[go: up one dir, main page]

JPS6137020B2 - - Google Patents

Info

Publication number
JPS6137020B2
JPS6137020B2 JP54076485A JP7648579A JPS6137020B2 JP S6137020 B2 JPS6137020 B2 JP S6137020B2 JP 54076485 A JP54076485 A JP 54076485A JP 7648579 A JP7648579 A JP 7648579A JP S6137020 B2 JPS6137020 B2 JP S6137020B2
Authority
JP
Japan
Prior art keywords
forging
rough
shaped steel
tool
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54076485A
Other languages
Japanese (ja)
Other versions
JPS561236A (en
Inventor
Kazuo Watanabe
Hidenori Tokita
Hiroe Nakajima
Yukio Nishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7648579A priority Critical patent/JPS561236A/en
Priority to DE19792940473 priority patent/DE2940473A1/en
Publication of JPS561236A publication Critical patent/JPS561236A/en
Priority to US06/335,669 priority patent/US4407056A/en
Publication of JPS6137020B2 publication Critical patent/JPS6137020B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Description

【発明の詳細な説明】 本発明は、形鋼用圧延素材である粗形鋼片の鍛
造による製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a rough shaped steel piece, which is a rolled material for shaped steel, by forging.

従来、形鋼用圧延素材としての粗形鋼片は一部
連続鋳造工程で製造されている例もあるが、主と
して分塊工程で製造されている。
BACKGROUND ART Conventionally, rough shaped steel slabs used as rolling materials for shaped steel have been manufactured mainly by a blooming process, although some of them have been manufactured by a continuous casting process.

しかしながら分塊工程は、溶鋼を連続鋳造して
鋼片(鋳片)を得るプロセスに比し能率、歩留、
エネルギー消費等ので遜色があるため、特に我国
では次第に連続鋳造によつて鋼片を得るプロセス
に変換される趨勢にある。
However, the blooming process is more efficient and yield efficient than the process of continuously casting molten steel to obtain slabs.
Since it is inferior in terms of energy consumption, etc., there is a tendency, especially in Japan, to gradually convert the process to obtaining steel billets by continuous casting.

連続鋳造を前提にした形鋼用粗形鋼片製造プロ
セスの1つに粗形鋼片を連続鋳造によつて得ると
いうものがある。
BACKGROUND ART One of the processes for producing rough-shaped steel slabs for section steel based on the premise of continuous casting is to obtain rough-shaped steel slabs by continuous casting.

連続鋳造によつて粗形鋼片を得るプロセスに
は、種々の断面形状、サイズ毎に鋳型を交換しな
ければならないから、設備稼動率を低下せしめ生
産性の低下を招くのみならず、複雑な断面形状の
連続鋳造であるから、鋳片の冷却過程における
“割れ”、“偏析”の発生等品質面の問題もある。
In the process of obtaining rough-shaped steel slabs by continuous casting, molds must be replaced for various cross-sectional shapes and sizes, which not only reduces equipment operation rate and productivity, but also requires complicated casting. Since the cross-sectional shape is continuously cast, there are quality problems such as cracks and segregation occurring during the cooling process of the slab.

高い品質、生産性水準の下で連続鋳造を行なう
には、能う限り扁平な矩形断面の鋳片をサイズ数
少なく、換言すれば1つのサイズロツトを能う限
り大きくすることが必要である。
In order to carry out continuous casting under high quality and productivity standards, it is necessary to reduce the number of slabs with rectangular cross sections as flat as possible, or in other words, to make one size lot as large as possible.

従つて、連続鋳造によつて方形断面の鋳片を
得、これを以降の工程で種々の断面サイズの粗形
鋼片とすることが必要となつてくる。
Therefore, it is necessary to obtain slabs with a rectangular cross section through continuous casting, and to convert these slabs into rough shaped steel slabs with various cross-sectional sizes in subsequent steps.

一方、従来分塊圧延機で粗形鋼片を製造してい
たプロセスのように、方形断面の素材から粗形鋼
片を得るプロセスは、殊に孔型を有する水平ロー
ル対で粗形鋼片を得るプロセスでは粗形鋼片のフ
ランジ部の幅を確保するために方形の大断面材料
を出発材料としなければならないから必然的にパ
ス回数が多くなり生産性が低下する。
On the other hand, as in the conventional process of manufacturing rough-shaped steel slabs using a blooming mill, the process of obtaining rough-shaped steel slabs from a material with a rectangular cross section is a process in which rough-shaped steel slabs are produced using a pair of horizontal rolls with grooves. In the process of obtaining this, a rectangular large cross-section material must be used as the starting material in order to ensure the width of the flange portion of the rough shaped steel billet, which inevitably increases the number of passes and reduces productivity.

方形断面材料から粗形鋼片を得る過程にユニバ
ーサル圧延機を適用するという提案(特開昭50−
93851号)もあり、孔型圧延法によるよりも格段
にパス回数が減少するものの圧延によつて粗形鋼
片を得るプロセスでは圧延方向へのメタル流動の
ために、フランジ部分からも圧延方向へのメタル
流動分が補給される結果、フランジの擦り下げが
起るから粗形鋼片のフランジ幅を確保することの
困難さは本質的に存在する。
A proposal to apply a universal rolling mill to the process of obtaining rough-shaped steel pieces from square-section material
93851), and although the number of passes is significantly reduced compared to the groove rolling method, in the process of obtaining a rough shaped steel piece by rolling, due to the metal flow in the rolling direction, the number of passes is also reduced from the flange part in the rolling direction. As a result of the replenishment of metal flow, the flange is rubbed down, so it is essentially difficult to ensure the flange width of the rough shaped steel piece.

