。
As mentioned above, plating using a plating bath in which solid fine particles are dispersed is generally referred to as dispersion plating.The method of the present invention mainly aims at improving the efficiency of plating by specifying the solid fine particles in such dispersion plating. This is what we do.

本発明方法において使用する陰極基材としては、メッキ
の密着性に格別支障を生じない耐食性の金属材料が用い
られ、具体的には鉄、銅。
As the cathode base material used in the method of the present invention, a corrosion-resistant metal material that does not particularly impede the adhesion of plating is used, specifically iron and copper.

ニッケル及びこれらを含む合金やバルブ金属よシなる耐
アルカリ土類金属素材が好ましく用いられ、又か\る金
属素材に予めニッケルメッキ等のメッキを施したものを
使用することも出来る。
Alkaline earth metal materials such as nickel, alloys containing these, and valve metals are preferably used, and metal materials that have been previously plated with nickel or the like may also be used.

又その形状としては*に制限はないが、エキスバンドメ
タル、及びこれをプレスした有孔平板、パ/チングメタ
ル、織成金網等の多孔板形状のものが好ましく採用され
、それらの空間率は1〜99チの範囲にあることが好ま
しい。
There is no limit to the shape of *, but expanded metal, perforated flat plates made of pressed metal, perforated metal, woven wire mesh, and other perforated plate shapes are preferably used, and their porosity is It is preferably in the range of 1 to 99 inches.

本発明に使用するメッキ浴は前記の通電陰極基材にニッ
ケルを主成分とする金属を析出するものであるが、ニッ
ケル以外の成分としてコバルト、モリブデン、鉄、タン
グステン、アルミニウムなどを含有させることが出来る
。しかしカから耐食性の面からニッケルが主成分であシ
The plating bath used in the present invention deposits a metal mainly composed of nickel on the above-mentioned current-carrying cathode substrate, but it may also contain cobalt, molybdenum, iron, tungsten, aluminum, etc. as components other than nickel. I can do it. However, due to its corrosion resistance, nickel is the main ingredient.

余程の効果がない限りにおいて、メッキ浴の管理上から
シンプルなものが望まれる。
As long as there is no significant effect, a simple method is desired from the viewpoint of plating bath management.

主成分のニッケルは1例えば硫酸ニッケル。The main component is nickel.For example, nickel sulfate.

塩化ニッケル、スルファミン酸二クケル等ノ形で加えら
れ、これに更にアンモニウム又はその塩、ホウ酸又はそ
の塩、クエン酸又はその塩。
Nickel chloride, sulfamic acid dichloride, etc. are added in the form of ammonium or its salt, boric acid or its salt, citric acid or its salt.

ビロリン酸塩、塩化アルカリなどが加えられて浴が構成
される。分散される固体微粒子としてはニッケル、コバ
ルト、銀、ラネーニッケル等の金属粉末、酸化二りケル
、酸化ジルコニウム。
Birophosphate, alkali chloride, etc. are added to form the bath. The solid particles to be dispersed include metal powders such as nickel, cobalt, silver, and Raney nickel, nickel oxide, and zirconium oxide.

酸化モリブデン、酸化ロジウムなどの酸化物。Oxides such as molybdenum oxide and rhodium oxide.

タングステンカーバイド、シリコンカーバイド等の炭化
物、硫化ニッケル、硫化モリブデンなどの硫化物、その
他窒化物や炭素などを挙げることが出来る。これらの固
体微粒子はそれ自体が水素過電圧の低いものや、又分散
メッキを行うことによシ水素過電圧が低下するものがあ
る。
Examples include carbides such as tungsten carbide and silicon carbide, sulfides such as nickel sulfide and molybdenum sulfide, other nitrides, and carbon. Some of these solid fine particles have a low hydrogen overvoltage by themselves, and some have a lower hydrogen overvoltage when subjected to dispersion plating.

本発明方法においては、固体微粒子の粒径が0.01〜
100μの大きさのものが好ましく。
In the method of the present invention, the particle size of the solid fine particles is 0.01 to
Preferably, the size is 100μ.

