JPS6136985A - Laser device - Google Patents
Laser deviceInfo
- Publication number
- JPS6136985A JPS6136985A JP15821284A JP15821284A JPS6136985A JP S6136985 A JPS6136985 A JP S6136985A JP 15821284 A JP15821284 A JP 15821284A JP 15821284 A JP15821284 A JP 15821284A JP S6136985 A JPS6136985 A JP S6136985A
- Authority
- JP
- Japan
- Prior art keywords
- light
- wave
- laser
- plate
- becomes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/14—External cavity lasers
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
Abstract
Description
【発明の詳細な説明】
(1)発明の技術分野
本発明はレーザ装置に係り、特に半導体レーザを偏光変
化部材に導いて双安定動作が行えるようにしたレーザ装
置に関する。DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a laser device, and more particularly to a laser device in which a semiconductor laser is guided to a polarization changing member to perform bistable operation.
(2)技術の背景 レーザ装置、特に半導体レーザは近時、出力。(2) Technology background Recently, laser devices, especially semiconductor lasers, have been increasing their output.
寿命等の性能向」二が著しくその応用も一般化し。Its application has become more common due to its improved performance such as lifespan.
レーザプリンタや光ディスクなどに利用されている。半
導体レーザでは気体レーザと異なり、ファーフィールド
パターンは非対称な形状をしていて。It is used in laser printers, optical discs, etc. Unlike gas lasers, semiconductor lasers have an asymmetric far-field pattern.
レーザ半導体の活性層(プレーナ)方向に垂直な方向の
出射角度は20〜40°となる場合があり、指向性のよ
い光とするためにコリメートレンズ等を用いた補正が行
われている。又横モードは半導体レーザのファーフィー
ルドパターンの半値角でプレーナの接合面に平行な方向
で8〜20°を有している。現在ではこのような非対称
のファーフィールドパターンを持つ半導体レーザがほと
んどである。また偏光特性について考えると、その偏光
方向は1つに限定され、多くは半導体レーザのプレーナ
接合面(活性層)に平行な直線偏向(以下TE波と記す
)をしている。半導体レーザの出力が3〜5mWではT
E波との直交成分(以下TM波と記す)の光量比は50
:1〜100 : 1の値である。The emission angle in the direction perpendicular to the active layer (planar) direction of the laser semiconductor may be 20 to 40 degrees, and correction using a collimating lens or the like is performed to obtain light with good directivity. Further, the transverse mode has a half-value angle of the far field pattern of the semiconductor laser, which is 8 to 20 degrees in the direction parallel to the planar junction surface. Currently, most semiconductor lasers have such an asymmetric far-field pattern. Furthermore, considering the polarization characteristics, the polarization direction is limited to one, and in most cases it is linearly polarized (hereinafter referred to as TE wave) parallel to the planar junction surface (active layer) of the semiconductor laser. When the output of the semiconductor laser is 3 to 5 mW, T
The light intensity ratio of the orthogonal component to the E wave (hereinafter referred to as TM wave) is 50
: 1 to 100 : Value of 1.
(3)従来技術と問題点
上記したような非対称なファーフィールドパターンを持
っている半導体レーザを光ビデオディスクやPCM (
パルスコード変調)オーディオディスクに用いる場合に
光学ピンクアンプとしては第5図に示すように構成され
ている。すなわち第5図において1は半導体レーザ、2
は2波長板、3は偏光ビーJいスビリソタ、4は半導体
レーザからの光を平行にするためのレンズ、5はレーザ
光を光デイスク6表面上で光の波長程度のスポットに集
光するためのレンズ、6は光ディスクでその表面にピン
トの形で情報を有するもので半導体レーザからの光は、
偏光ビームスプリッタ3並に×波し板2とレンズ4,5
を通じて光デイスク6上にスポットを集光させる。光デ
ィスク6で反射された光はレンズ5,4偏光ビームスプ
リツタ3で反射され、シリンドカルレンズ15を通して
検出器16に加えられて、光ディスク6のビットの有無
を検出する。本発明で゛は騒波長板を半導体レーザの外
部共振器内に設けて半導体レーザの出力光から2つの双
安定出力光を(Mるようにしたレーザ装置を得ようとす
るものであってA波長板を用いる点では第5図に示すも
のと同様であるがその目的とするところが異なるもので
ある。(3) Prior art and problems Semiconductor lasers with the above-mentioned asymmetric far-field pattern can be used in optical video disks and PCM (
When used for an audio disc (pulse code modulation), an optical pink amplifier is constructed as shown in FIG. That is, in FIG. 5, 1 is a semiconductor laser, and 2 is a semiconductor laser.
