[go: up one dir, main page]

JPS6137352B2 - - Google Patents

Info

Publication number
JPS6137352B2
JPS6137352B2 JP54117298A JP11729879A JPS6137352B2 JP S6137352 B2 JPS6137352 B2 JP S6137352B2 JP 54117298 A JP54117298 A JP 54117298A JP 11729879 A JP11729879 A JP 11729879A JP S6137352 B2 JPS6137352 B2 JP S6137352B2
Authority
JP
Japan
Prior art keywords
auxiliary electrode
metal material
glow discharge
temperature
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54117298A
Other languages
Japanese (ja)
Other versions
JPS5641371A (en
Inventor
Naotatsu Asahi
Shizuka Yamaguchi
Kazuyoshi Terakado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11729879A priority Critical patent/JPS5641371A/en
Priority to DE19803029339 priority patent/DE3029339C2/en
Priority to US06/174,748 priority patent/US4394234A/en
Publication of JPS5641371A publication Critical patent/JPS5641371A/en
Publication of JPS6137352B2 publication Critical patent/JPS6137352B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Discharge Heating (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Furnace Details (AREA)

Description

【発明の詳細な説明】 本発明は金属材料のグロー放電表面処理方法に
係り、特に被処理金属材料の1部分のグロー放電
状態を他の部分のそれと異なつた状態にして原子
の拡散距離あるいは拡散原子の比率を変化させて
機能の異なる表面を得る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a glow discharge surface treatment method for a metal material, and in particular, the glow discharge state of one part of the metal material to be treated is made different from that of other parts to improve the diffusion distance or diffusion of atoms. It concerns a method of obtaining surfaces with different functions by changing the ratio of atoms.

金属材料の表面処理技術の1種であるグロー放
電表面処理法が近年脚光を浴びてきている。その
代表例がイオン窒化処理である。イオン窒化処理
法は少なくとも10-1Torr以下に減圧されている
減圧容器(以下炉体と記すことがある)に処理に
必要なガス体を導入し、被処理品が陰極となるよ
うに電極を設け(炉体を陰極とすることもある)
これに外部の直流電源から電圧を印加してグロー
放電を発生させて表面硬化処理を行なうものであ
る。第1図はイオン窒化処理装置の概要を示した
ものである。一般には被処理品2が陰極となり、
炉体1が陽極となつている。炉体1は処理中の加
熱により各種の機器や部品(気密用パツキング
等)が過熱されるのを防ぐために水冷構造になつ
ている。イオン窒化処理では真空装置9で炉体内
を少なくとも10-1Torr以下に減圧しながら、水
素ガスと窒素ガス或いはアンモニアガスなどの処
理ガス6を導入して1〜10Torrの範囲の所定の
圧力に保持し、直流電源から300〜1500Vの電圧
を印加してグロー放電を発生させて窒化処理を行
なつている。なお第1図において、3は直流電
源、4は陽極端子、5は陰極端子、7はガス導入
口、8は真空装置9が接続されたガス排気口、1
0は真空計端子、11は光高温計、12は制御盤
である。
Glow discharge surface treatment, which is a type of surface treatment technology for metal materials, has been attracting attention in recent years. A typical example is ion nitriding. In the ion nitriding method, the gas necessary for the treatment is introduced into a reduced pressure vessel (hereinafter sometimes referred to as a furnace body) whose pressure is reduced to at least 10 -1 Torr or less, and an electrode is installed so that the product to be treated becomes a cathode. (The furnace body may be used as a cathode)
A voltage is applied to this from an external DC power source to generate glow discharge and perform surface hardening treatment. FIG. 1 shows an outline of the ion nitriding apparatus. Generally, the product to be treated 2 becomes the cathode,
The furnace body 1 serves as an anode. The furnace body 1 has a water-cooled structure to prevent various equipment and parts (such as airtight packing) from being overheated due to heating during processing. In the ion nitriding process, the pressure inside the furnace is reduced to at least 10 -1 Torr or less using a vacuum device 9, and a processing gas 6 such as hydrogen gas and nitrogen gas or ammonia gas is introduced to maintain a predetermined pressure in the range of 1 to 10 Torr. The nitriding process is then performed by applying a voltage of 300 to 1500 V from a DC power supply to generate glow discharge. In FIG. 1, 3 is a DC power supply, 4 is an anode terminal, 5 is a cathode terminal, 7 is a gas inlet, 8 is a gas exhaust port to which a vacuum device 9 is connected, 1
0 is a vacuum gauge terminal, 11 is an optical pyrometer, and 12 is a control panel.

被処理品の加熱はグロー放電エネルギーによつ
ているので外部からの熱源を必要としない。従つ
てグローを発生している表面が加熱源となるの
で、被処理品の温度は体積に対する表面の割合に
よつて変化する。すなわち同一形状で比較的単純
な形状の被処理品では全体がほぼ均一な温度にな
り均一な処理ができるが、複雑な形状、特に体積
に対する表面積が異なる部品では同一被処理品で
も場所により温度が異なり、それに伴ない拡散原
子の濃度、深さが大きく変動し、均一な処理がで
きなくなるという欠点がある。
Since the object to be processed is heated by glow discharge energy, no external heat source is required. Therefore, since the surface generating the glow becomes the heating source, the temperature of the object to be treated changes depending on the ratio of the surface to the volume. In other words, if the workpiece is of the same shape and has a relatively simple shape, the temperature will be almost uniform throughout and uniform processing will be possible, but if the workpiece has a complex shape, especially parts with different surface areas relative to volume, the temperature will vary depending on the location even if the workpiece is the same. However, the disadvantage is that the concentration and depth of the diffused atoms vary greatly as a result, making uniform processing impossible.