又これ以上の粒径のものを含んでいても使用出来るが、
逆に粒度分布の幅の狭いものはよくなく、その幅が10
μ以上の広い分布を持つものが使用される。
It can also be used even if it contains particles with a larger particle size, but
On the other hand, a particle size distribution with a narrow width is not good;
Those with a wide distribution of μ or more are used.

粒度分布幅が10μ未満の固体微粒子を用いると、一応
メツキ物は得られるが、水素過電圧が悪くなったり、メ
ッキの付着のムラが出来たシ、過大又は過小に粒子がつ
いたシするのでメッキ浴中の固体微粒子の分布がlOμ
以上であることが必要である。
If solid fine particles with a particle size distribution width of less than 10 μm are used, a plated product can be obtained, but the hydrogen overvoltage may deteriorate, the plating may be unevenly adhered, or particles may be too large or too small, so it is difficult to plate. The distribution of solid particles in the bath is lOμ
It is necessary that it is above.

本発明ではこのような固体微粒子の分布をもったものを
使用してメッキを行うのであるが。
In the present invention, plating is performed using a material having such a distribution of solid fine particles.

ある一定の浴量ではメッキ面積の増大2例えば網状の基
材にメッキする場合にはメッキ枚数の増加に従って、メ
ッキの付き具合いが悪くなってくる。そのため途中でメ
ッキ浴から残シの固体微粒子を除いて、新たに固体微粒
子を添加するとと\なシ、そのための労力及び除いた固
体微粒子の処理などが必要となる。これらの更新頻度を
著しく減少させることによシコストの大巾な低減が期待
される。
At a certain bath volume, the plating area increases (2) For example, when plating a net-shaped base material, as the number of plated sheets increases, the adhesion of the plating becomes worse. Therefore, removing the remaining solid particles from the plating bath and adding new solid particles during the plating bath requires labor and processing of the removed solid particles. By significantly reducing these update frequencies, a significant reduction in system costs is expected.

この目的のために固体微粒子をメッキの進行に伴って追
加するのであるが、浴と同じ様な粒度分布のものを添加
すると、少しずつ浴の粒度分布が異ってきて、多くを同
じ浴でメッキすることは出来なくなる。意外なことにメ
ッキ浴の最初に使用した固体微粒子の持つ粒度分布より
も細かい粒度側に偏倚した粒度分布の固体微粒子を浴に
追加しつ\を気メッキを進行させることによりか\る問
題が解消されることを見出した。
For this purpose, solid fine particles are added as plating progresses, but if particles with the same particle size distribution as the bath are added, the particle size distribution of the bath will gradually differ, and many of the particles will be added in the same bath. It will no longer be possible to plate it. Surprisingly, problems can be caused by adding solid particles whose particle size distribution is biased toward finer particles than the particle size distribution of the solid particles used at the beginning of the plating bath and proceeding with air plating. I found out that it can be resolved.

この場合の粒度分布の偏倚の程度には特に制限はないが
1粒度分布として両者が重複せずに全く離れてしまった
ものは好ましくなく、最初に使用した固体微粒子の分布
幅に対し、追加用の固体微粒子が1/2〜1/10程度
にズしているものが好ましい。
In this case, there is no particular limit to the degree of deviation of the particle size distribution, but it is not preferable that the two particle size distributions do not overlap and are completely separated from each other. It is preferable that the solid fine particles are reduced by about 1/2 to 1/10.

この場合、好ましくはメッキ物のメッキを剥離させて測
定した固体微粒子の粒度分布より細かい粒度分布を持つ
ものを追加することである。
In this case, it is preferable to add particles having a finer particle size distribution than that of the solid particles measured by peeling off the plating of the plated object.

この方法を採用することKよシ、固体微粒子の消費量が
ほぼ1/10〜1 / 1000に低減される。
By adopting this method, the consumption of solid fine particles is reduced by approximately 1/10 to 1/1000.