この発明は、方形断面の素材から粗形鋼板を得
るに際し、フランジ部分の擦り下げを全く伴なわ
ない造形法を得ることを目的としてなされた。
This invention was made with the object of obtaining a forming method that does not involve any rubbing down of the flange portion when obtaining a rough shaped steel plate from a material having a rectangular cross section.

フランジ部分の擦り下げを全く伴わない造形法
として発明者等は、鍛造によつて方形断面材料か
ら粗形鋼片を得る技術を既に提案している(特願
昭53−40280号)。
The inventors have already proposed a technique for obtaining a rough-shaped steel piece from a rectangular cross-section material by forging as a forming method that does not involve any rubbing down of the flange portion (Japanese Patent Application No. 40280/1983).

本発明は、前述の技術の改良に係るものであ
り、その特徴とするところは断面方形の金属材料
の長手方向に、鍛造工具による鍛造圧縮過程を繰
返し進行させて実質的に幅方向中央部に凹部を形
成する粗形鋼片の製造方法において、鍛造工具と
してその長手方向先端に、該工具後方定常部に比
べて圧縮方向および幅方向の一方または双方に
徐々に圧下量が少なくなるような非定常部を有す
る鍛造工具を使用し、前記鍛造圧縮工程を進行さ
せる際、前の鍛造圧縮動作時に非定常部で圧縮し
た部分を次の鍛造圧縮動作時に定常部で圧縮し、
これを繰返し進行させることにより材料の長手方
向にわたり均一な粗形鋼片断面を形成する粗形鋼
片の製造方法にある。
The present invention relates to an improvement of the above-mentioned technology, and is characterized by repeatedly performing a forging compression process using a forging tool in the longitudinal direction of a metal material having a rectangular cross section, so that substantially the central portion in the width direction is In a method for manufacturing a rough-shaped steel piece forming a recessed part, a forging tool is provided with a forging tool at its longitudinal tip such that the reduction amount gradually decreases in one or both of the compression direction and the width direction compared to the steady rear part of the tool. When using a forging tool having a steady part and proceeding with the forging compression process, the part compressed in the unsteady part during the previous forging compression operation is compressed in the steady part during the next forging compression operation,
The present invention provides a method for manufacturing a rough-shaped steel piece in which a uniform cross-section of the rough-shaped steel piece is formed in the longitudinal direction of the material by repeating this process.

本発明における鍛造機は、連続鋳造ライン中に
或は分塊圧延ライン中に、または形鋼圧延ライン
の前段に設けることができる。
The forging machine in the present invention can be installed in a continuous casting line, in a blooming rolling line, or upstream of a section rolling line.

以下に本発明を詳細に説明する。 The present invention will be explained in detail below.

一般に、鍛造は圧延に比べてメタルが材料の長
手方向よりも幅方向に出易いことが知られてお
り、所望とする断面形状を得るには極めて適して
いる。
In general, forging is known to produce metal more easily in the width direction of the material than in the longitudinal direction, compared to rolling, and is extremely suitable for obtaining a desired cross-sectional shape.

しかしながら、鍛造は離散的に材料に塑性加工
が加えられる過程であり、圧延のように連続的に
材料に塑性加工が加えられる過程に比し、生産
性、能率の面で劣る。
However, forging is a process in which plastic working is applied to a material discretely, and is inferior in terms of productivity and efficiency to a process such as rolling, in which plastic working is applied continuously to a material.

しかしながら、たとえば鋼の連続鋳造のように
極めて低速(0.5〜3m/min)で材料が移動する
ラインで切断後の鋳片に鍛造を行なう場合や圧延
ラインにおけるエントリセクシヨンのように後段
の材料速度に比し、極めて低速で処理しても質量
流量としてバランスする場合のように圧延との比
較における低生産性、低能率が問題として顕在下
しない場にあつては、造形における材料長さ方向
へのメタル流動が殆んどないこと、材料断面形状
を変化させる自由度が大きいという利点を最大限
に活用し得る。
However, for example, when forging cut slabs on a line where material moves at extremely low speeds (0.5 to 3 m/min), such as in continuous steel casting, or when the material speed at the subsequent stage, such as in the entry section of a rolling line, In contrast, in cases where low productivity and low efficiency compared to rolling do not become obvious problems, such as when the mass flow rate is balanced even when processed at extremely low speeds, it is possible to It is possible to take full advantage of the advantages of almost no metal flow and a large degree of freedom in changing the cross-sectional shape of the material.

そこで、発明者等が先に行なつた提案(特願昭
53−40280号)になる技術においては、第2図
a,bに示すような鍛造プロセスによつて第1図
に示すような粗形鋼片とするようにしている。
Therefore, the inventors made a proposal (patent application
In the technique disclosed in No. 53-40280), a rough shaped steel piece as shown in FIG. 1 is obtained by a forging process as shown in FIGS. 2a and 2b.