一方、被処理品の用途に応じては、その表面全
体に同一機能の表面処理を施こすのではなく、同
一被処理品内で、複数の機能を有する処理を要す
ることがある。このような処理は従来のイオン表
面処理においては同一炉内で、一工程で連続して
行うことはできず、複数工程で行なわれていた。
On the other hand, depending on the intended use of the article to be treated, it may be necessary to perform treatments having multiple functions within the same article, rather than subjecting the entire surface to a surface treatment with the same function. In conventional ion surface treatment, such treatment cannot be performed continuously in one step in the same furnace, but is performed in multiple steps.

イオン表面処理法において、部分的に異つた表
面処理層(例えば窒化処理での窒化層深さ及び硬
さ)を得る方法としては、特開昭47−6956号公報
に示される如く、被処理品(陰極)と減圧容器壁
(陽極)との間に付加金属電極(被処理品に対し
て陽極)を抵抗を介して陽極電源へ配置させて、
この部分の電位を変化させ、部分的にイオン衝撃
エネルギーを変化させる方法も知られている。こ
の方法においては、例えば、イオン窒化処理の場
合には、異なつた窒化を要する部分に付加金属電
極を設け、この部分の電位を外部回路によつて変
えてイオン衝撃エネルギーを変化させて表面部に
吸着し拡散する窒素量を調節し、部分的に異なつ
た深さの窒化層を形成させるようにしている。し
かし、この外部回路によつてイオン衝撃エネルギ
ーを部分的に変化させる方法では、衝撃のエネル
ギーの制御が難かしく、装置が複雑となるとゝも
に、実際問題として窒素の拡散がイオン衝撃エネ
ルギーとともに温度の影響も強い為、窒化層深さ
を部分的に大巾に変動させることはできないとい
う欠点を有している。
In the ion surface treatment method, as a method of obtaining partially different surface treatment layers (for example, the depth and hardness of the nitrided layer in nitriding treatment), as shown in Japanese Patent Application Laid-Open No. 47-6956, An additional metal electrode (anode for the workpiece) is placed between the (cathode) and the wall of the vacuum container (anode) via a resistor to the anode power source.
A method is also known in which the potential of this portion is changed to partially change the ion impact energy. In this method, for example, in the case of ion nitriding, additional metal electrodes are provided at parts that require different nitriding, and the potential of these parts is changed by an external circuit to change the ion bombardment energy to the surface parts. The amount of nitrogen adsorbed and diffused is adjusted to form nitrided layers with partially different depths. However, with this method of partially changing the ion bombardment energy using an external circuit, it is difficult to control the bombardment energy and the device becomes complicated. Since the influence of

本発明の目的は、前述従来技術の欠点を解消す
べくなされたもので、被処理品である金属材料に
対して、複数の異なつた機能を有する表面処理を
同一容器で連続して簡単に行なうことができ、し
かも加熱に要するエネルギーを大副に節約できる
金属材料のグロー放電表面処理方法を提供するこ
とにある。
The purpose of the present invention was to solve the above-mentioned drawbacks of the prior art, and to easily perform surface treatments having a plurality of different functions on a metal material to be treated in succession in the same container. It is an object of the present invention to provide a glow discharge surface treatment method for metal materials, which can save a large amount of energy required for heating.

本発明は、減圧容器内の被処理品である金属材
料からなる陰極と陽極との間にグロー放電を発生
させて前記金属材料の表面処理を行なう方法にお
いて、前記陰極に接続された補助電極を前記金属
材料と該補助電極との間に発生するグロー放電が
互いに相互作用するように前記金属材料表面から
所定の距離をおいて配設し、所定のガス圧力でグ
ロー放電を発生させて所定の温度で前記金属材料
の前記補助電極配設部分を表面処理した後、次い
で前記ガス圧力と異なるガス圧力でグロー放電さ
せ前記温度と異なる温度で前記金属材料の前記補
助電極配設部分を表面処理することによつて前記
目的を達成させたものである。なお、ガス圧、ガ
スの種類を変化すれば補助電極部分の被処理面の
温度を他の部分より一層高くできる。
The present invention provides a method for surface-treating a metal material by generating glow discharge between a cathode and an anode made of a metal material, which are objects to be treated, in a reduced pressure container. The metal material and the auxiliary electrode are arranged at a predetermined distance from the surface of the metal material so that the glow discharge generated between them interacts with each other, and the glow discharge is generated at a predetermined gas pressure to produce a predetermined result. After surface-treating the auxiliary electrode-equipped portion of the metal material at a temperature, the auxiliary-electrode-equipped portion of the metal material is then surface-treated at a temperature different from the gas pressure by glow discharge at a gas pressure different from the gas pressure. In particular, the above objective has been achieved. Note that by changing the gas pressure and type of gas, the temperature of the surface to be treated in the auxiliary electrode portion can be made higher than that in other portions.