これらの追加量はメッキ物付着量の1.5〜6倍程度が
好ましくメッキ物の付着量よシ多くなる理由は、単に付
着してメッキ浴から出るものや。
The amount of these additions is preferably about 1.5 to 6 times the amount of the plated material deposited, and the reason why the amount is greater than the amount of the plated material is that they simply adhere and come out of the plating bath.

一度析出したものが剥離してメッキ浴中へ堆積されるも
のがあるためである。
This is because some of the precipitated material is peeled off and deposited in the plating bath.

〔作用〕[Effect]

本発明方法において1粒度分布の幅が10μ以上の固体
微粒子を用いること、及びメッキの進行に伴って該固体
微粒子よりも細かい粒度側に偏倚した粒度分布の固体微
粒子を用いることによシ、適正な分散メッキがなしうる
理由は明らかで杜ない。
In the method of the present invention, by using solid fine particles with a particle size distribution width of 10μ or more, and by using solid fine particles whose particle size distribution shifts toward finer particle sizes than the solid fine particles as plating progresses, it is possible to achieve appropriateness. The reason why such dispersion plating can be achieved is clear and unambiguous.

しかし上記した固体微粒子の追加を行なう場合と追加し
ない場合とでは分散メッキの仕上りが明らかに相違し、
前者の場合には表面緻密なメッキ層が得られるのに対し
、後者の場合には表面が荒く比較的剥離し易いメッキ物
が得られることから固体微粒子の電気泳動的な作用に起
因しているものと思われる。
However, the finish of dispersion plating is clearly different between when solid particles are added and when they are not.
In the former case, a plated layer with a dense surface is obtained, whereas in the latter case, a plated product with a rough surface and relatively easy to peel is obtained, which is due to the electrophoretic action of solid particles. It seems to be.

〔実施例〕〔Example〕

以下に実施例および比較例によシ説明する。 This will be explained below using Examples and Comparative Examples.

実施例l 5U8310S製のラス網(6swx12Lwx1.5
TX1.8W、単位m ; S Wは網目の短手方向の
長さ、LWは網目の長手方向の長さ、では厚み、Wは刻
み巾を表わす。以下同じ)の両面をブレスにより平担化
した基材(1dtlt(100aX100+a+))2
0枚を使用して下記の工程でメッキを行なった。
Example l Lath net made of 5U8310S (6swx12Lwx1.5
TX1.8W, unit m; SW is the length of the mesh in the transverse direction, LW is the length of the mesh in the longitudinal direction, thickness, and W is the width of the cut. Base material (1dtlt (100aX100+a+)) 2 with flattened both sides of (same below) by pressing
Plating was performed using the following process using 0 sheets.

■トリクロルエチレン洗浄→■電解エツチング−■水洗
−■ストライクメツキー■水洗−■分散メツキー■水洗
→■分散メクキー■水洗この工程における主要な部分の
使用薬剤、操作条件等は次の通りである。
■Trichlorethylene cleaning→■Electrolytic etching−■Water washing−■Strike Metkey ■Water washing−■Dispersion Metkey ■Water washing→■Dispersion Metkey ■Water washing The chemicals used and operating conditions for the main parts in this process are as follows.

