[go: up one dir, main page]

JPS6137488B2 - - Google Patents

Info

Publication number
JPS6137488B2
JPS6137488B2 JP54018449A JP1844979A JPS6137488B2 JP S6137488 B2 JPS6137488 B2 JP S6137488B2 JP 54018449 A JP54018449 A JP 54018449A JP 1844979 A JP1844979 A JP 1844979A JP S6137488 B2 JPS6137488 B2 JP S6137488B2
Authority
JP
Japan
Prior art keywords
storage chamber
magnetic field
bellows
magnetic
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54018449A
Other languages
Japanese (ja)
Other versions
JPS55112440A (en
Inventor
Koichi Chiba
Nobushi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP1844979A priority Critical patent/JPS55112440A/en
Publication of JPS55112440A publication Critical patent/JPS55112440A/en
Publication of JPS6137488B2 publication Critical patent/JPS6137488B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
    • F16F9/535Magnetorheological [MR] fluid dampers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid-Damping Devices (AREA)

Description

【発明の詳細な説明】 本発明は、磁性流体を用いたダンパーに関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a damper using magnetic fluid.

過大な衝撃負荷を緩衝するため、一般に、ダン
パーが使用される。これらは、開口をもち内容積
が変化自在な容器体、例えば第1図に示すような
伸縮自在で気密なベローズ1の一端にノズル2を
設けて構成されている。これに衝撃負荷3が加わ
ると、ベローズ1が縮み、内部の作動流体4、例
えば空気がノズル2を通つて排出され、この排出
の際の流出抵抗によりダンピング作用が生じるよ
うになつている。
Dampers are commonly used to cushion excessive shock loads. These are constructed by providing a nozzle 2 at one end of a container body with an opening and a variable internal volume, such as a telescopic and airtight bellows 1 as shown in FIG. When an impact load 3 is applied to the bellows 1, the bellows 1 contracts and the internal working fluid 4, for example air, is discharged through the nozzle 2, and the outflow resistance during this discharge produces a damping effect.

しかるに、このような構成のダンパーは、吸排
気のノズル2の内径を決めてしまうと、ダンピン
グ特性が決まつてしまい、他の領域の特性が得ら
れない、内径精度が悪いと所望の特性が得られな
い、などの不都合がある。まして、ダンピング作
用が不必要な際に、随時この作用を止めたり軽減
したりすることは望めない不都合があつた。
However, in a damper with such a configuration, once the inner diameter of the intake/exhaust nozzle 2 is determined, the damping characteristics are determined, and the characteristics in other areas cannot be obtained.If the inner diameter accuracy is poor, the desired characteristics may not be achieved. There are inconveniences such as not being able to obtain Moreover, when the damping effect is unnecessary, it is not possible to stop or reduce the damping effect at any time.

本発明は、上述の不都合を解消するためになさ
れたもので、作動流体に磁性流体を用い、磁界を
制御することにより、ダンピング特性が種々に制
御されるダンパーを得るものである。
The present invention has been made to solve the above-mentioned disadvantages, and provides a damper whose damping characteristics can be controlled in various ways by using a magnetic fluid as the working fluid and controlling the magnetic field.

以下、本発明の詳細を図示の実施例により説明
する。なお、後述する磁性流体とは液体中に例え
ばマグネタイトなどのコロイド状微粉末を安定に
分散させ、重力や磁場などにより粉末の沈降や凝
集が起らないようにした液体で、本質的には液体
と固体の混合物であるが、見かけ上は強磁性液体
としての挙動を示し、外部磁界を変化させると見
かけの粘性が変わるものである。微粉末としては
ニツケル、コバルト、鉄その他のイオン酸化物で
ある活性磁性材料を粉砕したものがあり、液体と
しては水、弗化カーボン、ケロシンなど種々なも
のが使われている。
Hereinafter, details of the present invention will be explained with reference to illustrated embodiments. The magnetic fluid described later is a liquid in which colloidal fine powder, such as magnetite, is stably dispersed to prevent the powder from settling or agglomerating due to gravity or magnetic fields, and is essentially a liquid. Although it is a mixture of solid and ferromagnetic liquid, it appears to behave like a ferromagnetic liquid, and its apparent viscosity changes when the external magnetic field is changed. The fine powders include pulverized active magnetic materials such as nickel, cobalt, iron, and other ionic oxides, and the liquids used include water, carbon fluoride, kerosene, and various other materials.