以下本発明の原理を説明する。まず、被処理品
表面から原子を拡散させて、表面硬化或いは表面
の潤滑作用等の機能を持たせる場合、被処理材に
悪影響を及ぼすことなく機能を持たせるにはその
拡散させる原子の量、深さ等に適切な値があり、
表面濃度が一定に保たれれば、処理温度が重要な
役割を演ずる。こゝで鉄剛材料を例にとると、窒
素で表面硬化を行う場合は、一般に400〜700℃の
範囲である。炭素を用いる浸炭処理での表面硬化
では700〜1100℃であり、硼素では800〜1200℃に
なる。一方、硫黄を用いる浸硫処理での表面潤滑
では150〜600℃である。以上のように拡散させる
原子、被処理材々料により適切な処理温度があ
る。イオン表面処理法において、被処理品の表面
温度を部分的に不均一にする方法は外部熱源によ
る方法等も可等であるが、本発明では、被処理品
金属材料とほゞ同電位の補助電極を、被処理品表
面から所定の距離をおいて陰極側に配設し、イオ
ン処理中に導入するガスの圧力、ガスの種類を変
動させることにより補助電極と被処理品との間に
必要に応じて電流密度の異なる負グローを発生さ
せて処理を行なう。こゝで、被処理品の熱の収受
は、グロー放電エネルギーの熱交換、被処理品間
や電極などからの輻射熱であり、熱放出による熱
損失は輻射熱、処理ガスの対流、電極からの熱伝
導(電極の冷却水からの流出)などがある。この
要因の中で被処理品の必要な部分のみを所定の温
度に加熱する利用できる可能性としては、被処理
品間の放電エネルギー、輻射熱などである。これ
は陰極間隔を一定間隔とし、導入ガス圧力を所定
の値に設定して、二つの負グロー間に相互作用を
起させて他のグロー面よりも電流密度を高くさせ
ることにより実現できる。
The principle of the present invention will be explained below. First, when diffusing atoms from the surface of a workpiece to provide a function such as surface hardening or surface lubrication, the amount of atoms to be diffused, There are appropriate values for depth etc.
If the surface concentration is kept constant, processing temperature plays an important role. Taking steel materials as an example, when surface hardening is performed with nitrogen, the temperature is generally in the range of 400 to 700°C. Surface hardening by carburizing using carbon is 700-1100°C, and boron is 800-1200°C. On the other hand, surface lubrication during sulfurization using sulfur is 150 to 600°C. As described above, there is an appropriate processing temperature depending on the atoms to be diffused and the materials to be processed. In the ion surface treatment method, methods such as using an external heat source to partially make the surface temperature of the object to be treated non-uniform are also possible, but in the present invention, the method of making the surface temperature of the object to be treated partially non-uniform is possible. The electrode is placed on the cathode side at a predetermined distance from the surface of the workpiece, and by varying the pressure and type of gas introduced during ion treatment, the necessary distance between the auxiliary electrode and the workpiece is created. The process is performed by generating negative glow with different current densities depending on the current density. Here, heat absorption from the workpiece is through heat exchange of glow discharge energy and radiant heat from between the workpieces and the electrodes, while heat loss due to heat release is through radiant heat, convection of the process gas, and heat from the electrodes. These include conduction (flow from the electrode cooling water). Among these factors, possibilities that can be used to heat only the necessary portions of the workpiece to a predetermined temperature include discharge energy between workpieces, radiant heat, and the like. This can be achieved by making the cathode spacing constant, setting the introduced gas pressure to a predetermined value, and causing interaction between the two negative glows to make the current density higher than on other glow surfaces.