即ち、第2図aに示すように、鍛造工具1を素
材2(この例ではブルーム)の中央部に設定し、
第2図bに示すように所定の量だけ素材を圧縮す
ることにより、鍛造工具形状に応じた粗形鋼片
2′を得ることができる。得られる粗形鋼片の全
幅は工具形状、鍛造量によつて調整可能であり、
鍛造の特性上粗形鋼片のフランジ幅も出発材料で
ある方形断面素材の厚さよりも減少することがな
いし、クロツプ部分も殆んど生ぜず極めて歩留の
高い良好な形状の粗形鋼片が得られる。
That is, as shown in FIG. 2a, the forging tool 1 is set at the center of the material 2 (bloom in this example),
By compressing the material by a predetermined amount as shown in FIG. 2b, a rough shaped steel piece 2' corresponding to the shape of the forging tool can be obtained. The total width of the obtained rough slab can be adjusted depending on the tool shape and the amount of forging.
Due to the characteristics of forging, the flange width of the rough-shaped steel slab does not become smaller than the thickness of the starting square cross-section material, and there are almost no cropped parts, resulting in a well-shaped rough-shaped steel slab with an extremely high yield. is obtained.

第3図a,bは、垂直方向および水平方向から
同時に圧縮を行ない、スラブから鍛造により粗形
鋼片を製造する場合を示したものである。垂直方
向の工具3、水平方向の工具4をスラブ5の所定
位置に設定し、目的とする寸法になるまで工具
3,4で同時に圧縮を行なう。この場合、第1図
のような方法に比べて鍛造荷重は増加するが、粗
形鋼片5′のフランジ高さはスラブ5の厚みより
も大幅に増加する特徴がある。従つて、鋼片の厚
みよりもフランジ高さの高い粗形鋼片を製造する
場合は極めて有効な方法である。
FIGS. 3a and 3b show a case in which a rough-shaped steel piece is manufactured from a slab by forging by simultaneously performing compression in the vertical and horizontal directions. A vertical tool 3 and a horizontal tool 4 are set at predetermined positions on the slab 5, and compression is performed simultaneously with the tools 3 and 4 until the desired dimension is achieved. In this case, the forging load is increased compared to the method shown in FIG. 1, but the flange height of the rough shaped steel piece 5' is characterized by being significantly larger than the thickness of the slab 5. Therefore, it is an extremely effective method when manufacturing a rough shaped steel billet whose flange height is higher than the thickness of the steel billet.

第4図a,bは、先に垂直方向の圧縮を行ない
次に水平方向の圧縮を行なつてスラブから鍛造に
より粗形鋼片の製造を行なう場合の例を示したも
のである。先ず工具3をスラブの中央部に設定し
て垂直方向に所定量だけ圧縮を行ない、次に工具
4で所定の幅になるように水平方向に圧縮を行な
うが、この場合工具3は圧縮後の位置にそのまま
保持したままあるいは圧縮前の位置に戻した後工
具4で圧縮を行なつてもどちらでもよい。かかる
方法をとることにより、第3図の場合に比べて鍛
造荷重が減少し、しかもほぼ同等の効果が得られ
る。
FIGS. 4a and 4b show an example in which a rough-shaped steel piece is manufactured by forging from a slab by first performing vertical compression and then horizontal compression. First, the tool 3 is set at the center of the slab to compress the slab by a predetermined amount in the vertical direction, and then the tool 4 is used to compress the slab horizontally to a predetermined width. It may be compressed with the tool 4 while being held in that position or after being returned to the position before compression. By adopting such a method, the forging load is reduced compared to the case shown in FIG. 3, and almost the same effect can be obtained.

第5図a,bは、水平方向の工具を所定の粗形
鋼片の全幅が得られる位置に保持し、垂直方向の
工具で垂直方向に圧縮を行なつて粗形鋼片を製造
する場合の例を示したものである。工具6で垂直
方向に鍛造圧縮することにより鋼片8は水平方向
に拡がるが、工具7によりこの幅拡りは防止され
る。そのため、粗形鋼片8′は若干長手方向にも
伸びるがフランジ幅は鋼片8の厚みよりも大きく
なり、第3図、第4図の場合と同様の効果が得ら
れる。しかしながら、本法の主な目的は工具7に
よつて幅拡りを防止することにより粗形鋼片8′
の形状を良好なものとすることにあり、幅拡りの
比較的小さな鍛造を行なう場合に適している。ま
た、工具7は圧縮を行なわないため例えば圧延に
用いるマニプレータのようなものでもよい。
Figures 5a and b show the case where a horizontal tool is held in a position where the full width of the predetermined rough-shaped steel billet can be obtained, and a vertical tool is used to perform vertical compression to produce a rough-shaped billet. This is an example. By forging and compressing the steel piece 8 in the vertical direction with the tool 6, the steel billet 8 expands in the horizontal direction, but the tool 7 prevents this width expansion. Therefore, although the rough shaped steel piece 8' extends slightly in the longitudinal direction, the flange width becomes larger than the thickness of the steel piece 8, and the same effect as in the case of FIGS. 3 and 4 can be obtained. However, the main purpose of this method is to prevent the rough shaped steel piece 8' from widening by using the tool 7.
It is suitable for forging with a relatively small width expansion. Further, since the tool 7 does not perform compression, it may be a manipulator used for rolling, for example.