is a two-wavelength plate, 3 is a polarizing beam mirror, 4 is a lens for collimating the light from the semiconductor laser, and 5 is for condensing the laser light onto a spot about the wavelength of the light on the surface of the optical disk 6. The lens 6 is an optical disk that has information in the form of a focus on its surface, and the light from the semiconductor laser is
Polarizing beam splitter 3 and × corrugated plate 2 and lenses 4 and 5
A spot is focused on the optical disk 6 through the light beam. The light reflected by the optical disc 6 is reflected by the lens 5, 4 and the polarizing beam splitter 3, and is applied to the detector 16 through the cylindrical lens 15 to detect the presence or absence of bits on the optical disc 6. The present invention aims to provide a laser device in which a noise wavelength plate is provided in an external resonator of a semiconductor laser so that two bistable output lights (M) are generated from the output light of the semiconductor laser. Although it is similar to the one shown in FIG. 5 in that it uses a wave plate, its purpose is different.
(4)発明の目的
本発明は叙上のごとく半導体レーザからの出射光を2つ
の異なる偏光出力となるように縦モード等を変化させて
双安定出力の得られるレーザ装置を得ることを目的とす
るものである。(4) Purpose of the Invention As stated above, the purpose of the present invention is to obtain a laser device that can obtain bistable output by changing the longitudinal mode etc. of the light emitted from a semiconductor laser so that it becomes two different polarized outputs. It is something to do.
(5)発明の構成
そして、上記目的は本発明によれば、外部共振器を有す
る半導体レーザの一方の反射部材の前に偏光状態を変化
させる偏光変化部材を配設してなることを特徴とするレ
ーザ装置を提供することで達成される。(5) Structure of the Invention According to the present invention, the above object is characterized in that a polarization changing member for changing the polarization state is disposed in front of one reflecting member of a semiconductor laser having an external resonator. This can be achieved by providing a laser device that achieves this goal.
(6)発明の実施例
以下本発明の一実施例を第1図乃至第4図について詳記
する。(6) Embodiment of the Invention An embodiment of the present invention will be described in detail below with reference to FIGS. 1 to 4.
第1図は本発明のレーザ装置の双安定光出力を得るため
の光学的構成図、第2図は第1図の偏光状態を説明する
ための状態図、第3図は本発明のレーザ装置の出力光偏
光状態を示す偏光状態図。Figure 1 is an optical configuration diagram for obtaining bistable optical output of the laser device of the present invention, Figure 2 is a state diagram for explaining the polarization state of Figure 1, and Figure 3 is the laser device of the present invention. FIG. 3 is a polarization state diagram showing the output light polarization state of .
