[go: up one dir, main page]

JPS6135129B2 - - Google Patents

Info

Publication number
JPS6135129B2
JPS6135129B2 JP57128639A JP12863982A JPS6135129B2 JP S6135129 B2 JPS6135129 B2 JP S6135129B2 JP 57128639 A JP57128639 A JP 57128639A JP 12863982 A JP12863982 A JP 12863982A JP S6135129 B2 JPS6135129 B2 JP S6135129B2
Authority
JP
Japan
Prior art keywords
oxide
powder
quenched
solid solution
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57128639A
Other languages
Japanese (ja)
Other versions
JPS5918111A (en
Inventor
Jusuke Iyori
Norio Takahashi
Hisao Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP57128639A priority Critical patent/JPS5918111A/en
Publication of JPS5918111A publication Critical patent/JPS5918111A/en
Publication of JPS6135129B2 publication Critical patent/JPS6135129B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は超硬およびサーメツトの硬質相として
利用される炭化物原料粉末の製造方法に関するも
のである。 炭化物の一般的な製造方法としては、 金属粉末と炭素の固相反応 金属粉末と炭素の固相、気相反応 メンストラム法 ハロゲン化物と炭化水素の反応 等が知られている。しかしながら、これら従来方
法は、例えば上記の方法では高温で反応される
ため機械的な粉砕を行なうが、1μm以下に有害
不純物の混入なしに行なうことは困難であるこ
と、合成粉末の粒度は固形炭素の大きさに左右さ
れること、および固形炭素からの不純物混入が避
けられないこと、などの困難さがある。しかし、
超硬合金の主原料であるWCは、この方法による
ものが最も一般的である。それはWC合成粉の粒
度調整が容易であること、および結合炭素率が高
いことなどの理由による。 の方法は、例えば、Wメタル粉末とCH4ガス
の反応によりWC粉末を合成する場合に一部用い
られるが、炭化速度が遅いことに加え金属粉末の
粒子の大きさによつて合成粒の粒度が決定される
という欠点があつた。の方法は高温で反応され
ることが必要なため、得られる粒子は100μm前
後の粗粒単結晶となり、微細な粉末を得ることは
困難である。また、の方法では数百オングスト
ロームの微細で高純度の粉末が得られる。しかし
実用超硬合金用の原料には0.1〜10μm程度の粒
度が好ましく、数百オングストロームの粉末は工
業上のメリツトが少ない。 本発明は上記従来技術の欠点を解消し、量産性
に優れ、しかも1.0μm以下の安定な微粒子を得
る新しい製造方法を提供することを目的とする。 本発明は上記目的を達成するために、WO3
一旦溶融状態とし、その中にVを添加して均一に
分散させた後急冷し、該急冷酸化物を還元と同時
に炭化雰囲気中で処理して、微粒の安定した炭化
物粉末を得るという新規な方法である。 本発明において、急冷酸化物よりWCを合成す
る場合には、還元性ガスとしてH2を用いること
が好ましく、また炭化ガスとしてはCH4が望まし
い。また、H2とCH4の混合比が1/10〜100/1の範
囲であれば、十分好ましい合成粉末が得られる。
H2/CH4<1/10では十分な還元反応が進行せず、
またH2/CH4>100/1では逆に炭化速度が遅くな
り工業的に好ましくない。 また、本発明において、プラズマ化する場合に
は0.1〜20Torrの減圧とすることが必要である。
この圧力範囲外ではプラズマの発生が困難だから
である。WO3にVの酸化物、化合物、または金
属粉を含有させた場合、合成温度は少なくとも
1100℃以上とすることが望ましい。 本発明による方法は、すべて固相−気相反応に
基づくため、WCの合成において非常に純度の高
いものが得られる利点がある。また、還元−炭化
のための混合ガスをプラズマ状態として反応に帰
与させた場合、従来法に比べて炭化の反応が非常
に促進される。このため合成粉末の炭素結合率を
大きくすることが容易であること、その結果とし
て、均質でかつ粒度の細かい粉末の製造が可能と
なるなどのメリツトがある。また、WO3にVを
含有させた溶融酸化物を、冷却速度104℃/秒以
上で冷却し、得られた急冷固溶酸化物から炭化物
を前述の方法で合成した場合、市販のWO3粉末
を炭化する場合に比べて気相との反応が極めて活
性化する利点がある。 これは、おそらくは急冷することにより蓄えら
れた多量の歪エネルギーが気相との反応に寄与す
るためと考えられる。ともあれ、急冷酸化物を用
いると、従来困難とされていた平均粒度0.3μm
程度のWCが容易に製造可能となる。さらにまた
本発明において、反応雰囲気をプラズマ化すると
反応はより活性化し、平均粒度0.1μm程度のも
のまで製造可能となる。 本発明において、溶融酸化物の冷却速度を104
℃/秒より遅くすると、蓄えられる歪エネルギー
が小さく上述の効果が少ない。 WCを固溶させた炭化物粉末を製造する本発明
の場合、融解−急冷法を用いることは上述の急冷
効果に加えて融解することにより、元素が均一に
混合されるという別の効果もある。 実施例 1 先端をノズル状にしぼつた石英管にWO3と0.3
重量%のV2O5を混合した粉末を入れ、これを
1510℃昇温した炉内に入れて5分間保持したの
ち、急速に下方炉外に移動させ、同時に前記石英
管内に2.5Kg/cm2のArガスを導入して溶融WO3
石英管先端部つり噴出させた。石英管先端部の直
下2mmには、予め周速30m/secで回転する外形
300mmの銅製回転冷却体の最上部を位置させ、噴
出WO3をこの回転体に衝突させるとにより急冷
し、簿片状の急冷酸化物を得た。次に、この薄片
状急冷酸化物を、1100℃に昇温したH2/CH4=1/
1の混合ガス雰囲気内に設置し、1時間保持した
のち冷却し、合成粉末を取出した。 この合成粉末は、X線解析により結晶構造を有
すること、またSEM(Scanning Electron
Microscope)で平均粒度が0.3μmであることが
それぞれ確認できた。 さらにICP(Inductively Coupled Plasma
Spectrophotometer)を用い、微量分析を市販
WCと比較して行なつた。なお、いずれもVが約
0.3%含有されているものである。第1表にその
測定値の一部を示す。
The present invention relates to a method for producing carbide raw material powder used as the hard phase of cemented carbides and cermets. Common methods for producing carbides include solid-phase reaction between metal powder and carbon, solid-phase and gas-phase reaction between metal powder and carbon, menstrum process, and reaction between halides and hydrocarbons. However, in these conventional methods, for example, in the above method, mechanical pulverization is performed because the reaction is carried out at high temperatures, but it is difficult to do so without contaminating harmful impurities to a particle size of 1 μm or less, and the particle size of the synthetic powder is limited to solid carbon. There are some difficulties, such as the fact that it depends on the size of carbon and the unavoidable contamination of impurities from solid carbon. but,
WC, the main raw material for cemented carbide, is most commonly produced using this method. This is because the particle size of WC synthetic powder is easy to adjust and the bonded carbon content is high. This method is used in some cases, for example, when WC powder is synthesized by the reaction of W metal powder and CH 4 gas, but in addition to the slow carbonization rate, the particle size of the synthesized particles is The disadvantage was that the Since the method requires a high temperature reaction, the resulting particles are coarse single crystals of around 100 μm, making it difficult to obtain fine powder. In addition, the method yields fine, highly pure powder of several hundred angstroms. However, as a raw material for practical cemented carbide, a particle