そこで、被処理品(陰極)で部分的に他とは異
なる機能を付与したい表面部分にこれとほぼ同電
位の対向補助電極を設置する。この部分の被処理
品表面はこの補助電極との相互作用での輻射熱、
中空陰極効果のようなグロー放電などにより加熱
及び保温される。この場合、被処理品と補助電極
との間のガスの電離密度も増加され、目的とする
拡散する活性な原子との表面反応も活発となる。
この現象を効果的に行なうためには、被処理品表
面から補助電極までの距離及びガスの組成に応じ
たガス圧力の設定が重要な因子になる。先ず被処
理品表面から補助電極までの距離であるが、これ
はガス圧力によつても異なるが、被処理品及び配
設された補助電極とに生じる負グローが何らかの
相互作用を及ぼさなければ目的とする効果は発生
しない。これは、ガス組成及びガス圧によつて負
グローの幅が異なりこれが相互作用に強く影響す
るからである。更に、これらと密接な関係にある
補助電極の負グロー放電面積をも考慮しなければ
ならない。従つて、一般的なイオン表面硬化処理
においては、この距離が0.5mm以下になると被処
理品への処理ガスの反応が阻害される傾向にあ
り、一方50mm以上離れるとグロー間での相互作用
の影響が弱くなり補助電極から被処理品への幅射
熱による加熱効果が低下するとともに補助電極側
への熱損失ともなりエネルギーの損失にもなる。
ここで窒素ガス、水素ガス、アルゴンガス、メタ
ンガスの混合ガスを用い3.5Torrの圧力でグロー
放電を発生させ補助電極のない表面の温度を600
℃とし、補助電極部の直下の被処理材表面の温度
を測定した。第2図は補助電極と被処理材の表面
との距離(間隙)と温度の関係を示したものであ
る。距離と温度の関係は導入ガスの比率、ガス圧
力、被処理材の形状、補助電極材材質、及びその
形状などにより大きく変動する。第2図の場合を
みると距離が0.5mm以下では補助電極部も600℃で
他のグロー面とほゞ等しい温度になつている。そ
れ以上距離が大きくなると補助電極部の温度が急
激に上昇し、距離が2〜5mmでピーク値になる。
この距離の場合、補助電極直下の被処理材表面の
温度は約1000℃以上になり、他のグロー面よりも
約400℃高い温度になつている。さらに距離が長
くなると温度差は漸次少なくなり約50mmでほゞ他
のグロー面と等しい値になつている。以上のよう
に補助電極との距離は0.5〜50mmの範囲、より好
ましくは2〜25mmの範囲内にあることが望まし
い。
Therefore, a counter auxiliary electrode with approximately the same potential is installed on the surface part of the object to be treated (cathode) where it is desired to impart a function different from the others. The surface of the workpiece in this area receives radiant heat due to interaction with this auxiliary electrode.
It is heated and kept warm by glow discharge such as hollow cathode effect. In this case, the ionization density of the gas between the object to be treated and the auxiliary electrode is increased, and the surface reaction with the target active atoms to be diffused becomes active.
In order to effectively carry out this phenomenon, important factors are the distance from the surface of the object to be treated to the auxiliary electrode and the setting of the gas pressure according to the composition of the gas. First of all, the distance from the surface of the workpiece to the auxiliary electrode varies depending on the gas pressure, but if the negative glow generated between the workpiece and the installed auxiliary electrode does not interact in some way, it will not work. This effect does not occur. This is because the width of the negative glow varies depending on the gas composition and gas pressure, which strongly influences the interaction. Furthermore, the negative glow discharge area of the auxiliary electrode, which is closely related to these, must also be considered. Therefore, in general ionic surface hardening treatment, if this distance is less than 0.5 mm, the reaction of the processing gas to the treated object tends to be inhibited, while if the distance is more than 50 mm, the interaction between the glows will be inhibited. As the influence becomes weaker, the heating effect due to radiated heat from the auxiliary electrode to the workpiece decreases, and there is also heat loss to the auxiliary electrode side, resulting in a loss of energy.
Here, a glow discharge is generated at a pressure of 3.5 Torr using a mixed gas of nitrogen gas, hydrogen gas, argon gas, and methane gas, and the temperature of the surface without the auxiliary electrode is increased to 600 m
℃, and the temperature of the surface of the treated material directly under the auxiliary electrode section was measured. FIG. 2 shows the relationship between the distance (gap) between the auxiliary electrode and the surface of the material to be treated and the temperature. The relationship between distance and temperature varies greatly depending on the ratio of introduced gas, gas pressure, the shape of the material to be treated, the material of the auxiliary electrode material, its shape, etc. In the case of Figure 2, when the distance is less than 0.5 mm, the auxiliary electrode part also has a temperature of 600°C, which is almost the same temperature as the other glow surfaces. When the distance becomes larger than that, the temperature of the auxiliary electrode part rises rapidly, reaching a peak value at a distance of 2 to 5 mm.
At this distance, the temperature of the surface of the treated material directly under the auxiliary electrode is about 1000°C or higher, which is about 400°C higher than the other glow surfaces. As the distance increases further, the temperature difference gradually decreases, and at about 50 mm it is almost the same value as other glow surfaces. As mentioned above, it is desirable that the distance to the auxiliary electrode be within the range of 0.5 to 50 mm, more preferably within the range of 2 to 25 mm.