しかして、第2図は、第1図の実施例を示すも
ので、仕切板11を介して、内容積が変化自在な
容器体としての上ベローズ12、下ベローズ13
が設けられていて、両ベローズ12,13の対向
端面は、円柱状の仕切板11に固着されている。
両ベローズ12,13の外側端は上部閉塞板1
4、下部閉塞板15にそれぞれ固着閉塞されてい
て、これら上部閉塞板14、下部閉塞板15は3
個の支柱16…により相互に固定されている。こ
れにより上ベローズ12、下ベローズ13の全高
さは一定に保たれ、さらに両ベローズ12,13
の狭径部には環状の支持輪17…がはめられてい
て半径方向の膨出が防止されている。一方、仕切
板11は、円板状部材からなつていて、中心部に
ボス状のノズル部18が設けられている。これの
中心に上下に貫通した開口としてのノズル19が
設けられていて、各ベローズ12,13内に充填
された作動流体としての磁性流体20が自由に通
過できるようになつている。このノズル19の外
側を囲んで、コイル21が設けられていて、これ
は電気装置21aに接続されていて、電流を流す
ことによりノズル19内およびその近傍に磁界を
生じるようになつていて、電流制御により磁界の
強さを制御できる。なお、コイル21、電気装置
21aで磁界発生装置21bを構成している。仕
切板11の外周部には、支柱16…に嵌合した軸
受22…が配設されていて、これにより仕切板1
1は上下に移動自在に支持されている。また、仕
切板11の外側部に等配に3個の取付け孔があけ
られていて、3個の連結柱24…が、それぞれ上
下方向に延在して固定されており、それらの上端
に円板状の作動受体25が固定されている。ま
た、仕切板11と下部閉塞板15との間には圧縮
コイルばねからなる復帰ばね26が介挿されてい
て、仕切板11は、支柱16,…に取付けられた
ストツパ27…に常に押圧されている。一方、電
気装置21aは、第3図に略図的に示すと、スイ
ツチ30、電源31、可変抵抗器32、電流計3
3を直列に接続した回路で構成されていて、その
両端はコイル21の両端にそれぞれ接続されてい
る。
FIG. 2 shows the embodiment shown in FIG. 1, in which an upper bellows 12 and a lower bellows 13 as a container body whose internal volume can be freely changed are connected via a partition plate 11.
are provided, and opposing end surfaces of both bellows 12 and 13 are fixed to a cylindrical partition plate 11.
The outer ends of both bellows 12 and 13 are connected to the upper closing plate 1
4, each is fixedly closed by a lower closing plate 15, and these upper closing plate 14 and lower closing plate 15 are
They are mutually fixed by separate support columns 16. As a result, the total height of the upper bellows 12 and lower bellows 13 is kept constant, and furthermore, both bellows 12, 13
An annular support ring 17 is fitted into the narrow diameter portion to prevent bulging in the radial direction. On the other hand, the partition plate 11 is made of a disc-shaped member, and a boss-shaped nozzle part 18 is provided in the center. A nozzle 19 is provided in the center of the bellows as an opening that penetrates vertically, so that a magnetic fluid 20 serving as a working fluid filled in each bellows 12 and 13 can freely pass therethrough. A coil 21 is provided surrounding the outside of this nozzle 19, which is connected to an electrical device 21a and is adapted to generate a magnetic field in and near the nozzle 19 by passing an electric current through it. Control allows the strength of the magnetic field to be controlled. Note that the coil 21 and the electric device 21a constitute a magnetic field generating device 21b. Bearings 22 fitted to the pillars 16 are disposed on the outer periphery of the partition plate 11, so that the partition plate 1
1 is supported so as to be movable up and down. In addition, three mounting holes are equally spaced on the outside of the partition plate 11, and three connecting columns 24 are fixed to extend in the vertical direction. A plate-shaped actuation receiver 25 is fixed. Further, a return spring 26 made of a compression coil spring is inserted between the partition plate 11 and the lower blocking plate 15, so that the partition plate 11 is constantly pressed by stoppers 27 attached to the columns 16,... ing. On the other hand, the electric device 21a, as schematically shown in FIG. 3, includes a switch 30, a power source 31, a variable resistor 32, an ammeter 3
3 connected in series, both ends of which are connected to both ends of the coil 21, respectively.