size of about 0.1 to 10 μm is preferable, and a powder of several hundred angstroms has little industrial merit. An object of the present invention is to eliminate the drawbacks of the above-mentioned conventional techniques, provide a new manufacturing method that is excellent in mass productivity, and obtains stable fine particles of 1.0 μm or less. In order to achieve the above object, the present invention first melts WO 3 , adds V therein and disperses it uniformly, and then rapidly cools it, and simultaneously reduces and treats the rapidly cooled oxide in a carbonizing atmosphere. This is a novel method for obtaining fine, stable carbide powder. In the present invention, when WC is synthesized from quenched oxide, it is preferable to use H 2 as the reducing gas, and CH 4 is preferable as the carbonizing gas. Moreover, if the mixing ratio of H 2 and CH 4 is in the range of 1/10 to 100/1, a sufficiently preferable synthetic powder can be obtained.
When H 2 /CH 4 <1/10, sufficient reduction reaction does not proceed,
On the other hand, when H 2 /CH 4 >100/1, the carbonization rate becomes slow, which is industrially unfavorable. Further, in the present invention, when turning into plasma, it is necessary to reduce the pressure to 0.1 to 20 Torr.
This is because it is difficult to generate plasma outside this pressure range. When WO 3 contains V oxide, compound, or metal powder, the synthesis temperature is at least
It is desirable to set the temperature to 1100℃ or higher. Since the method according to the present invention is entirely based on a solid phase-gas phase reaction, it has the advantage that very high purity can be obtained in the synthesis of WC. Further, when the mixed gas for reduction and carbonization is contributed to the reaction in a plasma state, the carbonization reaction is greatly accelerated compared to the conventional method. Therefore, it has the advantage that it is easy to increase the carbon bonding rate of the synthetic powder, and as a result, it is possible to produce a powder that is homogeneous and has a fine particle size. In addition, when a molten oxide containing V in WO 3 is cooled at a cooling rate of 10 4 °C/sec or higher and a carbide is synthesized from the obtained quenched solid solution oxide by the method described above, commercially available WO 3 This method has the advantage that the reaction with the gas phase is extremely active compared to the case where powder is carbonized. This is probably because a large amount of strain energy stored by rapid cooling contributes to the reaction with the gas phase. In any case, by using quenched oxide, it is possible to achieve an average particle size of 0.3 μm, which was previously considered difficult.
It becomes possible to easily manufacture a WC of about 100%. Furthermore, in the present invention, when the reaction atmosphere is turned into plasma, the reaction becomes more active, and particles with an average particle size of about 0.1 μm can be produced. In the present invention, the cooling rate of the molten oxide is set to 10 4
If the speed is slower than °C/sec, the strain energy stored is small and the above-mentioned effect is less. In the case of the present invention, which produces carbide powder containing WC as a solid solution, the use of the melting-quenching method not only provides the above-mentioned quenching effect, but also has the additional effect of uniformly mixing the elements by melting. Example 1 WO 3 and 0.3 in a quartz tube with a nozzle-shaped tip
Powder mixed with 5 % V2O by weight is added and this is
After being placed in a furnace heated to 1510°C and held there for 5 minutes, it was rapidly moved downward to the outside of the furnace, and at the same time, 2.5Kg/cm 2 of Ar gas was introduced into the quartz tube to transfer the molten WO 3 to the tip of the quartz tube. It erupted. 2mm directly below the tip of the quartz tube is an external shape that rotates at a circumferential speed of 30m/sec.
The top of a 300 mm copper rotary cooling body was placed, and the jetted WO 3 was quenched by colliding with this rotary body to obtain a flaky quenched oxide. Next, this flaky quenched oxide was heated to 1100°C and heated to H 2 /CH 4 =1/
1 was placed in a mixed gas atmosphere, maintained for 1 hour, cooled, and the synthesized powder was taken out. This synthetic powder has been shown to have a crystal structure by X-ray analysis and by SEM (Scanning Electron
It was confirmed with a microscope that the average particle size was 0.3 μm. Furthermore, ICP (Inductively Coupled Plasma)
Commercially available trace analysis using spectrophotometer
I compared it with WC. In addition, in both cases, V is approximately
It contains 0.3%. Table 1 shows some of the measured values.

