JPS6134269B2 - - Google Patents
Info
- Publication number
- JPS6134269B2 JPS6134269B2 JP2339180A JP2339180A JPS6134269B2 JP S6134269 B2 JPS6134269 B2 JP S6134269B2 JP 2339180 A JP2339180 A JP 2339180A JP 2339180 A JP2339180 A JP 2339180A JP S6134269 B2 JPS6134269 B2 JP S6134269B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- compound semiconductor
- type
- electrode
- light emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000010931 gold Substances 0.000 claims description 23
- 229910001297 Zn alloy Inorganic materials 0.000 claims description 14
- 150000001875 compounds Chemical class 0.000 claims description 13
- 239000004065 semiconductor Substances 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 9
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 4
- 238000007740 vapor deposition Methods 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims 5
- 229910052782 aluminium Inorganic materials 0.000 claims 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 3
- 229910000952 Be alloy Inorganic materials 0.000 claims 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims 2
- 229910052751 metal Inorganic materials 0.000 claims 2
- 239000002184 metal Substances 0.000 claims 2
- 238000010030 laminating Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 72
- 229910005540 GaP Inorganic materials 0.000 description 42
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 42
- 238000005530 etching Methods 0.000 description 14
- 150000002500 ions Chemical class 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 7
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000011701 zinc Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910017401 Au—Ge Inorganic materials 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229910015365 Au—Si Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910007541 Zn O Inorganic materials 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000011874 heated mixture Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/03—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L24/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/04042—Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0555—Shape
- H01L2224/05556—Shape in side view
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
- H10H20/82—Roughened surfaces, e.g. at the interface between epitaxial layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Led Device Packages (AREA)
- Led Devices (AREA)
- Electrodes Of Semiconductors (AREA)
Description
【発明の詳細な説明】
本発明は−族化合物半導体発光素子及びそ
の製造方法に係り、特に電極の構成を改良した
−族化合物半導体発光素子及びその製造方法に
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a - group compound semiconductor light emitting device and a method of manufacturing the same, and more particularly to a - group compound semiconductor light emitting device with an improved electrode structure and a method of manufacturing the same.
化合物半導体の代表的なリン化ガリウム
(GaP)は、発光素子(発光ダイオード)として
多く使用されている。そしてこのGaP発光ダイオ
ードは、赤色〜緑色発光まで不純物の添加によつ
て自由に得られるため注目されている。例えばこ
の構成は第1図に示すようになつている。即ちn
型GaP基板11上にp型GaP層12を設けてp−
n接合13を構成したペレツトの両面に電極11
a,12aを設け、n型GaP基板11側を下にし
て導電性ペースト15を介してヘツダ14にマウ
ントしたものである。なおヘツダ14には電極取
り出し用端子11c,12cが取り出されてお
り、p型GaP層の電極12aからリード線12b
により端子12cに取りつけられている。当然乍
らn型GaP基板の電極11aと端子12cは電気
的に接続されている。またヘツダ14の上部はエ
ポキシ樹脂16でおおわれている。 Gallium phosphide (GaP), a typical compound semiconductor, is often used as a light-emitting element (light-emitting diode). GaP light emitting diodes are attracting attention because they can freely emit red to green light by adding impurities. For example, this configuration is as shown in FIG. That is, n
A p-type GaP layer 12 is provided on a p-type GaP substrate 11.
Electrodes 11 are placed on both sides of the pellet forming the n-junction 13.
a, 12a are provided and mounted on a header 14 with the n-type GaP substrate 11 side facing down via a conductive paste 15. Note that terminals 11c and 12c for taking out electrodes are taken out from the header 14, and a lead wire 12b is connected from the electrode 12a of the p-type GaP layer.
It is attached to the terminal 12c by the terminal 12c. Naturally, the electrode 11a of the n-type GaP substrate and the terminal 12c are electrically connected. Further, the upper part of the header 14 is covered with an epoxy resin 16.