次に、上記構成のダンパーの作動を説明する。 Next, the operation of the damper having the above configuration will be explained.

先ず下部閉塞板15を固定し、作動受板25に
負荷がかかるように本ダンパーを設置して使用す
るが、予想される衝撃負荷に対しダンピング特性
を調節する。すなわち、スイツチ30を閉じ、コ
イル21に電流を流すと、ノズル19内およびそ
の近傍に磁界が発生する。これによりこの部分の
磁性流体20は、磁力により見かけの粘性が変わ
る。この見かけの粘性の変化によりダンピング特
性が変わるので、コイル21の電流値、見かけの
粘性、ダンピング特性等の関係を予め実験的に確
認しておき、所望のダンピング特性が得られるよ
うに可変抵抗器32を調節する。以上で準備が終
り、作動に入る。かくて、衝撃負荷35が作動受
板25に作用すると、作動受板25、仕切板11
が一体となつて下降を開始する。これにより下ベ
ローズ13は縮み、他方、上ベローズ12は伸び
る。そうして、磁性流体20の一部は、ノズル1
9を通過して下ベローズ13から上ベローズ12
の方へ移動する。この際、磁力により設定された
粘性にて、ノズル19を通過するので、その抵抗
によりダンピング作用が発生し、所望の効果が得
られる。しかして、荷重の作用が止むと再びばね
26の作用により最初の状態に復帰する。復帰に
際し、電流を流すのを止めれば速かに復帰する。
なお、上ベローズ12を伸縮しない円筒部材で構
成しても同様の効果が得られる。
First, the lower blocking plate 15 is fixed, and the present damper is installed and used so that a load is applied to the actuating receiving plate 25, and the damping characteristics are adjusted according to the expected impact load. That is, when the switch 30 is closed and current is applied to the coil 21, a magnetic field is generated within the nozzle 19 and its vicinity. As a result, the apparent viscosity of the magnetic fluid 20 in this portion changes due to the magnetic force. Since the damping characteristics change due to this change in apparent viscosity, the relationship between the current value of the coil 21, the apparent viscosity, the damping characteristics, etc. should be experimentally confirmed in advance, and the variable resistor should be adjusted to obtain the desired damping characteristics. Adjust 32. The preparations are now complete and the operation begins. Thus, when the impact load 35 acts on the actuation receiving plate 25, the actuation receiving plate 25 and the partition plate 11
begin to descend as one. This causes the lower bellows 13 to contract, while the upper bellows 12 to expand. Then, a part of the magnetic fluid 20 is transferred to the nozzle 1
9 and from the lower bellows 13 to the upper bellows 12
move towards. At this time, since it passes through the nozzle 19 with a viscosity set by the magnetic force, a damping effect occurs due to the resistance, and the desired effect is obtained. When the load stops, the spring 26 returns to its initial state. Upon recovery, if the current is stopped, the recovery will occur quickly.
Note that the same effect can be obtained even if the upper bellows 12 is made of a cylindrical member that does not expand or contract.