【表】 表から、本発明方法の気相反応により合成した
V含有WCは極めて純度が高いことがわかる。特
に、超硬合金の原料として用いた場合に多大の悪
影響を及ぼすSは、本発明方法によるV含有WC
では極めて含有量が少ないという注目すべき利点
がある。 実施例 2 WO3に0.2重量%のV2O5を混合し、実施例1と
同様の方法により急冷薄片状の酸化物を作成し
た。該薄片状の急冷酸化物を実施例1と同様の雰
囲気下で還元および炭化処理を行つた。ただし、
保持温度は1300℃とした。得られた合成粉末は、
Vを含有したWCであることをX線解析および
ICPで確認した。また、SEM観察により平均粒度
は0.2μmであることを確認した。 実施例 3 実施例2と同様の方法で急冷薄片状の酸化物を
作成した。この薄片状の急冷酸化物を5Torr未満
の低圧下では高周波を用い、5Torr以上20Torr以
下の減圧雰囲気下ではマイクロ波を用いてプラズ
マ化したH2とCH4の混合ガスにより還元炭化を試
みた。実験条件および結果を第2表に示す。
[Table] From the table, it can be seen that the V-containing WC synthesized by the gas phase reaction according to the method of the present invention has extremely high purity. In particular, S, which has a great negative effect when used as a raw material for cemented carbide, can be replaced with V-containing WC by the method of the present invention.
It has the remarkable advantage of having an extremely low content. Example 2 A quenched flaky oxide was prepared by mixing WO 3 with 0.2% by weight of V 2 O 5 in the same manner as in Example 1. The flaky quenched oxide was reduced and carbonized in the same atmosphere as in Example 1. however,
The holding temperature was 1300°C. The obtained synthetic powder is
X-ray analysis and
Confirmed with ICP. Moreover, it was confirmed by SEM observation that the average particle size was 0.2 μm. Example 3 A quenched flaky oxide was prepared in the same manner as in Example 2. We attempted to reduce and carbonize this flaky quenched oxide using a mixed gas of H 2 and CH 4 that was turned into plasma using high frequency under low pressure of less than 5 Torr and microwave under reduced pressure of 5 Torr or more and less than 20 Torr. Experimental conditions and results are shown in Table 2.