次にガス圧力であるがガスの混合比率、目的と
する特性により適正な値がある。例えばこゝで一
般の浸炭窒化処理で製品の1部分のみの表面に深
い浸炭硬化を要する場合を示すと第3図のように
なる。この例では直径25mm、長さ250mmのシヤフ
ト状被処理品の両端面で各端面から40mmの範囲が
ボールベアリングの軸受部となり深い硬化層を必
要としている。その他の部分は一般の浸炭窒化或
いは窒化で十分である。この場合、両端面の40mm
の範囲の位置に被処理品の径よりも6mm大きい直
径31mm、長さ40mmで肉厚が4mmの円筒状補助電極
を設け窒素ガス、水素ガス、アルゴンガス、メタ
ンガスの混合ガスを用い補助電極以外の部分の温
度を600℃に保持し、ガス圧力を変動させて補助
電極部の温度を求めた例である。処理の工程でガ
ス圧力を0.5Torr未満に保持すると補助電極のあ
る部分も他の部分とほゞ同等の温度となる。一
方、ガス圧力を0.5Torr以上にすると補助電極部
のグロー放電の電流密度が高くなり、他の部分よ
りも温度が高くなる。この例ではガス圧力を約
2Torrに保持すると補助電極部は他の部分よりも
約320℃高温に保持することができる。なお、温
度差はガスの組成、補助電極の構造等により大巾
に変化させることができる。この例の場合、仮に
ガス圧力を2Torrに保持すると補助電極部は920
℃となり、他の部分は600℃に保持される。した
がつて、この状態では補助電極部は鉄鋼材ではオ
ーステナイトで炭素の固溶限が極めて大きくなる
ので浸炭現象が優先する。一方、他の部分は炭
素、窒素が拡散するまではフエライトであるので
窒素の固溶もなく、浸炭窒化層となる。一般に浸
炭窒化により表面硬化を行なう場合、600℃以下
の低温で行うので拡散速度が遅いので効果的な深
さを得るために2〜5時間の処理を行つている。
しかし、補助電極部は高温のまま保持されると浸
炭深さも大きくなるとともに結晶粒も粗大とな
り、機械的性質の点で望ましくなくなることがあ
る。そこで、本処理では初期の浸炭窒化処理は
0.5Torr未満で行い、補助電極部も他の部分と同
様、600℃として浸炭窒化層を形成させ、処理の
工程の10〜20分間を2Torrとして、補助電極部を
920℃として約0.5mmの厚い浸炭層を形成させてい
る。
Next, regarding gas pressure, there is an appropriate value depending on the gas mixture ratio and the desired characteristics. For example, FIG. 3 shows a case where deep carburizing and hardening is required on the surface of only one part of a product in a general carbonitriding process. In this example, the area within 40 mm from each end surface of a shaft-shaped workpiece with a diameter of 25 mm and a length of 250 mm serves as the bearing part of the ball bearing, and requires a deep hardened layer. For other parts, general carbonitriding or nitriding is sufficient. In this case, 40mm on both end faces
A cylindrical auxiliary electrode with a diameter of 31 mm, which is 6 mm larger than the diameter of the product to be processed, a length of 40 mm, and a wall thickness of 4 mm is installed at a position within the range of . This is an example in which the temperature of the auxiliary electrode part was determined by maintaining the temperature at 600°C and varying the gas pressure. If the gas pressure is maintained at less than 0.5 Torr during the treatment process, some parts of the auxiliary electrode will have approximately the same temperature as other parts. On the other hand, when the gas pressure is set to 0.5 Torr or more, the current density of the glow discharge in the auxiliary electrode part becomes high, and the temperature becomes higher than that in other parts. In this example, the gas pressure is approximately
When maintained at 2 Torr, the auxiliary electrode part can be maintained at a temperature approximately 320°C higher than other parts. Note that the temperature difference can be varied widely depending on the composition of the gas, the structure of the auxiliary electrode, etc. In this example, if the gas pressure is maintained at 2 Torr, the auxiliary electrode part will be 920
℃, and other parts are kept at 600℃. Therefore, in this state, the auxiliary electrode part is made of austenite in steel, and the solid solubility limit of carbon becomes extremely large, so that the carburization phenomenon takes priority. On the other hand, other parts are ferrite until carbon and nitrogen diffuse, so there is no solid solution of nitrogen and a carbonitrided layer is formed. Generally, when surface hardening is carried out by carbonitriding, it is carried out at a low temperature of 600° C. or less, and the diffusion rate is slow, so the treatment is carried out for 2 to 5 hours in order to obtain an effective depth.
However, if the auxiliary electrode portion is kept at a high temperature, the carburization depth increases and the crystal grains also become coarse, which may make the mechanical properties undesirable. Therefore, in this process, the initial carbonitriding treatment is
The auxiliary electrode part was heated to 600°C to form a carbonitrided layer like the other parts, and the auxiliary electrode part was heated to 2 Torr for 10 to 20 minutes during the treatment process.
A thick carburized layer of approximately 0.5 mm is formed at 920°C.

以上述べたように本発明では処理圧力が極めて
重要な因子である。一般には0.1〜10Torrの範
囲、より好ましくは1.0〜7.0Torrの範囲で変動さ
せるのが望ましい。
As described above, the processing pressure is an extremely important factor in the present invention. Generally, it is desirable to vary it in the range of 0.1 to 10 Torr, more preferably in the range of 1.0 to 7.0 Torr.

本発明における他の付ずい的因子として、補助
電極の大きさ及び材質がある。先ず補助電極の大
きさは、被処理品の、他とは異なつた処理を施し
たい表面部分の面積とほぼ同等あるいはそれ以上
であるのが好ましい。次に補助電極の材質は、処
理中に被処理品の表面に悪影響を及ぼさない材料
であれば良く、又、補助電極のグロー発生面は被
処理品と対向した面のみであつても良い。
Other incidental factors in the present invention include the size and material of the auxiliary electrode. First, the size of the auxiliary electrode is preferably approximately equal to or larger than the area of the surface portion of the object to be treated that is different from other treatments. Next, the material of the auxiliary electrode may be any material that does not adversely affect the surface of the object to be processed during processing, and the glow-generating surface of the auxiliary electrode may be only the surface facing the object to be processed.