上に述べた手段によつて、方形断面素材から粗
形鋼片を製造するのであるが、鋼片の長さは通常
10m前後であり、この長さの鋼片を一度に圧縮成
形するには巨大な鍛造機を必要とし、現実的では
ない。
By the above-mentioned method, a rough-shaped steel slab is manufactured from a rectangular cross-section material, but the length of the steel slab is usually
The length is around 10m, and compression molding this length of steel piece at once would require a huge forging machine, which is impractical.

実用的には鋼片長を数回に分けて順次鍛造圧縮
工程を繰返し行なう。
Practically speaking, the length of the steel billet is divided into several steps and the forging and compression process is repeated in sequence.

第6図a,b,c,dに、繰返し鍛造圧縮工程
の過程を模式的に示した。先ず、(a)に示すように
鋼片10の一方の先端から工具9により鍛造圧縮
を開始し、第1段階の圧縮は(b)に示す工具9の状
態で完了する。次に、工具9または鋼片10を(c)
に示す位置に移動させて第2段階の圧縮を行な
う。その場合、境界部の疵の発生と形状不良を防
止するため(c)に示すように工具9を距離mだけ既
鍛造部にオーバーラツプさせて(d)に示すように第
2段階の圧縮を行なう。かかる方法により鋼片の
長さ方向に順次鍛造圧縮工程を繰返すことによ
り、疵が発生することなく良好な形状の粗形鋼片
が得られる。
FIGS. 6a, b, c, and d schematically show the process of the repeated forging and compression process. First, as shown in (a), forging compression is started using the tool 9 from one end of the steel piece 10, and the first stage of compression is completed with the tool 9 in the state shown in (b). Next, insert the tool 9 or the steel piece 10 (c)
The second stage of compression is performed by moving it to the position shown in . In that case, in order to prevent the occurrence of defects and shape defects at the boundary, the tool 9 is overlapped with the already forged part by a distance m as shown in (c), and the second stage of compression is performed as shown in (d). . By repeating the forging and compression process sequentially in the longitudinal direction of the steel piece using this method, a rough-shaped steel piece with a good shape can be obtained without generating flaws.

上記の鍛造圧縮を行なう場合の鍛造機は特殊な
鍛造機ではなく通常用いられているタイプの鍛造
機で何ら支障はない。
The forging machine used to perform the forging compression described above is not a special forging machine, but a commonly used type forging machine, and there is no problem at all.

第7図a,b,c,dに示すのは、これまで説
明してきた非定常のない長さ方向に一様な形状を
有する鍛造工具を用いてブルームを垂直方向のみ
圧縮した場合の粗形鋼片の形状の例を示したもの
である。長さのステツプ鍛造を行なる場合、既
鍛造部と未鍛造部では材料自身の拘束状態が異な
るため、鍛造境界部近傍の幅拡りが異なり、(a),
(b),(c)に示すようにフランジ内側が段付き状とな
り、疵が生じると同時に大きなフランジ厚みおよ
びフランジ幅の長手方向変動が発生する。従つて
境界部近傍の形状と定常部の形状が異なり圧延上
望ましくない。また、ウエブについても工具に非
定常部がないため各部の圧下量が同一となり、そ
のため(d)に示すように境界部は垂直方向にメタル
を伸し下げることになり段付き状の疵が生じて圧
延上好ましくない。
Figures 7a, b, c, and d show the rough shape of the bloom when it is compressed only in the vertical direction using the forging tool that has a uniform shape in the length direction without unsteadiness as explained so far. This figure shows an example of the shape of a steel piece. When performing length step forging, the constraint state of the material itself is different between the forged part and the unforged part, so the width expansion near the forging boundary is different, and (a),
As shown in (b) and (c), the inside of the flange becomes stepped, causing flaws and at the same time large longitudinal variations in flange thickness and flange width. Therefore, the shape near the boundary portion and the shape of the steady portion are different, which is undesirable in terms of rolling. In addition, since there is no unsteady part in the tool for the web, the amount of reduction in each part is the same, and as a result, as shown in (d), the metal is stretched down in the vertical direction at the boundary part, resulting in step-like flaws. This is unfavorable for rolling.

この発明は、上に述べた問題点を解決し、疵お
よび形状不良のない良好な形状の粗形鋼片を得る
手段を与えるものである。
The present invention solves the above-mentioned problems and provides a means for obtaining a rough-shaped steel piece with good shape and no flaws or defective shape.

第8図は、既に述べた発明者等の提案になる技
術における定常部のみで構成された長手方向にそ
の断面形状が一様な鍛造工具を示している。この
図に示す鍛造工具によるときは、ステツプ鍛造後
の材料の鍛造後の部分と未鍛造部分の境界部分は
垂直方向に切り立つた段付き部分となつている。
この部分は、次のステツプ鍛造により、未鍛造部
分の鍛造によつてフランジ側とウエブ側へ流動す
るから、ステツプ鍛造完了後一様であるべきフラ
ンジ内側とウエブ部分に段付きを遺すことにな
る。
FIG. 8 shows a forging tool with a uniform cross-sectional shape in the longitudinal direction, which is composed of only stationary parts and is based on the technique proposed by the inventors mentioned above. When using the forging tool shown in this figure, the boundary between the forged portion and the unforged portion of the material after step forging is a stepped portion that stands vertically.
During the next step forging, this part flows to the flange side and the web side due to the forging of the unforged part, leaving a step on the inside of the flange and the web part, which should be uniform after the step forging is completed. .