第4図は本発明の他の実施例を示す光学的構成図である
。第1図において、7はレーザダイオード等の利得媒質
であり、pn接合にバイアスを加えて電子注入し、電流
を増して誘導放出させ電子とホールを再結合し、増幅さ
せる。10.11.はハーフミラ−等からなる反射用ミ
ラーでレーザダイオードからの少なくとも90%のレー
ザを反射させる。9はA波長板または45°フアラデ一
回転子等からなる偏光変化部材であり、8は外部共振器
で通常はレーザダイオード7と2枚の反射用ミラーで構
成されている。12は偏光分離素子である。FIG. 4 is an optical configuration diagram showing another embodiment of the present invention. In FIG. 1, 7 is a gain medium such as a laser diode, which applies a bias to the pn junction, injects electrons, increases the current, causes stimulated emission, recombines electrons and holes, and amplifies them. 10.11. A reflecting mirror made of a half mirror or the like reflects at least 90% of the laser beam from the laser diode. 9 is a polarization changing member such as an A wavelength plate or a 45° Faraday rotator, and 8 is an external resonator, which is usually composed of a laser diode 7 and two reflecting mirrors. 12 is a polarization separation element.
本発明では外部共振器8内に第1図に示すようにレーザ
ダイオード7の後部7bよりの放出光と後部のハーフミ
ラ−10間に偏光変化部材9を配設する。また第4図に
示すようにレーザダイオード7の全部7fよりの放出光
と前部のハーフミラ−11との間に偏光変化部材である
A波長板または45°フアラデ一回転子を置き、その配
置方向はレーザダイオードの活性層に対し2波長板の主
軸は45°の角度をなすように配設する。In the present invention, a polarization changing member 9 is disposed within the external resonator 8 between the light emitted from the rear part 7b of the laser diode 7 and the rear half mirror 10, as shown in FIG. Further, as shown in FIG. 4, an A wavelength plate or a 45° Farade single rotator, which is a polarization changing member, is placed between the light emitted from all 7f of the laser diode 7 and the front half mirror 11, and the arrangement direction is The main axis of the two-wavelength plate is arranged at an angle of 45° with respect to the active layer of the laser diode.
上記構成における動作を第1図乃至第31!lを用いて
説明する。レーザダイオード7からの発振モードはTE
または7Mモードの両方があるが1例えば第1図でレー
ザダイオードの後部7bより第2図のごと< T E+
モードの光が放出されて%波長板9に入射すると該A波
長板からの出射光は円偏光CF+となり後部ミラー10
で反射された円偏光CF2は再びA波長板8に後方から
入射してT M r波で出射され、レーザダイオード7
を通って、前方のハーフミラ−11で反射されたTMl
波は再びレーザダイオード7を通ってA波長板8を通過
して1円偏光CF3となり、後方の反射ミラー10で反
射したCF3は再び区波長板8に入射してTE2波とな
りレーザダイオード7を通って前方のミラー11から放
出される。すなわちレーザダイオードから出たTE波は
A波長板9を往6一
復すると、TM波となり2往復で1周期のレーザとなり
1往復で互いに直交する偏光状態となる。The operations in the above configuration are shown in Figures 1 to 31! This will be explained using l. The oscillation mode from laser diode 7 is TE
or 7M mode, but 1 For example, from the rear part 7b of the laser diode in Fig. 1, as shown in Fig. 2 < T E +
When the light of the mode is emitted and enters the % wavelength plate 9, the light emitted from the A wavelength plate becomes circularly polarized light CF+ and the rear mirror 10
The circularly polarized light CF2 reflected by the A wavelength plate 8 enters the A wavelength plate 8 from the rear again and is emitted as a TMR wave, and then passes through the laser diode 7.
TMl reflected by the front half mirror 11
The wave passes through the laser diode 7 again, passes through the A wavelength plate 8, and becomes 1 circularly polarized light CF3.The CF3 reflected by the rear reflecting mirror 10 enters the 2nd wavelength plate 8 again, and becomes the TE2 wave, passing through the laser diode 7. and is emitted from the mirror 11 in front. That is, when the TE wave emitted from the laser diode goes back and forth through the A wavelength plate 9 six times, it becomes a TM wave, which becomes a laser with one cycle in two round trips, and becomes polarized in mutually orthogonal states in one round trip.