一方、本発明と類似の方法として、ヒーター等
の補助加熱源を設置する方法等が考えられるが、
この場合、前記補助加熱源を部分的に設けること
は多数個の同時処理では困難であり、単品であつ
てもその設備等の増加があり、有効でない。
On the other hand, as a method similar to the present invention, a method of installing an auxiliary heating source such as a heater can be considered.
In this case, it is difficult to partially provide the auxiliary heating source when processing a large number of units at the same time, and even when a single unit is used, the number of equipment etc. increases, which is not effective.

以下図面を参照して、本発明の実施例を詳細に
説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

実施例 1 第4図及び第5図に示すごとく、第1図に示す
従来のイオン表面処理装置の内部にセツトした被
処理品2の深い表面硬化を施したい処理部2a,
2bの部分のみに部分加熱用の補助電極20を設
定し、イオン浸炭窒化処理を行つた。
Embodiment 1 As shown in FIGS. 4 and 5, a treatment section 2a, in which deep surface hardening is to be performed on a workpiece 2 set inside the conventional ion surface treatment apparatus shown in FIG.
An auxiliary electrode 20 for partial heating was set only in the portion 2b, and ion carbonitriding treatment was performed.

被処理品は、JIS規格SCM21のクロムモリブデ
ン鋼シヤフト(直径15〜20mm、長さ205mm)を80
本使用した。第5図に示すように、被処理品であ
るシヤフトの深い硬化層を必要とする部分2a,
2bは中間部の25mmの位置と、端部から25mmの位
置であり、他の部分2cは一般の浸炭窒化である
0.05mm程度でよい。そこで被処理品の被処理部2
a,2bに対向して補助電極20を設置した。補
助電極20はSUS304を製作し被処理品との距離
は5mmとした。
The product to be treated is a chromium molybdenum steel shaft (diameter 15 to 20 mm, length 205 mm) of JIS standard SCM21.
I used this book. As shown in FIG. 5, parts 2a of the shaft to be treated that require a deep hardened layer
2b is a position 25mm from the middle part and a position 25mm from the end, and the other part 2c is general carbonitriding.
Approximately 0.05mm is sufficient. Therefore, the processed part 2 of the processed product
An auxiliary electrode 20 was installed opposite to a and 2b. The auxiliary electrode 20 was made of SUS304, and the distance from the object to be processed was 5 mm.

処理は、減圧容器1内を10-2Torr以下に減圧
し、その状態で窒素ガス、水素ガス、メタンガ
ス、アルゴンガスを導入して1Torrとし、400〜
800Vの直流電圧を印加してグロー放電を発生さ
せ、600℃4.5時間の浸炭窒化処理を施こした。こ
の状態では補助電極20を設定した部分の被処理
材表面もほゞ他のグロー放電面と同様であつた。
この状態で引続きガス圧力を約4Torrにして、さ
らに30分間の処理を行つた。この状態では補助電
極部の温度は900℃となり、他のグロー面は600℃
(設定温度)となつた。処理後、被処理品を急冷
処理し、その断面の硬さ分布を測定した。第6図
は硬さ分布を示したものである。第6図において
曲線2a,2bは補助電極を設置した部分の被処
理品の硬さであり曲線2cはその他のグロー放電
部の硬さ分布である。本発明により処理工程中で
ガス圧を変動させて加熱した被処理部2a,2b
部の硬さ分布は表面から1.1〜1.2mm程度までビツ
カース硬度Hv513以上を示している。一方従来の
浸炭窒化では同一硬さまでの深さは0.2mm以下で
ある。すなわち、補助電極部は900℃で鋼のオー
ステナイト域まで加熱されたため、この部分に表
面から炭素が深く拡散して浸炭層が形成されたゝ
め、炭素濃度に応じた焼入硬さ分布を示したもの
である。一方、他の表面は600℃で低温でフエラ
イト域で処理されたゝめ、窒素、炭素とも固溶限
が小さく、拡散速度も低いため、薄い浸炭窒化層
となつている。以上のように、本実施例の方法に
よれば加熱処理部では目的とした浸炭処理が部分
的に施されたことがわかる。一方、この種の異な
る硬化層を形成させることは、従来殆んどできな
いか、あるいは工程を2工程に分け、初めに2
a,2b部以外をマスキングして浸炭処理(一般
ガス浸炭)を行つた後、2aa,2b部をマスキン
グして他の部分をイオン或いはガスにより浸炭窒
化を行つていた。したがつて、従来法と比較する
と省資源、省エネルギーの上からも極めて望まし
いことがわかる。
The process involves reducing the pressure inside the vacuum container 1 to 10 -2 Torr or less, and in that state nitrogen gas, hydrogen gas, methane gas, and argon gas are introduced to bring the pressure to 1 Torr.
A direct current voltage of 800V was applied to generate glow discharge, and carbonitriding treatment was performed at 600°C for 4.5 hours. In this state, the surface of the treated material where the auxiliary electrode 20 was set was almost the same as other glow discharge surfaces.
In this state, the gas pressure was subsequently increased to approximately 4 Torr, and treatment was continued for another 30 minutes. In this state, the temperature of the auxiliary electrode part is 900℃, and the temperature of the other glow surfaces is 600℃.
(set temperature). After the treatment, the treated product was rapidly cooled and the hardness distribution of its cross section was measured. FIG. 6 shows the hardness distribution. In FIG. 6, curves 2a and 2b represent the hardness of the workpiece in the portion where the auxiliary electrode is installed, and curve 2c represents the hardness distribution of the other glow discharge portion. Processed parts 2a and 2b heated by varying the gas pressure during the processing process according to the present invention
The hardness distribution of the part shows a Vickers hardness of Hv513 or higher up to about 1.1 to 1.2 mm from the surface. On the other hand, in conventional carbonitriding, the depth to the same hardness is 0.2 mm or less. In other words, since the auxiliary electrode part was heated to 900℃ to the austenite region of steel, carbon diffused deeply from the surface and a carburized layer was formed in this part, resulting in a hardness distribution depending on the carbon concentration. It is something that On the other hand, since the other surfaces were treated in the ferrite region at a low temperature of 600°C, the solid solubility limit of nitrogen and carbon is small and the diffusion rate is low, resulting in a thin carbonitrided layer. As described above, it can be seen that according to the method of this example, the intended carburizing treatment was partially performed in the heat treatment section. On the other hand, it has conventionally been almost impossible to form different hardened layers of this type, or the process has been divided into two steps and the
After carburizing (general gas carburizing) with parts other than the a and 2b parts masked, the 2aa and 2b parts were masked and the other parts were carbonitrided with ions or gas. Therefore, when compared with the conventional method, it can be seen that this method is extremely desirable in terms of resource and energy saving.