第9図aは、この発明において適用する鍛造工
具を示している。第9図aに示す鍛造工具はその
長手方向先端(長さ方向の距離nの範囲)に圧縮
方向および幅方向の双方に、徐々に圧下量が少な
くなるような非定常部を有している。かかる非定
常部を設けることにより、鍛造後の材料における
境界部は滑らかな遷移変形部となり、次のステツ
プ鍛造を行なうとき、この境界部は未鍛造部から
既鍛造部に向つて滑らかな圧下が加わる結果、メ
タルの擦り下げが防止され、鍛造完了後の段付き
は殆んどなくなる。
FIG. 9a shows a forging tool applied in this invention. The forging tool shown in Fig. 9a has an unsteady portion at its longitudinal tip (in the range of distance n in the length direction) in which the amount of reduction gradually decreases in both the compression direction and the width direction. . By providing such an unsteady part, the boundary part in the material after forging becomes a smooth transition deformation part, and when the next step forging is performed, this boundary part is smoothly rolled down from the unforged part to the already forged part. As a result, the metal is prevented from being rubbed down, and there is almost no stepping after forging is completed.

第9図b,cは、上に述べた非定常部の他の態
様を示す。
FIGS. 9b and 9c show other embodiments of the above-mentioned unsteady portion.

第9図bに示すのは、長手方向先端nの範囲に
圧縮方向に徐々に圧下量が少なくなるような非定
常部を有する鍛造工具である。
What is shown in FIG. 9b is a forging tool that has an unsteady portion in the range of the longitudinal tip n in which the amount of reduction gradually decreases in the compression direction.

第9図cに示すのは長手方向先端nの範囲に幅
方向に徐々に圧下量が少なくなるような非定常部
を有する鍛造工具である。
What is shown in FIG. 9c is a forging tool having an unsteady portion in the range of the tip n in the longitudinal direction such that the amount of reduction gradually decreases in the width direction.

第9図aに示すのは、第9図b,cに示した非
定常部を合成した非定常部を有する鍛造工具とい
える。
What is shown in FIG. 9a can be said to be a forging tool having an unsteady part that is a composite of the unsteady parts shown in FIGS. 9b and 9c.

第10図a,b,cに、この発明において適用
される鍛造工具の定常部の断面形状のいくつかを
示す。たとえば大きな幅拡がりを必要とする場
合、つまりウエブ幅の広い粗形鋼片を得ようとす
る場合は、第10図aに示す扁平形状の工具を使
用する。このように所望する粗形鋼片の断面形
状、寸法に応じて適切な形状の鍛造工具を使用す
る。次いで実施例について述べる。
FIGS. 10a, b, and c show some cross-sectional shapes of the stationary part of the forging tool applied in the present invention. For example, when a large width expansion is required, that is, when trying to obtain a rough-shaped steel piece with a wide web width, a flat-shaped tool shown in FIG. 10a is used. In this way, a forging tool of an appropriate shape is used depending on the cross-sectional shape and dimensions of the desired rough-shaped steel piece. Next, examples will be described.

第11図は、実際にブルームから粗形鋼片をス
テツプ鍛造により製造する場合に使用した円弧形
鍛造工具の例を具体的に示したものである。工具
の全長は1000mm、非定常部の長さ300mm、定常部
の円弧の半径は120mm、非定常部の球面の半径300
mmである。
FIG. 11 specifically shows an example of a circular arc-shaped forging tool used when actually manufacturing a rough-shaped steel piece from a bloom by step forging. The total length of the tool is 1000 mm, the length of the unsteady part is 300 mm, the radius of the arc of the steady part is 120 mm, and the radius of the spherical surface of the unsteady part is 300 mm.
mm.

第12図は第11図に示した鍛造工具を用いス
テツプ鍛造により製造した粗形鋼片の境界部の断
面形状を示したものである。素材として使用した
ブルームの寸法は300H×340W×7500L、境界部
の工具のオーバーラツプ量は100mmとし14回のス
テツプ鍛造を行なつている。この時用いた鍛造機
の容量は最大1500Ton、鍛造速度は50mm/secで
ある。鍛造量は200mm、材料温度は平均1100℃程
度で鍛造荷重は単位ステツプあたり約700Ton、
鍛造完了までに要した時間は約150secであり、製
品工場の圧延ピツチに充分マツチングさせること
ができた。本図において実線は非定常部を設けた
該工具で、点線は従来の定常部のみからなる工具
でそれぞれ鍛造した場合の粗形鋼片の断面形状で
あるが、従来工具で生じていた境界部の鍛造疵は
該工具を用いることにより完全に解消することが
できた。また、円弧形工具は材料の水平方向の幅
拡りが扁平状工具に比べて小さい特徴があり、余
り大きな幅拡りを要しない鍛造に適している。得
られた粗形鋼片のクロツプ長さは先端、後端とも
約100mm程度で、本法は歩留の面でも分塊圧延に
比べて格段に有利である。
FIG. 12 shows the cross-sectional shape of the boundary portion of a rough shaped steel piece manufactured by step forging using the forging tool shown in FIG. 11. The dimensions of the bloom used as the material were 300H x 340W x 7500L, and the tool overlap at the boundary was 100mm, and step forging was performed 14 times. The forging machine used at this time had a maximum capacity of 1500 tons and a forging speed of 50 mm/sec. The forging amount is 200mm, the material temperature is about 1100℃ on average, and the forging load is about 700Ton per unit step.
The time required to complete the forging was approximately 150 seconds, and the product was able to be fully matched to the rolling pitch of the product factory. In this figure, the solid line is the tool with an unsteady part, and the dotted line is the cross-sectional shape of the rough shaped steel piece when forged with a conventional tool consisting only of a steady part. The forging flaws could be completely eliminated by using this tool. In addition, arc-shaped tools have a characteristic that the width of the material in the horizontal direction is smaller than that of flat tools, and are suitable for forging that does not require a large width increase. The crop length of the obtained rough-shaped steel slab is approximately 100 mm at both the leading and trailing ends, and this method is significantly more advantageous than blooming rolling in terms of yield.