つぎに、第4図は、ベローズを用いないで、ダ
ンパーを構成した第2の実施例である。下シリン
ダ41に上シリンダ42が、パツキン43,43
を介して摺動自在に嵌合して容器体41aを構成
している。上シリンダ42の上面44には、通気
孔45が設けられていて、下底46には中心にノ
ズル取付孔47があけられている。このノズル取
付孔47には、外側にコイル21を巻回したノズ
ル19が挿入固定されている。そして、内部に磁
性流体20が収容されている。その他、電気装置
21は第1の実施例と同様である。
Next, FIG. 4 shows a second embodiment in which the damper is constructed without using bellows. The upper cylinder 42 is attached to the lower cylinder 41, and the gaskets 43, 43
They are slidably fitted together to form the container body 41a. A ventilation hole 45 is provided in the upper surface 44 of the upper cylinder 42, and a nozzle mounting hole 47 is provided in the center of the lower bottom 46. A nozzle 19 having a coil 21 wound around the outside thereof is inserted and fixed into the nozzle mounting hole 47 . A magnetic fluid 20 is housed inside. Otherwise, the electric device 21 is the same as in the first embodiment.

上記第2の実施例のダンパーの作動は、上面4
4に衝撃負荷が加わり上シリンダ42が下降する
と、磁性流体20がノズル19を通り下シリンダ
41から上シリンダ42に移動しダンピング作用
が発生するが、その作用効果は、第1の実施例と
同様なので詳細な説明は省略する。
The operation of the damper of the second embodiment is as follows:
When an impact load is applied to 4 and the upper cylinder 42 descends, the magnetic fluid 20 passes through the nozzle 19 and moves from the lower cylinder 41 to the upper cylinder 42, producing a damping effect, but the effect is the same as in the first embodiment. Therefore, detailed explanation will be omitted.

以上詳述したように、本発明のダンパーは、作
動流体に磁性流体を使用したので、磁界の強さを
調節することにより磁性流体中に流れる磁束密度
を変化させ、開口を出入する際に発生する粘性抵
抗を変化させることにより、広い領域の中から所
望のダンピング特性を容易に得ることができる。
また、磁界の発生に電磁コイルを用いると、瞬時
にダンピング特性を変えることができる。よつ
て、車輛などのように乗客数、積荷などがしばし
ば大幅に変動するものに使用した場合は、常に最
適の特性にダンパーを保つことができる。また、
応答を早くするためダンピング効果を少なく調節
したものは、急に衝撃負荷が働いても、電流を急
激に増すことにより、これを緩和することもでき
る。さらにまた、開口などの寸法精度が悪くても
電流の調整により、所望のダンピング特性が得ら
れるので、製作が容易であるなどの種々な効果を
奏するものである。
As detailed above, since the damper of the present invention uses magnetic fluid as the working fluid, by adjusting the strength of the magnetic field, the magnetic flux density flowing in the magnetic fluid is changed, and the magnetic flux generated when entering and exiting the opening is changed. By changing the viscous resistance, desired damping characteristics can be easily obtained from a wide range.
Furthermore, if an electromagnetic coil is used to generate the magnetic field, the damping characteristics can be changed instantaneously. Therefore, when used in vehicles where the number of passengers, cargo, etc. often vary significantly, the damper can always be maintained at its optimum characteristics. Also,
If the damping effect is adjusted to be small in order to speed up the response, even if a sudden shock load is applied, this can be alleviated by rapidly increasing the current. Furthermore, even if the dimensional accuracy of the aperture is poor, desired damping characteristics can be obtained by adjusting the current, so that various effects such as ease of manufacture are achieved.