今、第1図で前方のミラー11から上記TE及びTM波
をみると、TE及びTMの2つのモードがあり、その時
のTE及びTM波の位相関係はTM波とTE波が同相で
あれば、第3図+a+に示すような正の45°方曲直線
偏光の光出力13となり。Now, if we look at the TE and TM waves from the front mirror 11 in Figure 1, there are two modes, TE and TM, and the phase relationship between the TE and TM waves at that time is if the TM waves and TE waves are in phase. , the optical output is 13 for positive 45° square linearly polarized light as shown in Figure 3+a+.
逆相であれば第3図(b)に示すように負の45°方向
直線偏光の光出力14となる。すなわち光出力13.1
4はTE波とTM波の合成となる。これは、この光共振
器の固有偏光状態と一致するものである。上記レーザ装
置のレーザ電流、光注入時の光強度、外部共振器長等の
種々のパラメータの1つを変化させ2例えばミラー10
または11の位置を変化させると光出力の縦モードのホ
ッピングにヒステリシスがあるために、かりにTEモー
ドで安定化していたTE波は7Mモートに安定化する。If the phase is reversed, the optical output 14 is linearly polarized light in the negative 45° direction, as shown in FIG. 3(b). i.e. light output 13.1
4 is a combination of TE wave and TM wave. This coincides with the intrinsic polarization state of this optical resonator. By changing one of various parameters such as the laser current of the laser device, the light intensity at the time of light injection, and the external resonator length, for example, the mirror 10
Alternatively, when the position of 11 is changed, since there is hysteresis in the hopping of the longitudinal mode of the optical output, the TE wave, which was stabilized in the TE mode, becomes stabilized in the 7M mode.
このために、いずれかのモードの出力を偏光子等の偏光
分離素子12に与えてやれば、光出力13或いは14の
いずれかを安定に取り出すことが可能となる。 。For this reason, if the output of either mode is given to the polarization separation element 12 such as a polarizer, it becomes possible to stably extract either the optical output 13 or 14. .
(7)発明の効果
本発明は叙上のごとく構成したので単にA波長板のごと
き偏光変化部材を外部共振器に挿入するだけで2つのモ
ードの光出力を1つの半導体レーザより安定に取り出す
ことが可能で種々の光回路に利用できるレーザ装置が1
与られる。(7) Effects of the Invention Since the present invention is constructed as described above, it is possible to extract optical outputs of two modes more stably than a single semiconductor laser by simply inserting a polarization changing member such as an A-wave plate into an external resonator. There is one laser device that can be used for various optical circuits.
given.
第1図は本発明のレーザ装置の光学系と共振器を示す構
成図、第2図は第1図の偏光状態を説明するための状態
図、第3図は本発明のレーザ装置の出力光偏光状態を示
す偏光状態図、第4図は本発明の双安定光出力を得るた
めの他の実施例を示す光学的構成図、第5図は従来のA
波長板を用いた光学系の模式図である。
1・・・半導体レーザ、2.8・・・2波長板、
3・・・偏光ビームスプリッタ。
6・・・光ディスク、7・・・レーザダイオード。
8・・・外部共振器、 10.11・・・ミラ
ー、 12・・・偏光分離素子。
13.14・・・光出力、 15・・・シリンドカ
ルレンズ、 16・・・検出器。
第3図
第5図Fig. 1 is a configuration diagram showing the optical system and resonator of the laser device of the present invention, Fig. 2 is a state diagram for explaining the polarization state of Fig. 1, and Fig. 3 is the output light of the laser device of the present invention. A polarization state diagram showing the polarization state, FIG. 4 is an optical configuration diagram showing another embodiment for obtaining bistable optical output of the present invention, and FIG. 5 is a diagram showing the conventional A.
FIG. 2 is a schematic diagram of an optical system using a wave plate. 1... Semiconductor laser, 2.8... 2 wavelength plate,
3...Polarizing beam splitter. 6... Optical disk, 7... Laser diode. 8...External resonator, 10.11...Mirror, 12...Polarization separation element. 13.14...Light output, 15...Cylindrical lens, 16...Detector. Figure 3 Figure 5
Claims (4)
材の前に偏光状態を変化させる偏光変化部材を配設して
なることを特徴とするレーザ装置。(1) A laser device characterized in that a polarization changing member for changing the polarization state is disposed in front of one reflecting member of a semiconductor laser having an external resonator.