1)電解エツチング(工程■) 〔エツチング液〕 硫   酸     3009/を 界面活性剤    1〜21/を 液    −ii      5t 〔条件〕 温  度       5〜20°C 電流密度     3 A / d −4使用陰極  
   Pb板(1d、r)時  間      6分 2)ストライクメッキ(工程■) 〔メッキ液〕 塩化ニッケル   100g/を 塩     酸    1001/を 液     量    5t 〔条件〕 温  度      5〜20℃ 電流密度     3A/dイ 陽  極      Ni板 時  間      3分 3)分散メッキ(工程■および■) 〔メッキ液〕 硫酸ニッケル   8411/L 塩化ニツケル   30 l 塩化アンモン   4.51 塩化カリ     61 ホウ酸     30 1 硫酸銅      0.41 活性炭(初期投入)15 I 液   量     5t 〔条件〕 温  度       30〜60℃ 電流密度     20人/ltwt 時  間      10分 陽  極      Ni板 (ポンプによる液撹拌実施) 〔操 作〕 上記メッキ浴を使用しラス網1枚メッキ後に、追加用の
活性炭(初期投入活性炭と同じものをボールミルで48
時間粉砕)12Iを補給し、又浴中の硫酸銅を分析し不
足分を補給し、このようにして20枚のラス網のメッキ
を行なりた。この場合の初期投入の活性炭の粒度分布は
第1図に示す通りであり、追加用活性炭の粒度分布は第
2図に示す通りのものであった。
1) Electrolytic etching (process ■) [Etching solution] Sulfuric acid 3009/surfactant 1-21/ solution -ii 5t [Conditions] Temperature 5-20°C Current density 3 A/d -4 Cathode used
Pb plate (1d, r) Time: 6 minutes 2) Strike plating (process ■) [Plating solution] Nickel chloride 100g/Hydrochloric acid 1001/Liquid amount 5t [Conditions] Temperature 5-20℃ Current density 3A/d Anode Ni plate Time 3 minutes 3) Dispersion plating (processes ■ and ■) [Plating solution] Nickel sulfate 8411/L Nickel chloride 30 l Ammonium chloride 4.51 Potassium chloride 61 Boric acid 30 1 Copper sulfate 0.41 Activated carbon (Initial charge) 15 I liquid amount 5t [Conditions] Temperature 30-60℃ Current density 20 people/ltwt Time 10 minutes Anode Ni plate (liquid stirring performed by pump) [Operation] Using the above plating bath, After plating one screen, add additional activated carbon (same as the initially charged activated carbon) using a ball mill to add 48.
Time-pulverization) 12I was replenished, copper sulfate in the bath was analyzed and the shortage was replenished, and 20 lath nets were plated in this way. In this case, the particle size distribution of the initially charged activated carbon was as shown in FIG. 1, and the particle size distribution of the additional activated carbon was as shown in FIG.

以上の2回分数メッキによる工程を経て得た20枚のメ
ッキ物の外観には全く差異はなく。
There was no difference in the appearance of the 20 plated products obtained through the above two-step plating process.

又電位の測定(20チKOH,室温、’lQA/dtd
でHg/Hg Oを基準電極としてルギン管をラス網の
背面に直接当接して測定)では−1,01〜−1,04
Vの範囲内にあ)異常な電位を示したものは皆無であっ
た。
Also, potential measurement (20 cm KOH, room temperature, 'lQA/dtd
(measured by directly contacting the Luggin tube with the back of the lath mesh using Hg/Hg O as the reference electrode) is -1,01 to -1,04.
None showed abnormal potential within the range of V.

比較例1 活性炭の追加を行なわずに、それ以外は実施例1と同じ
ように操作してメッキ物を得た。
Comparative Example 1 A plated product was obtained in the same manner as in Example 1, except that activated carbon was not added.

その結果、ラス網の5枚目から外観に変化が見られ、1
0枚目に至っては表面に大きな粒径のものが部分的に付
いた不均一なメッキ物となった。電位は1〜2枚目まで
−x、oz−X、o4v 9〜10枚1〈06〜五os
vを示した。
As a result, a change in appearance was observed from the 5th layer of the lath net, and 1
When the 0th plate was reached, the plated plate was non-uniform with particles of large size partially attached to the surface. The potential is -x, oz-X, o4v for 1st to 2nd sheets, 9 to 10 sheets 1〈06 to 5 os
v was shown.

1枚目のものと10枚目のものを3Q%NaOH中で9
0@c、50A/dM8で48H水素発生ヲシ。
9 of the 1st and 10th samples in 3Q% NaOH
48H hydrogen generation at 0@c, 50A/dM8.