なお、本実施例においては磁界発生装置として
電磁コイルを使用したが、永久磁石を使用しても
よい。また、開口の数は、複数でもよく、断面形
状も楕円、多角形、その他異形など任意に形成し
てもよい。
Although an electromagnetic coil is used as the magnetic field generator in this embodiment, a permanent magnet may also be used. Further, the number of openings may be plural, and the cross-sectional shape may be arbitrarily formed such as an ellipse, polygon, or other irregular shape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の要部を示す一部断面正面図、
第2図は本発明の第1の実施例の要部破断正面
図、第3図は同じく要部の概略説明図、第4図は
同じく第2の実施例の断面正面図である。 11:仕切板(隔壁部材)、12:上ベローズ
(第2部材)、13:下ベローズ(第1部材)、1
9:ノズル(連通孔)、20:磁性流体、21:
コイル、21a:電気装置(給電装置)、21
b:磁界発生装置、41:下シリンダ(第1部
材)、42:上シリンダ(第2部材)。
Figure 1 is a partially sectional front view showing the main parts of a conventional example;
FIG. 2 is a cutaway front view of the main part of the first embodiment of the present invention, FIG. 3 is a schematic explanatory diagram of the main part, and FIG. 4 is a sectional front view of the second embodiment. 11: Partition plate (partition member), 12: Upper bellows (second member), 13: Lower bellows (first member), 1
9: Nozzle (communication hole), 20: Magnetic fluid, 21:
Coil, 21a: Electric device (power supply device), 21
b: Magnetic field generator, 41: Lower cylinder (first member), 42: Upper cylinder (second member).

Claims (1)

【特許請求の範囲】 1 下記構成を具備することを特徴とするダンパ
ー。 (イ) 第1の収容室を有する第1部材。 (ロ) 上記第1部材に対して少なくとも連設部位が
相対的に進退自在に連設され、且つ、第2の収
容室を有する第2部材。 (ハ) 上記連設部位に設けられ、且つ、上記第1の
収容室と上記第2の収容室とを連設させる連通
孔が形成され、且つ、上記第2部材と一体的に
進退して少なくとも上記第1の収容室の内容積
を変化させる隔壁部材。 (ニ) 上記第1の収容室及び第2の収容室に収容さ
れた磁性流体。 (ホ) 上記隔壁部材の連設孔形成部位において磁界
を発生させ、上記第2部材の進退運動にともな
つて上記連通孔を通過する上記磁性流体の粘性
抵抗を制御する磁界発生装置。 2 第1部材及び第2部材は伸縮自在なベローズ
であることを特徴とする特許請求の範囲第1項記
載のダンパー。 3 第1部材及び第2部材は互に嵌合する一対の
シリンダであることを特徴とする特許請求の範囲
第1項記載のダンパー。 4 磁界発生装置は、連通孔のまわりに巻回され
たコイルと、上記コイルに給電して磁界を発生さ
せる給電装置とからなることを特徴とする特許請
求の範囲第1項記載のダンパー。
[Claims] 1. A damper characterized by having the following configuration. (a) A first member having a first storage chamber. (b) A second member having at least a continuous portion connected to the first member so as to be movable relative to the first member, and having a second storage chamber. (c) A communication hole is formed in the continuous portion and connects the first storage chamber and the second storage chamber, and moves forward and backward integrally with the second member. A partition member that changes the internal volume of at least the first storage chamber. (d) A magnetic fluid contained in the first storage chamber and the second storage chamber. (e) A magnetic field generating device that generates a magnetic field at a portion of the partition wall member where the continuous holes are formed to control the viscous resistance of the magnetic fluid passing through the communication holes as the second member advances and retreats. 2. The damper according to claim 1, wherein the first member and the second member are expandable bellows. 3. The damper according to claim 1, wherein the first member and the second member are a pair of cylinders that fit into each other. 4. The damper according to claim 1, wherein the magnetic field generating device includes a coil wound around the communication hole and a power feeding device that feeds power to the coil to generate a magnetic field.
JP1844979A 1979-02-21 1979-02-21 Damper Granted JPS55112440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1844979A JPS55112440A (en) 1979-02-21 1979-02-21 Damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1844979A JPS55112440A (en) 1979-02-21 1979-02-21 Damper

Publications (2)

Publication Number Publication Date
JPS55112440A JPS55112440A (en) 1980-08-30
JPS6137488B2 true JPS6137488B2 (en) 1986-08-23

Family

ID=11971926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1844979A Granted JPS55112440A (en) 1979-02-21 1979-02-21 Damper

Country Status (1)