徴とする特許請求の範囲第1項記載のレーザ装置。(2) The laser device according to claim 1, wherein the polarization changing member is a quarter wavelength plate.
ることを特徴とする特許請求の範囲第1項記載のレーザ
装置。(3) The laser device according to claim 1, wherein the polarization changing member is a 45-degree Faraday rotator.
レーザの活性層と45°の角度をなしていることを特徴
とする特許請求の範囲第2項記載のレーザ装置。(4) The laser device according to claim 2, wherein the main axis of the quarter-wave plate of the polarization changing member forms an angle of 45° with the active layer of the semiconductor laser.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15821284A JPS6136985A (en) | 1984-07-28 | 1984-07-28 | Laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15821284A JPS6136985A (en) | 1984-07-28 | 1984-07-28 | Laser device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6136985A true JPS6136985A (en) | 1986-02-21 |
Family
ID=15666729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15821284A Pending JPS6136985A (en) | 1984-07-28 | 1984-07-28 | Laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6136985A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03145174A (en) * | 1989-10-31 | 1991-06-20 | Canon Inc | External resonator type laser |
AT408589B (en) * | 1999-07-07 | 2002-01-25 | Femtolasers Produktions Gmbh | LASER DEVICE |
JP2015513792A (en) * | 2012-02-14 | 2015-05-14 | テラダイオード,インコーポレーテッド | Two-dimensional multi-beam stabilizer and combining system and method |
-
1984
- 1984-07-28 JP JP15821284A patent/JPS6136985A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03145174A (en) * | 1989-10-31 | 1991-06-20 | Canon Inc | External resonator type laser |
AT408589B (en) * | 1999-07-07 | 2002-01-25 | Femtolasers Produktions Gmbh | LASER DEVICE |
US6807198B1 (en) | 1999-07-07 | 2004-10-19 | Femtolasers Produktions Gmbh | Laser device |
JP2015513792A (en) * | 2012-02-14 | 2015-05-14 | テラダイオード,インコーポレーテッド | Two-dimensional multi-beam stabilizer and combining system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07117668B2 (en) | Optical amplifier | |
US6873633B2 (en) | Solid-state laser | |
US5289479A (en) | Laser light beam generating apparatus | |
JPH04245687A (en) | Laser-system, method of generating laser beam and laser-data storage system | |
JP3387824B2 (en) | Laser device | |
US6064684A (en) | Unidirectionally operating laser apparatus using semimonolithic ring cavity | |
JPS6136985A (en) | Laser device | |
US4868515A (en) | Narrow-bandwidth unstable laser resonator | |
US5325348A (en) | Wavelength converting element and system for recording and reproducing optical information | |
JPH10215018A (en) | Laser amplifier | |
JPH03135511A (en) | Laser diode module | |
US7417936B2 (en) | Optical pickup reducing noise and polarization changer | |
US4993813A (en) | Optical amplifier | |
JP2845997B2 (en) | External cavity laser | |
JPH01189972A (en) | Laser oscillator | |
JP3046562B2 (en) | Laser device | |
JPH0290586A (en) | Multi-point light emitting type semiconductor laser device | |
JPH04158588A (en) | Semiconductor laser exciting solid laser device | |
JPS60154337A (en) | Optical pickup device | |
KR100287756B1 (en) | 2 stage optical recorder | |
JP2009521728A (en) | System for reading data from a holographic storage medium | |
JPH02216881A (en) | External resonance type semiconductor laser device | |
JP2002158387A (en) | Laser device | |
JP3320021B2 (en) | Laser amplifier | |
JPH0210528A (en) | Optical pickup device |