第13図a,bは上記粗形鋼片の全長にわたつ
て測定したウエブ高さとフランジ厚の絶対量を示
したものである。何れの場合も実線は本発明によ
る工具による寸法、点線は定常部のみからなる長
手方向に一様な断面形状を有する従来工具で鍛造
したときの寸法を表わしている。ウエブ高さにお
いて粗形鋼片の先端、後端は材料自身の拘束がな
いため何れの工具を用いても中央部に比べて若干
大きくなるが、特に顕著な特徴は境界部の寸法に
あるすなわち、従来工具では定常部と境界部のウ
エブ高さの差が約15mm程度あり、全長に渡つて凹
凸が生じるが、本発明の工具を使用すればその量
が2〜3mmに減少し全長がほぼ一様な安定した形
状寸法の粗形鋼片が得られる。
FIGS. 13a and 13b show the absolute amounts of web height and flange thickness measured over the entire length of the rough shaped steel piece. In either case, the solid line represents the dimensions obtained by the tool according to the present invention, and the dotted line represents the dimensions obtained when forged using a conventional tool having a uniform cross-sectional shape in the longitudinal direction and consisting only of a stationary portion. At the web height, the tip and rear ends of the rough shaped steel piece are not constrained by the material itself, so no matter which tool is used, they will be slightly larger than the center, but the most notable feature is the dimensions of the boundary, i.e. With conventional tools, the difference in web height between the stationary part and the boundary part is about 15 mm, and unevenness occurs over the entire length, but with the tool of the present invention, the amount of unevenness is reduced to 2 to 3 mm, and the overall length is almost the same. A rough shaped steel piece with uniform and stable shape and dimensions is obtained.

フランジ厚においてもウエブ高さと同様境界部
にその大きな特徴が認められる。従来の工具の場
合、工具全長に渡つて圧下量が一定となるため、
工具の先端および後端に相当する材料の拘束効果
の違いにより材料の幅拡り量が異なる。そのため
鍛造の境界部に相当するフランジ内側に約10mm程
度の段付きが生じる。一方本発明による工具の場
合、工具の先端と後端で圧下量が異なるため材料
の定常部と境界部の幅拡り量がほぼ等しくなり、
段付き量はほぼ2〜3mmに減少し、全長に渡つて
フランジ厚の一様な良好な粗形鋼片が得られる。
Similar to the web height, the flange thickness has significant characteristics at the boundary. In the case of conventional tools, the amount of reduction is constant over the entire length of the tool, so
The amount of width expansion of the material differs due to the difference in the restraint effect of the material corresponding to the leading and trailing ends of the tool. As a result, a step of approximately 10 mm is created on the inside of the flange, which corresponds to the forging boundary. On the other hand, in the case of the tool according to the present invention, since the reduction amount is different at the tip and rear end of the tool, the amount of width expansion in the steady part and the boundary part of the material is almost equal,
The stepped amount is reduced to approximately 2 to 3 mm, and a good rough-shaped steel piece with uniform flange thickness over the entire length is obtained.

以上のことから明らかなように、本発明による
鍛造工具を使用しステツプ鍛造を行なうことによ
り従来に比べて粗形鋼片の形状、寸法の改善効果
が極めて大きく、目的とする良好な粗形鋼片が得
られた。
As is clear from the above, by performing step forging using the forging tool according to the present invention, the effect of improving the shape and dimensions of the rough-shaped steel piece is extremely large compared to the conventional method, and the desired rough-shaped steel piece can be obtained. A piece was obtained.