Country Link
JP (1) JPS55112440A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3336965A1 (en) * 1983-10-11 1985-05-02 Metzeler Kautschuk GmbH, 8000 München TWO-CHAMBER ENGINE MOUNT WITH HYDRAULIC DAMPING
JPS61136032A (en) * 1984-12-05 1986-06-23 Tokai Rubber Ind Ltd Power unit mounting device
DE3540300A1 (en) * 1985-11-13 1987-05-21 Metzeler Kautschuk AIR SPRING ELEMENT
DE3540298A1 (en) * 1985-11-13 1987-05-14 Metzeler Kautschuk SPRING ELEMENT WITH HYDRAULIC DAMPING
US4733758A (en) * 1986-08-18 1988-03-29 Lord Corporation Tunable electrorheological fluid mount
JP2599602B2 (en) * 1987-11-02 1997-04-09 株式会社ブリヂストン Exciter
JPH03234938A (en) * 1989-08-25 1991-10-18 Bridgestone Corp Vibration damping equipment
DE69128585T2 (en) * 1990-09-25 1998-05-20 Bridgestone Corp Vibration damping device
DE19647136A1 (en) * 1996-11-14 1998-05-28 Stop Choc Schwingungstechnik Gmbh & Co Kg Damper element and vibration damper with such
DE10204956A1 (en) * 2002-02-06 2003-08-14 Fuchs Petrolub Ag Damper system especially for magnetorheological liquids
US6953108B2 (en) 2003-04-04 2005-10-11 Millenworks Magnetorheological damper system
US6896109B2 (en) * 2003-04-07 2005-05-24 Csa Engineering, Inc. Magnetorheological fluid vibration isolator
JP4649136B2 (en) * 2003-07-31 2011-03-09 キヤノン株式会社 Actuator, exposure apparatus, and device manufacturing method
JP5063456B2 (en) * 2008-04-09 2012-10-31 不二ラテックス株式会社 Damper device
US11041538B2 (en) 2017-09-28 2021-06-22 Mitsubishi Electric Corporation Vibration propagation suppressing apparatus
EP3521654B1 (en) 2018-02-02 2021-03-31 Claverham Limited Hydraulic damper

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1257834A (en) * 1969-03-10 1971-12-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1257834A (en) * 1969-03-10 1971-12-22

Also Published As

Publication number Publication date
JPS55112440A (en) 1980-08-30

Similar Documents

Publication Publication Date Title
JPS6137488B2 (en)
US6880483B2 (en) Active seat suspension for watercraft
US5632361A (en) Vibration damper, in particular for motor vehicles
US20040188200A1 (en) Controllable damping force shock absorber
US6419057B1 (en) Power-off damping in MR damper
GB756107A (en) Improvements in and relating to shock absorbers or dampers
EP1196300A1 (en) Electromagnetic damper for vehicle suspension
JP2639396B2 (en) Hydraulic telescopic shock absorber
US20120085613A1 (en) Switchable magnetorheological torque or force transmission device, the use thereof, and magnetorheological torque or force transmission method
JPH01312240A (en) Semi-active damper piston valve assembly
US20180306267A1 (en) Magneto-rheological fluid damper
JPH02278027A (en) Damping force adjustable hydraulic shock absorber
US5551540A (en) Vibration damper and a vibration damper with a valve actuation device
JP4893459B2 (en) Metal powder for magnetic fluid
EP0123365B1 (en) Double-acting hydraulic shock absorber with controlled compression cycle for vehicles
CN105805217A (en) Magneto-rheological damper for circular magnetic circuit
CN113898693B (en) Vibration damping actuator
JP5610473B2 (en) Magnetic fluid device
JPS63210432A (en) Magnetic fluid damper
JPH03504753A (en) shock absorber
US12106900B2 (en) Solenoid, solenoid valve, and shock absorber
KR102479160B1 (en) Piston assembly for MR damper
US5027927A (en) Variable rate shock absorber
JPS58113644A (en) Magnetic fluid type damper
JPS59184007A (en) Car suspender