再び電位を測定したところ、1枚目のも& 1.01V
、10枚目のもの−1,11Vを示し、性能に著しい差
が生じた。
When I measured the potential again, the first one was & 1.01V.
, the 10th sheet showed -1.11V, and there was a significant difference in performance.

実施例2 実施例1と同じ材質、形状で1面積が804M”(70
0X1140+wa)のラス網を用いて、以下の工程で
メッキを行った。なおメッキ浴の組成は。
Example 2 Same material and shape as Example 1, one area is 804M” (70
Plating was performed using a lath net of 0x1140+wa) in the following steps. What is the composition of the plating bath?

同じ工程では実施例1と同じである。The same steps are the same as in Example 1.

■トリクロルエチレン洗浄→■電解エッチンク→■水洗
→■ストライクメツキー■水洗→■分散メクキ→■水洗
→■ニッケルイオウメッキ→■水洗→[株]分散メツキ
ー@水洗−〇ニッケルイオウメツキー◎水洗−■分散メ
クキー■水洗−を行い、0.3M’のメッキ浴で■の電
解エツチングを行い、水洗後0.3M”のメッキ浴で■
のストライクメッキを行った。
■Trichlorethylene cleaning → ■Electrolytic etching → ■Water washing → ■Strike Metski ■Water washing → ■Dispersion coating → ■Water washing → ■Nickel sulfur plating → ■Water washing → [Dispersion Metski Co., Ltd.] Dispersion Metski @Water washing -〇Nickel Sulfur Metski ◎Water washing - ■ Perform dispersion key ■ Washing with water, perform ■ electrolytic etching in a 0.3M' plating bath, and after washing with water, ■
Strike plating was performed.

水洗後に■の分散メッキを5 A/d M” X 20
分行い、水洗して■のニッケルイオウメッキを5A /
 d M ” X 20分行った。
After washing with water, apply dispersion plating at 5 A/d M” x 20
After washing with water, apply 5A/nickel sulfur plating.
dM”X I went for 20 minutes.

以上の様にして分散メッキを3回行い、最後に[相]の
ニッケルイオウメッキを5A/aM’x40分メッキを
行った。
Dispersion plating was performed three times as described above, and finally nickel sulfur plating of [phase] was performed for 5 A/aM' x 40 minutes.

こ\で用いた活性炭はいずれも実施例1と同じものであ
り、1枚のメッキ終了後、硫酸銅を分析して不足分を添
加した。又粉細した活性炭を100J’ずつ追加した。
The activated carbon used here was the same as in Example 1, and after plating one sheet, copper sulfate was analyzed and the missing amount was added. Also, 100 J' of finely ground activated carbon was added.

このようKして2ス網36枚をメ°クキしたが。In this way, I made 36 pieces of 2-pass netting.

外観には全く異常は見られなかった。次いで2枚目と3
5枚目よl)ldMtを切シ出し、メッキの付着量を分
析したところ、2枚目は9.5〜10.31/1M”、
35枚目は9.7〜10.1 #/dMlでアシ、又こ
のメッキ物中の炭素量の分析結果は1枚目3.8〜4.
2チ、35枚目は3.9〜4.3%であった。電位は1
枚目−1.02〜−1.04V35枚目は−1,02〜
−1,05Vで変化は認められなかった。又付着した2
枚目と35枚目の粒径分布を測定した結果を図−31図
−4に示した。これをみると、はとんど粒径分布の変化
は認められない。
No abnormality was observed in appearance. Then the second and third
5th sheet l) When I cut out the ldMt and analyzed the amount of plating attached, the second sheet was 9.5 ~ 10.31/1M".
The 35th sheet is 9.7 to 10.1 #/dMl, and the analysis result of the carbon content in this plated material is 3.8 to 4.
The 2nd and 35th sheets were 3.9 to 4.3%. The potential is 1
-1.02~-1.04V 35th piece -1.02~
No change was observed at -1.05V. Also attached 2
The results of measuring the particle size distribution of the 35th and 35th sheets are shown in Figure 31 and Figure 4. Looking at this, almost no change in particle size distribution is observed.