なお、本発明は種々の応用が考えられ、本実施
例で示したものはその一例であり、本発明の目的
に沿うものは全て包含されることは勿論である。
It should be noted that the present invention can be applied in various ways, and the one shown in this embodiment is just one example, and it goes without saying that all applications that meet the purpose of the present invention are included.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、粗形鋼片を示す見取図、第2図a,
bは、鍛造によつて粗形鋼片を得る過程を示す
図、第3図a,bは、垂直方向および水平方向か
ら同時に鍛造工具で圧縮を行なつてスラブから粗
形鋼片を得る過程を示す図、第4図a,bは、先
に垂直方向の圧縮を行なつて、然る後に水平方向
の圧縮を行なつてスラブから粗形鋼片を得る過程
を示す図、第5図a,bは、最終的に得ようとす
る粗形鋼片の幅に合せて位置せしめ、垂直方向か
らの圧縮によつて、スラブから粗形鋼片を得る過
程を示す図、第6図a,b,c,dは、繰返し
(ステツプ)鍛造圧縮工程を模式的に示す図、第
7図a,b,c,dは、長手方向に一様な断面形
状をもつ鍛造工具で、方形断面素材から粗形鋼片
を製造するときに生ず段付き部の模様を示す図、
第8図は、長手方向に一様な断面形状をもつ鍛造
工具の斜視図、第9図a,b,cは、この発明に
なる粗形鋼片の製造方法における鍛造工具を示す
図、第10図a,b,cは、この発明になる粗形
鋼片の製造方法における鍛造工具の定常部断面形
状のいくつかを示す図、第11図は、第9図aに
示した鍛造工具の非定常部の各段階における断面
プロフイルを示す図、第12図は、従来工具とこ
の発明における工具によるステツプ鍛造境界部の
断面の相違を示す図、第13図a,bは、従来技
術と本発明の粗形鋼片製造後における粗形鋼片の
ウエブ部、フランジ部の凹凸状況を示す図であ
る。 1…鍛造工具、2…素材、3…垂直方向工具、
4…水平方向工具、5…スラブ、6…工具、7…
工具、8…鋼片、9…工具、10…鋼片。
Figure 1 is a sketch showing a rough shaped steel piece, Figure 2a,
Fig. 3b shows the process of obtaining a rough-shaped steel billet by forging, and Figures 3a and b show the process of obtaining a rough-shaped steel billet from a slab by simultaneously performing compression with a forging tool in the vertical and horizontal directions. Figures 4a and 4b are diagrams showing the process of obtaining a rough shaped steel billet from a slab by first performing vertical compression and then horizontal compression, and Figure 5. Figures a and b are diagrams showing the process of obtaining a rough-shaped steel slab from a slab by vertically compressing the slab by positioning it in accordance with the width of the rough-shaped steel slab to be finally obtained; Fig. 6a , b, c, and d are diagrams schematically showing the repeated (step) forging compression process. A diagram showing the pattern of the stepped part that occurs when manufacturing a rough shaped steel piece from the raw material,
FIG. 8 is a perspective view of a forging tool having a uniform cross-sectional shape in the longitudinal direction; FIGS. Figures 10a, b, and c are diagrams showing some of the cross-sectional shapes of the stationary part of the forging tool in the method for manufacturing a rough-shaped steel billet according to the present invention, and Figure 11 is a diagram showing the cross-sectional shape of the stationary part of the forging tool shown in Figure 9a. FIG. 12 is a diagram showing the cross-sectional profile at each stage of the unsteady part. FIG. 12 is a diagram showing the difference in the cross section of the step forging boundary between the conventional tool and the tool of the present invention. FIGS. FIG. 3 is a diagram showing the unevenness of the web portion and flange portion of the rough-shaped steel billet after manufacturing the rough-shaped steel billet of the invention. 1...Forging tool, 2...Material, 3...Vertical tool,
4...Horizontal tool, 5...Slab, 6...Tool, 7...
Tool, 8... Steel piece, 9... Tool, 10... Steel piece.

Claims (1)

【特許請求の範囲】 1 断面方形の金属材料の長手方向に鍛造工具に
よる鍛造圧縮過程を繰り返し進行させて実質的に
幅方向中央部に凹部を形成する粗形鋼片の製造方
法において、鍛造工具としてその長手方向先端
に、該工具後方定常部に比べて圧縮方向および幅
方向の一方または双方に徐々に圧下量が少なくな
るような非定常部を有する鍛造工具を使用し、前
記鍛造圧縮工程を進行させる際、前の鍛造圧縮動
作時に非定常部で圧縮した部分を次の鍛造圧縮動
作時に定常部で圧縮し、これを繰り返し進行させ
ることにより材料の長手方向にわたり均一な粗形
鋼片断面を形成することを特徴とする粗形鋼片の
製造方法。 2 鋼片の垂直方向および水平方向から同時に圧
縮を行ない、この鍛造圧縮工程を順次繰返すこと
によつて長手方向に均一な断面形状を有する粗形
鋼片を得ることを特徴とする特許請求の範囲第1
項記載の鍛造による粗形鋼片の製造方法。 3 先に鋼片の垂直または水平方向どちらか一方
から圧縮を行ない、次に水平または垂直方向どち
らか一方から圧縮を行なう鍛造圧縮工程を順次繰
返すことを特徴とする特許請求の範囲第1項記載
の鍛造による粗形鋼片の製造方法。 4 垂直方向または水平方向どちらか一方の鍛造
工具を所定の寸法が得られる位置に保持し、水平
方向または垂直方向どちらか一方の鍛造工具で圧
縮を行ない、圧縮による鋼片の垂直または水平方
向の幅拡りを防止しながら鍛造圧縮工程を順次繰
返すことを特徴とする特許請求の範囲第2項記載
の粗形鋼片の製造方法。
[Scope of Claims] 1. A method for manufacturing a rough-shaped steel billet in which a forging compression process using a forging tool is repeatedly performed in the longitudinal direction of a metal material having a rectangular cross section to form a concave portion substantially at the center in the width direction. The forging compression process is performed by using a forging tool that has an unsteady part at its longitudinal tip such that the reduction amount gradually decreases in one or both of the compression direction and the width direction compared to the rear steady part of the tool. When advancing, the part that was compressed in the unsteady part during the previous forging compression operation is compressed in the steady part during the next forging compression operation, and by repeatedly advancing this, a uniform cross section of the rough shaped steel piece is created in the longitudinal direction of the material. 1. A method for manufacturing a rough-shaped steel piece, characterized by forming a rough-shaped steel piece. 2. Claims characterized in that by compressing a steel billet simultaneously in the vertical and horizontal directions and sequentially repeating this forging compression process, a roughly shaped steel billet having a uniform cross-sectional shape in the longitudinal direction is obtained. 1st
A method for manufacturing a rough shaped steel billet by forging as described in Section 1. 3. Claim 1, characterized in that the forging compression step of first compressing the steel piece from either the vertical or horizontal direction, and then sequentially repeating the forging compression process from either the horizontal or vertical direction. A method for producing rough shaped steel billets by forging. 4 Hold either the vertical or horizontal forging tool in a position where the specified dimensions can be obtained, perform compression with either the horizontal or vertical forging tool, and compress the steel piece in the vertical or horizontal direction. 3. The method for manufacturing a rough-shaped steel billet according to claim 2, wherein the forging and compression step is sequentially repeated while preventing width expansion.
JP7648579A 1978-04-07 1979-06-18 Production of rough shape billet by forging Granted JPS561236A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7648579A JPS561236A (en) 1979-06-18 1979-06-18 Production of rough shape billet by forging
DE19792940473 DE2940473A1 (en) 1978-04-07 1979-10-05 METHOD AND DEVICE FOR PRODUCING METAL PROFILES
US06/335,669 US4407056A (en) 1978-04-07 1981-12-30 Method and apparatus for manufacturing metal sections