以上説明した通り、本発明のグロー放電表面処
理方法によれば、被処理品である金属材料に対し
て、複数の異なつた機能を有する表面処理を同一
容器で連続して行なうことが可能となり、しかも
加熱に要するエネルギーを大幅に節減することが
可能になつた。
As explained above, according to the glow discharge surface treatment method of the present invention, it is possible to continuously perform surface treatments with a plurality of different functions on the metal material to be treated in the same container. Moreover, it has become possible to significantly reduce the energy required for heating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のイオン窒化処理が施されるイオ
ン窒化処理装置の断面図、第2図は被処理品表面
から補助電極までの距離と温度との関係を示す線
図、第3図は、ガス圧力と温度との関係を示す線
図、第4図は、本発明のグロー放電表面処理方法
が実施される装置の一例を示す断面図、第5図は
本発明のグロー放電表面処理方法により処理され
る被処理品の概略図、第6図は第5図の被処理品
を本発明のグロー放電表面処理方法により処理し
た場合の被処理品表面から補助電極までの距離と
硬さとの関係を示す線図である。 1……減圧容器、2……被処理品、2a,2b
……深い表面硬化を施したい処理部、3……直流
電源、4……陽極端子、6……処理ガス、9……
真空装置、12……制御盤、20……補助電極。
Figure 1 is a cross-sectional view of an ion nitriding apparatus that performs conventional ion nitriding treatment, Figure 2 is a diagram showing the relationship between the distance from the surface of the workpiece to the auxiliary electrode and temperature, and Figure 3: A diagram showing the relationship between gas pressure and temperature, FIG. 4 is a sectional view showing an example of an apparatus in which the glow discharge surface treatment method of the present invention is carried out, and FIG. 5 is a diagram showing the relationship between gas pressure and temperature. FIG. 6 is a schematic diagram of the processed object to be processed, and FIG. 6 shows the relationship between the distance from the surface of the processed object to the auxiliary electrode and hardness when the processed object shown in FIG. 5 is treated by the glow discharge surface treatment method of the present invention. FIG. 1...Reduced pressure container, 2...Product to be processed, 2a, 2b
...Treatment section where deep surface hardening is desired, 3...DC power supply, 4...Anode terminal, 6...Processing gas, 9...
Vacuum device, 12... control panel, 20... auxiliary electrode.

Claims (1)