ところで第1図の構成でp型GaP層への電極1
2aにとつてp型GaP層とオーミツク接触し、
その接触抵抗は小さい程よい。リード線12b
が容易にボンデイング出来る。発光効率を減少
させてはならない。発光効率を向上させるp−
n接合13面の処理工程の強酸エツチング液に耐
えねばならない。電極の微細加工エツチングが
可能等の性能が要求される。 By the way, in the configuration shown in Figure 1, electrode 1 to the p-type GaP layer
2a is in ohmic contact with the p-type GaP layer,
The lower the contact resistance, the better. Lead wire 12b
can be easily bonded. Luminous efficiency must not be reduced. p- to improve luminous efficiency
It must withstand the strong acid etching solution used in the treatment of the 13 n-junction surfaces. Performance such as the ability to perform microfabrication and etching of electrodes is required.
これらすべての条件を満足する電極は見出され
ておらず、上記の内1つか2つの条件に不満足乍
ら製作しているのが実状である。即ち、を満足
する電極としてAuを主体とした1〜2wt%のBe
又はZnの合金層を設け、この上にAu層を設けた
構造が知られている。しかしこのような電極で
は、は満足するが,を満足せず、は条件
により可能である。この理由を説明するために、
第2図a〜eを参照して説明する。 No electrode has been found that satisfies all of these conditions, and the reality is that electrodes are manufactured that are unsatisfactory with one or two of the above conditions. In other words, as an electrode that satisfies
Alternatively, a structure in which a Zn alloy layer is provided and an Au layer is provided thereon is known. However, with such an electrode, it is possible to satisfy , but not to satisfy , depending on the conditions. To explain the reason for this,
This will be explained with reference to FIGS. 2a to 2e.
まず、n型GaP基板21にn型GaP層22及び
p型GaP層23を形成し、前記n型GaP基板21
面にAu−Si又はAu−Ge合金層からなる電極24
を、p型GaP層23上に上述のAu−Be又はAu−
Zn合金層25a及びAu層25bからなる電極2
5を夫々真空蒸着法により形成する(第2図
a)。 First, an n-type GaP layer 22 and a p-type GaP layer 23 are formed on an n-type GaP substrate 21.
Electrode 24 made of Au-Si or Au-Ge alloy layer on the surface
The above-mentioned Au-Be or Au-
Electrode 2 consisting of Zn alloy layer 25a and Au layer 25b
5 are formed by a vacuum evaporation method (FIG. 2a).
次にホトレジスト(図示せず)を使用して、両
面電極24,25をケミカルエツチングにより微
細加工する。そして、ホトレジストを除去し、不
活性ガス雰囲気中で、500℃で10分間位加熱す
る。このような処理をすると、各々の電極24,
25がp型GaP層23及びn型GaP基板21とオ
ーミツク接触をなす(第2図b)。次いで所定寸
法にダイシングスクライビング法等で加工分離す
る(第2図c)。この時機械加工のため発光部と
なるp−n接合側面が破砕され、発光効率が劣化
する。これを回復させるに、その破砕層をエツチ
ングで除去しなければならない。又、そのエツチ
ングも、電極以外に露出したGaP面全面が平滑で
はなく凹凸のついた粗面に仕上るのが望ましい。
この両者を満足するエツチング液は塩酸及び硝酸
の加熱液である。この処理により第2図dのよう
な発光素子ペレツトが出来上る。この後は前述の
如くTOヘツダー26に導電性ペースト27で、
n型GaP基板側の電極24を接着固定し、p型
GaP層側電極25には金線ワイヤー28をボンデ
イングする(第2図e)。 Next, using photoresist (not shown), the double-sided electrodes 24 and 25 are finely processed by chemical etching. Then, the photoresist is removed and heated at 500°C for about 10 minutes in an inert gas atmosphere. With such processing, each electrode 24,
25 makes ohmic contact with the p-type GaP layer 23 and the n-type GaP substrate 21 (FIG. 2b). Then, it is processed and separated into predetermined dimensions by dicing, scribing, etc. (FIG. 2c). At this time, due to machining, the side surface of the p-n junction, which becomes the light emitting part, is crushed and the light emitting efficiency deteriorates. To restore this, the fractured layer must be removed by etching. Also, in the etching, it is desirable that the entire exposed GaP surface other than the electrodes be finished in a rough surface with irregularities rather than a smooth surface.
An etching solution that satisfies both of these requirements is a heated solution of hydrochloric acid and nitric acid. Through this process, a light emitting device pellet as shown in FIG. 2d is completed. After this, as mentioned above, apply the conductive paste 27 to the TO header 26.