【表】【table】

【表】 このように、溶融WO3にV金属、V酸化物ま
たは他のV化合物を添加したのち急冷し、該急冷
酸化物をH2とCH4の混合ガス中で還元、炭化させ
る本発明方法により、微細で不純物が少なく、か
つ粒成長に対して極めて安定なWC粉末を得るこ
とができるため、その工業上の効果は大である。
[Table] In this way, the present invention involves adding V metal, V oxide, or other V compound to molten WO 3 and then quenching the molten WO 3 and reducing and carbonizing the quenched oxide in a mixed gas of H 2 and CH 4 . This method has great industrial effects because it is possible to obtain fine WC powder with few impurities and extremely stable against grain growth.

Claims (1)

【特許請求の範囲】 1 WO3にVを含んだ溶融酸化物を、冷却体に
噴射して冷却速度104℃/秒以上で急冷したの
ち、この急冷固溶酸化物をH2とCH4の混合比が1/
10〜100/1の混合ガス下において、1100℃以上に
加熱することを特徴とするタングステンとバナジ
ウムの固溶炭化物粉末の製造方法。 2 WO3にVを含んだ溶融酸化物を、冷却体に
噴射して冷却固溶酸化物を、H2とCH4の混合比が
1/10〜100/1の混合ガスに外部より電気エネルギ
ーを加えてプラズマ化した0.1〜20Torrの減圧雰
囲気下において、1100℃以上に加熱することを特
徴とするタングステンとバナジウムの固溶炭化物
粉末の製造方法。
[Claims] 1. A molten oxide containing V in WO 3 is injected into a cooling body and quenched at a cooling rate of 10 4 °C/sec or more, and then the quenched solid solution oxide is mixed with H 2 and CH 4 The mixing ratio of
A method for producing solid solution carbide powder of tungsten and vanadium, the method comprising heating to 1100°C or higher under a mixed gas of 10 to 100/1. 2 A molten oxide containing V in WO 3 is injected into a cooling body to form a cooled solid solution oxide with a mixing ratio of H 2 and CH 4 .
A solid solution carbide powder of tungsten and vanadium is heated to 1100℃ or more in a reduced pressure atmosphere of 0.1 to 20 Torr, which is made into plasma by applying external electric energy to a 1/10 to 100/1 mixed gas. Production method.
JP57128639A 1982-07-23 1982-07-23 Preparation of solid solution carbide powder Granted JPS5918111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57128639A JPS5918111A (en) 1982-07-23 1982-07-23 Preparation of solid solution carbide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57128639A JPS5918111A (en) 1982-07-23 1982-07-23 Preparation of solid solution carbide powder

Publications (2)

Publication Number Publication Date
JPS5918111A JPS5918111A (en) 1984-01-30
JPS6135129B2 true JPS6135129B2 (en) 1986-08-11

Family

ID=14989788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57128639A Granted JPS5918111A (en) 1982-07-23 1982-07-23 Preparation of solid solution carbide powder

Country Status (1)

Country Link
JP (1) JPS5918111A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11226127B2 (en) 2018-01-26 2022-01-18 Mitsubishi Electric Corporation Control system, air conditioner, and server

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60241910A (en) * 1984-05-15 1985-11-30 Hitachi Ltd Water purifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11226127B2 (en) 2018-01-26 2022-01-18 Mitsubishi Electric Corporation Control system, air conditioner, and server

Also Published As

Publication number Publication date
JPS5918111A (en) 1984-01-30

Similar Documents

Publication Publication Date Title
US4460697A (en) Process for producing non-oxide powders
EP0945402B1 (en) Method for producing carbon
US4117096A (en) Process for producing powder of β-type silicon carbide
KR101976594B1 (en) Silicon carbide powder, method for manufacturing the same and method for fabricating single crystal
KR101290659B1 (en) Preparation method of silicon oxide powder using thermal plasma, and the silicon oxide powder thereby
KR102574046B1 (en) Low-temperature production method of boron carbide
US4346068A (en) Process for preparing high-purity α-type silicon nitride
JPS6135129B2 (en)
US11713251B2 (en) Method for preparing powdered composite carbide of tungsten and titanium
JPS58120599A (en) Production of beta-silicon carbide whisker
JPS6132253B2 (en)
JPS6042164B2 (en) Powder manufacturing method
JP2660650B2 (en) Manufacturing method of α-type silicon carbide
TW201609536A (en) Novel process and product
JPS58213617A (en) Production method of titanium carbonitride powder
JPS5926908A (en) Preparation of carbide solid solution
JPS59110706A (en) Preparation of powder
JPS58213618A (en) Manufacturing method of composite carbonitride solid solution powder
Sato et al. Synthesis of titanium nitride by a spark-discharge method in liquid ammonia
JP5811002B2 (en) Method and apparatus for producing SiO using hollow carbon electrode
JPS5926910A (en) Preparation of powder
JPS58213619A (en) Manufacturing method of composite carbonitride solid solution powder
JP2007045670A (en) Manufacturing method of metal carbide
JPH0218310A (en) Preparation of zirconium-containing ceramic powder
JPH0114168B2 (en)