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7648579A JPS561236A (en) 1979-06-18 1979-06-18 Production of rough shape billet by forging

Publications (2)

Publication Number Publication Date
JPS561236A JPS561236A (en) 1981-01-08
JPS6137020B2 true JPS6137020B2 (en) 1986-08-21

Family

ID=13606500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7648579A Granted JPS561236A (en) 1978-04-07 1979-06-18 Production of rough shape billet by forging

Country Status (1)

Country Link
JP (1) JPS561236A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226134A (en) * 1985-03-30 1986-10-08 Mitsubishi Metal Corp Manufacturing method for irregular cross-section strips
JPH0675721B2 (en) * 1985-10-28 1994-09-28 石川島播磨重工業株式会社 Slab molding equipment
ES2835953T3 (en) * 2015-04-06 2021-06-23 Hitachi Metals Ltd Hot forging die and hot forging procedure
ES2832499T3 (en) * 2015-04-06 2021-06-10 Hitachi Metals Ltd Hot forging die and hot forging procedure
CN109622843B (en) * 2018-12-12 2020-07-24 武汉重工铸锻有限责任公司 Forging method capable of improving material utilization rate of hammer core forging

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326759A (en) * 1976-08-26 1978-03-13 Kobe Steel Ltd Plate material rolling

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326759A (en) * 1976-08-26 1978-03-13 Kobe Steel Ltd Plate material rolling

Also Published As

Publication number Publication date
JPS561236A (en) 1981-01-08

Similar Documents

Publication Publication Date Title
US4493363A (en) Method at continuous casting of steels and metal alloys with segregation tendency and apparatus for carrying out the method
JP2002348646A (en) Long size coil of wrought magnesium alloy and manufacturing method therefor
US4962808A (en) Method of producing a steel strip having a thickness of less than 10 mm
US3561105A (en) Method of producing a hot-formed aluminum base product
US6722174B1 (en) Device and method for manufacturing hot-rolled sheet steel and device and method for sheet thickness pressing used for the device and method
JPS6137020B2 (en)
RU2421292C2 (en) Method of rolling moulded aluminium ingot
JP3968165B2 (en) Modified cross-section strip and its manufacturing method and manufacturing method
JP3648825B2 (en) Manufacturing method of continuous cast round slab for seamless steel pipe manufacturing with good workability
JP4946557B2 (en) Billet and manufacturing method thereof
CN1057219A (en) The I-beam shaped blank and the casting method thereof of continuous casting
JP2685935B2 (en) Method for manufacturing rolled profiled strip
JPH03198964A (en) Method and apparatus for executing rolling reduction to strand in continuous casting
JPH11244902A (en) Round billet slab forming equipment
JP3533831B2 (en) Method for producing round billet for producing Cr-containing seamless steel pipe with good workability
JPH11309552A (en) Method and apparatus for producing continuous cast round slab
JPS5934444B2 (en) Direct forming method for continuously cast slabs
JPH0596304A (en) Rolling method for unequal thick angle steel
JPS5835763B2 (en) Method for producing dog-bone type rough-shaped steel pieces from flat slabs
JPH04288903A (en) Method for rough rolling z shaped steel sheet pile
JPH10328711A (en) Method for continuously casting steel
JP6085054B1 (en) Continuous casting and rolling method for steel
JP2004082186A (en) Method for manufacturing deformed bar
JPH1177262A (en) Production of beam blank and apparatus therefor
JPH09271884A (en) Production of round bar steel