実施例3 実施例1と同じ工程で分散メッキ浴中の固体微粒子をラ
ネーニッケルa o y/za(Ntss%At45%
M酸銅を除いて分散メッキを行った。
Example 3 In the same process as in Example 1, solid particles in the dispersion plating bath were treated with Raney nickel ao y/za (Ntss%At45%
Dispersion plating was performed except for M acid copper.

初期投入のラネーニッケルの粒度は、平均6−8μであ
シ、小さい方の粒径は1μ、大きい方の粒径は24μで
あった。又追加用のラネーニッケルの粒度は平均3−4
μであシ小さい方の粒径は1μ以下、大きい方の粒径は
12μであった。この追加用ラネーニッケルを1dMJ
枚当り55g追加して5枚メッキを行った。1枚目の電
位は−1,07V、5枚目の電位は−1,08Vを示し
、外観に差は認められなかった。
The particle size of the initially charged Raney nickel was 6-8 microns on average, with the smaller particle size being 1 micron and the larger particle size being 24 microns. Also, the particle size of additional Raney nickel is 3-4 on average.
The smaller particle size was 1 μm or less, and the larger particle size was 12 μm. This additional Raney nickel is 1dMJ
Five sheets were plated with an additional 55 g per sheet. The potential of the first sheet was -1.07V, and the potential of the fifth sheet was -1.08V, and no difference was observed in appearance.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、初期投入の固体微粒子の粒度分布に対
して、これより細かい粒度側にズした粒度分布の追加用
固体微粒子を単に追加使用して分散メッキを行うという
簡単な方法で優れた品質の活性陰極を得ることが出来、
これによれば固体微粒子の節約をはかりつ\活性陰極の
量産が可能となるものである。
According to the present invention, excellent dispersion plating can be achieved by a simple method of simply adding additional solid particles whose particle size distribution is shifted to a finer particle size side for the particle size distribution of the initially charged solid particles. It is possible to obtain high quality active cathodes,
This makes it possible to save on solid particles and mass-produce active cathodes.

又、か\る方法によりて品質一定の活性陰極を安価に製
造出来るという利点もあり1本発明はこれらの点におい
て利用価値穴なるものである0
In addition, there is an advantage that an active cathode of constant quality can be manufactured at low cost by this method, and the present invention has no utility value in these respects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は実施例1に使用した固体微粒子の粒度
分布を示すヒストグラムであシ、第1゛図は初期投入用
の固体微粒子の場合を、第2図は追加投入用の固体微粒
子の場合を示したものである。 wc3図、第4図は実施例2で得た分散メッキ活性陰極
く形成されたメッキ中の固体微粒子の粒度分布を示した
ヒストグラムであシ、第3図は陰極製作順位の2枚目の
ものについて、第4図は同じく35枚目のものについて
示したものでちる。
Figures 1 and 2 are histograms showing the particle size distribution of the solid fine particles used in Example 1. This shows the case of fine particles. Figures 3 and 4 are histograms showing the particle size distribution of solid fine particles in the plating formed on the dispersion plating active cathode obtained in Example 2. Figure 3 is the second diagram of the cathode manufacturing order. Regarding this, Figure 4 also shows the 35th picture.

Claims (1)

【特許請求の範囲】[Claims] 1、鍍着されるべき金属成分の主体がニッケルであるメ
ッキ成分を含み、かつ固体微粒子を分散させてなるメッ
キ浴を使用して陰極基材に電気メッキを施すことからな
り、粒度分布の幅が10μ以上の上記固体微粒子を用い
、メッキの進行に伴って該固体微粒子の粒度分布よりも
細かい粒度側に偏倚した粒度分布の固体微粒子を追加し
つゝ電気メッキを行なうことを特徴とする活性陰極の製
造方法。
1. Electroplating is performed on the cathode substrate using a plating bath containing a plating component in which the main metal component to be plated is nickel and in which solid fine particles are dispersed, and the width of the particle size distribution is Activation characterized by performing electroplating using the above-mentioned solid fine particles having a diameter of 10μ or more, and adding solid fine particles whose particle size distribution is biased toward a finer particle size side than the particle size distribution of the solid fine particles as plating progresses. Method of manufacturing a cathode.
JP59162852A 1984-08-03 1984-08-03 Manufacture of active cathode Granted JPS6141785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59162852A JPS6141785A (en) 1984-08-03 1984-08-03 Manufacture of active cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59162852A JPS6141785A (en) 1984-08-03 1984-08-03 Manufacture of active cathode