【特許請求の範囲】 1 減圧容器内の被処理品である金属材料からな
る陰極と陽極との間にグロー放電を発生させて前
記金属材料の表面処理を行なう方法において、前
記被処理品の所定表面の近傍に陰極に接続された
補助電極を前記金属材料と該補助電極との間に発
生するグロー放電が互いに相互作用するように前
記金属材料表面から所定の距離をおいて配設し、
所定のガス圧力でグロー放電を発生させて所定の
温度で前記金属材料の前記補助電極配設部分を表
面処理した後、次いで前記ガス圧力と異なるガス
圧力でグロー放電させ前記温度と異なる温度で前
記金属材料の前記補助電極配設部分を表面処理す
ることを特徴とする金属材料のグロー放電表面処
理方法。 2 処理中に減圧容器内の圧力を0.1〜10Torrの
範囲で変動させてグロー放電を発生させる特許請
求の範囲第1項記載の方法。 3 補助電極が、金属材料表面から0.5〜50mmの
距離において配設されている特許請求の範囲第1
項記載の方法。 4 表面処理に寄与する拡散原子を2成分以上と
し、金属材料の補助電極設置部分の拡散原子の量
が他の部分と異なるようにし、原子が深く浸透す
るようにした特許請求の範囲第1項記載の方法。
[Scope of Claims] 1. A method for surface-treating a metal material by generating glow discharge between a cathode and an anode made of a metal material, which is an object to be treated, in a reduced pressure container. An auxiliary electrode connected to a cathode near the surface is disposed at a predetermined distance from the surface of the metal material so that glow discharges generated between the metal material and the auxiliary electrode interact with each other;
After generating glow discharge at a predetermined gas pressure and surface-treating the auxiliary electrode disposed portion of the metal material at a predetermined temperature, the glow discharge is then caused to occur at a gas pressure different from the gas pressure, and the surface treatment is performed at a temperature different from the gas pressure. A glow discharge surface treatment method for a metal material, comprising surface-treating a portion of the metal material where the auxiliary electrode is provided. 2. The method according to claim 1, in which glow discharge is generated by varying the pressure inside the vacuum container in the range of 0.1 to 10 Torr during the treatment. 3. Claim 1, wherein the auxiliary electrode is disposed at a distance of 0.5 to 50 mm from the surface of the metal material.
The method described in section. 4. Claim 1, in which there are two or more components of diffused atoms that contribute to surface treatment, and the amount of diffused atoms in the part of the metal material where the auxiliary electrode is installed is different from that in other parts, so that the atoms penetrate deeply. The method described.
JP11729879A 1979-02-02 1979-09-14 Surface treatment of metal material by glow discharge Granted JPS5641371A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11729879A JPS5641371A (en) 1979-09-14 1979-09-14 Surface treatment of metal material by glow discharge
DE19803029339 DE3029339C2 (en) 1979-09-14 1980-08-01 Glow discharge surface treatment method and apparatus
US06/174,748 US4394234A (en) 1979-02-02 1980-08-04 Method of processing electrically conductive material by glow discharge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11729879A JPS5641371A (en) 1979-09-14 1979-09-14 Surface treatment of metal material by glow discharge

Publications (2)

Publication Number Publication Date
JPS5641371A JPS5641371A (en) 1981-04-18
JPS6137352B2 true JPS6137352B2 (en) 1986-08-23

Family

ID=14708282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11729879A Granted JPS5641371A (en) 1979-02-02 1979-09-14 Surface treatment of metal material by glow discharge

Country Status (1)

Country Link
JP (1) JPS5641371A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030498Y2 (en) * 1980-04-08 1985-09-12 カヤバ工業株式会社 Strut type shock absorber
JPS57198258A (en) * 1981-05-29 1982-12-04 Ulvac Corp Surface treating device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323837A (en) * 1976-08-19 1978-03-04 Kawasaki Heavy Ind Ltd Ionitriding
JPS5458636A (en) * 1977-10-20 1979-05-11 Kawasaki Heavy Ind Ltd Ion nitriding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323837A (en) * 1976-08-19 1978-03-04 Kawasaki Heavy Ind Ltd Ionitriding
JPS5458636A (en) * 1977-10-20 1979-05-11 Kawasaki Heavy Ind Ltd Ion nitriding method

Also Published As

Publication number Publication date
JPS5641371A (en) 1981-04-18

Similar Documents

Publication Publication Date Title
JP2572924B2 (en) Surface treatment method of metal by atmospheric pressure plasma
EP0242089B1 (en) Method of improving surface wear resistance of a metal component
Jafarpour et al. Solid carbon active screen plasma nitrocarburizing of AISI 316L stainless steel in cold wall reactor: Influence of plasma conditions
O'Brien et al. Plasma(Ion) Nitriding
Roliński Plasma-assisted nitriding and nitrocarburizing of steel and other ferrous alloys
JPS6111319B2 (en)
US4394234A (en) Method of processing electrically conductive material by glow discharge
Paosawatyanyong et al. Nitriding of tool steel using dual DC/RFICP plasma process
Chang et al. Wear resistance evaluation of plasma nitrocarburized AISI 316L stainless steel
GB2261227A (en) Surface treatment of metals at low pressure
KR101849997B1 (en) Methods for coating surface of iron-based alloy and products with high hardness and low friction manufactured thereby
KR20150110968A (en) Method and system for nitriding bore of pipe with hollow cathode discharge
JPS6137352B2 (en)
JP2001192861A (en) Surface treating method and surface treating device
Jacobs et al. Plasma Carburiiing: Theory; Industrial Benefits and Practices
Caliari et al. An investigation into the effects of different oxy-nitrocarburizing conditions on hardness profiles and corrosion behavior of 16MnCr5 steels
JPS5811779A (en) Ion surface treatment method
JP2773092B2 (en) Surface coated steel products
GB2060711A (en) Processing electrically conductive material by glow discharge
JP2003171756A (en) Vacuum carburizing method for steel part
JPS62995B2 (en)
KR890001031B1 (en) Metal surface treatment method by glow discharge
FR2332336A1 (en) Furnace for ion implantation in metals - suitable for nitriding, carburizing and other treatments
JPS5931586B2 (en) Method of heating metal materials
JPS6320300B2 (en)