The electrode 24 on the n-type GaP substrate side is fixed with adhesive, and the p-type
A gold wire 28 is bonded to the GaP layer side electrode 25 (FIG. 2e).
以上が通常のプロセスであるが、この場合次の
ような欠点が発生する。即ち、Au−Be又はAu−
Zn合金層25aが加熱処理によりオーミツク接
触になるが、逆に加熱処理によりAu層25b表
面上にGa及びPイオン(特にGaイオン)がAu−
Be又はAu−Zn合金層25aを介して堆積し、ま
たAu−Be又はAu−Zn合金のBe又はZn元素も堆
積し、さらにその堆積したイオン或いは元素等が
酸化して複雑な酸化膜例えばGa−P−Be−O又
はGa−P−Zn−Oというような酸化膜が形成さ
れる。この結果、ボンデイングの付き具合が極め
て悪くなる。まつたくボンデイング不能というペ
レツトも発生する時もあるが、通常は1回のボン
デイングでは成功せず4〜5回位ボンデイング操
作を行なつて初めてボンデイング出来る様にな
る。例えば表面に生じた酸化膜をエツチングして
その後にボンデイングすることも考えられるが、
表面に生じた酸化膜が複雑な酸化膜である為、エ
ツチングが難しい。それに加えて上述した如く
Ga元素がAu層25bへ拡散するため(Gaの拡散
係数が大きい為)電極面上に多く堆積する。これ
に伴つてGaP結晶自体のGaの減少がはげしく結
晶性が損われ、発光効率が理論値より低下してし
まう。 Although the above is a normal process, the following drawbacks occur in this case. That is, Au-Be or Au-
The Zn alloy layer 25a becomes in ohmic contact with the heat treatment, but on the contrary, the heat treatment causes Ga and P ions (particularly Ga ions) to form on the surface of the Au layer 25b.
The Be or Zn element of the Au-Be or Au-Zn alloy is also deposited through the Be or Au-Zn alloy layer 25a, and the deposited ions or elements are oxidized to form a complex oxide film such as Ga. An oxide film such as -P-Be-O or Ga-P-Zn-O is formed. As a result, the adhesion of bonding becomes extremely poor. There are times when pellets that cannot be bonded are generated, but normally bonding is not successful after one time, and bonding becomes possible only after 4 or 5 bonding operations. For example, it is possible to etch the oxide film formed on the surface and then perform bonding.
Etching is difficult because the oxide film formed on the surface is a complex oxide film. In addition, as mentioned above
Since the Ga element diffuses into the Au layer 25b (because the diffusion coefficient of Ga is large), a large amount is deposited on the electrode surface. Along with this, the amount of Ga in the GaP crystal itself is drastically reduced, the crystallinity is impaired, and the luminous efficiency is lower than the theoretical value.
なおAuを主体とする合金膜は、フロスト効果
をもたせるために用いる強酸に対し耐えるもので
ある。 Note that the alloy film mainly composed of Au is resistant to the strong acid used to provide the frost effect.
そこで本発明は上述した問題に鑑み、特にp型
層の電極構造を改良した−族化合物半導体発
光素子及びその製造方法を提供するものである。 SUMMARY OF THE INVENTION In view of the above-mentioned problems, the present invention provides a - group compound semiconductor light emitting device in which the electrode structure of the p-type layer is particularly improved, and a method for manufacturing the same.
即ち、本発明はp型−族化合物半導体層の
電極を三層構造とし、その中間層に炭素を含むタ
ンタル層を設ける点を特徴とする。 That is, the present invention is characterized in that the electrode of the p-type compound semiconductor layer has a three-layer structure, and a tantalum layer containing carbon is provided in the middle layer.