Publications (2)

Publication Number Publication Date
JPS6141785A true JPS6141785A (en) 1986-02-28
JPH0245719B2 JPH0245719B2 (en) 1990-10-11

Family

ID=15762464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59162852A Granted JPS6141785A (en) 1984-08-03 1984-08-03 Manufacture of active cathode

Country Status (1)

Country Link
JP (1) JPS6141785A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503359A (en) * 2007-11-16 2011-01-27 アクゾ ノーベル ナムローゼ フェンノートシャップ electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794583A (en) * 1980-12-02 1982-06-12 Toagosei Chem Ind Co Ltd Manufacture of cathode for generating hydrogen
JPS5831091A (en) * 1981-08-18 1983-02-23 Asahi Glass Co Ltd Production of electrode
JPS58213887A (en) * 1982-06-08 1983-12-12 Toyo Soda Mfg Co Ltd Electrode for plating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794583A (en) * 1980-12-02 1982-06-12 Toagosei Chem Ind Co Ltd Manufacture of cathode for generating hydrogen
JPS5831091A (en) * 1981-08-18 1983-02-23 Asahi Glass Co Ltd Production of electrode
JPS58213887A (en) * 1982-06-08 1983-12-12 Toyo Soda Mfg Co Ltd Electrode for plating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503359A (en) * 2007-11-16 2011-01-27 アクゾ ノーベル ナムローゼ フェンノートシャップ electrode
US8764963B2 (en) 2007-11-16 2014-07-01 Akzo Nobel N.V. Electrode

Also Published As

Publication number Publication date
JPH0245719B2 (en) 1990-10-11

Similar Documents

Publication Publication Date Title
KR101832251B1 (en) Highly corrosion-resistant porous metal body and method for producing the same
Donten et al. Electrodeposition of amorphous/nanocrystalline and polycrystalline Ni–Mo alloys from pyrophosphate baths
JPS5948872B2 (en) Electrolytic cathode and its manufacturing method
EP3684966B1 (en) Method of producing an electrocatalyst
JPS61113781A (en) Cathode for hydrogen generation
JPH0372096A (en) Continuous electroplating of conductive foam
US4170536A (en) Electrolytic cathode and method for its production
US4470893A (en) Method for water electrolysis
US3272728A (en) Method of producing activated electrodes
US4152240A (en) Plated metallic cathode with porous copper subplating
CA1072915A (en) Cathode surfaces having a low hydrogen overvoltage
CN110075570A (en) One-step method prepares super hydrophilic/underwater superoleophobic oil-water separation mesh film and method
CN113061890A (en) A method for constant voltage deposition of Ni-SiC composite coating on the surface of aluminum alloy
JPS6141785A (en) Manufacture of active cathode
Nikolić et al. Comparative analysis of the polarization and morphological characteristics of electrochemically produced powder forms of the intermediate metals
JP5735265B2 (en) Method for producing porous metal body having high corrosion resistance
US4190514A (en) Electrolytic cell
CN113293411A (en) Gradient composite lead dioxide anode plate and preparation method and application thereof
CN102363892A (en) A method of manufacturing an active cathode
JPH08148142A (en) Manufacture of metal porous body for battery electrode plate and metal porous body for battery electrode plate
US4177129A (en) Plated metallic cathode
JPH0341559B2 (en)
JPH0260759B2 (en)
Kim et al. Recent advances in electrodeposition technology
JPS6211075B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term