以下本発明の一実施例を第3図a〜fを参照し
て説明する。この第3図a〜fは−族化合物
半導体としてGaP結晶を用いた例で、製造方法の
一例である。まず従来と同様にn型GaP基板31
上にn型GaP層32及び亜鉛(Zn)と酸素(O)
を含むp型GaP層33を例えば液相エピタキシヤ
ル成長法により形成する。この形成したn型GaP
層32のドナー濃度(ND)は2〜10×1017/cm3
程度、p型GaP層33のアクセプタ濃度(NA)
は1〜5×1017/cm3程度である。この後n型GaP
基板31側に例えばAu−Ge合金層からなる電極
34を蒸着により形成する(第3図a)。次にP
型GaP層33上に厚さ0.05〜0.1μm位のZnが1
重量%含むAu−Zn合金層35a、厚さ0.2〜0.4
μmの炭素(C)が含むTa層39及び厚さ0.2〜
1μm位のAu層35bからなる電極35を形成
する。ここで本発明で特徴とする炭素を含むTa
層39の形成は、真空蒸着で行う訳であるが具体
的に説明すると、まずAu−Zn合金層35aを蒸
着した状態のウエハを蒸着装置内に入れ、真空度
10-7〜10-8Torr位になる迄排気し、この後メタン
ガス、アセチレンガス或いは炭酸ガスを真空度
10-4〜10-6台Torrになる迄入れ、この状態でTa
を蒸着せしめてCを含むTa層を形成する。なお
Au−Zn合金層35a及びAu層35bの形成は、
通常の真空蒸着(真空度10-6〜10-8Torr)で行
う。この後夫々の電極34,35がn型GaP基板
31及びp型GaP層33とオーミツク接触をなす
ように例えば500℃の温度で10分間位熱処理を行
う(第3図b)。次にAu層35b、Cを含むTa
層39及びAu−Zn合金層35aを順次選択エツ
チングし、第3図cの如くする。このように選択
エツチングする際、Au層35bのエツチングは
例えばレジスト(図示せず)を選択的に形成し、
これをマスクとしてヨウソ(I2)とヨウ化カリウ
ム(KI)の混合液で行い、Cを含むTa層39の
エツチングは上記Au層35bをマスクとしてア
ルカリ性の例えばカセイソーダ(NaOH)とカセ
イカリウム(KOH)が9:1の混合液で行い、
またAu−Zn合金層35aのエツチングは上記C
を含むTa層39をマスクとして上記Au層のエツ
チング液と同じエツチング液で行う。また、この
エツチング工程は熱処理工程後に行う為、エツチ
ング工程時にCを含むTa層39とAu−Zn合金層
35aとが剥離するという問題がなくなる。この
後の工程は従来の工程と同様で、第3図cのよう
なウエハを所定の寸法にダイシングスクライビン
グ法等で加工分離する(第3図d)。この時機械
加工の為発光部となるp−n接合側面が破砕さ
れ、発光効率が劣化する。そこで従来と同様にp
−n接合側面を、塩酸と硝酸の混合の加熱液でエ
ツチングし、第3図eの如く凹凸のついた粗面に
する。このようにp−n接合側面を粗面すれば、
p−n接合面で発光した光が放出され易くなり必
然的に発光効率が向上するようになる。この後、
TOヘツダー36に導電ペースト37でn型GaP
基板側の電極34を接着固定し、金線ワイヤー3
8をp型GaP層側の電極35にボンデイングし、
第3図fのようなGaP赤色発光素子が得られる。 An embodiment of the present invention will be described below with reference to FIGS. 3a to 3f. FIGS. 3a to 3f show an example in which GaP crystal is used as the - group compound semiconductor, and is an example of a manufacturing method. First, as in the conventional case, the n-type GaP substrate 31
On top is an n-type GaP layer 32 and zinc (Zn) and oxygen (O).
A p-type GaP layer 33 containing the above is formed by, for example, a liquid phase epitaxial growth method. This formed n-type GaP
The donor concentration (N D ) of layer 32 is between 2 and 10×10 17 /cm 3
acceptor concentration (N A ) of the p-type GaP layer 33
is about 1 to 5×10 17 /cm 3 . After this, n-type GaP
An electrode 34 made of, for example, an Au-Ge alloy layer is formed on the substrate 31 side by vapor deposition (FIG. 3a). Then P
Zn with a thickness of about 0.05 to 0.1 μm is deposited on the GaP layer 33.
Au-Zn alloy layer 35a containing % by weight, thickness 0.2-0.4
Ta layer 39 containing μm of carbon (C) and thickness 0.2~
An electrode 35 made of an Au layer 35b having a thickness of about 1 μm is formed. Here, Ta containing carbon, which is a feature of the present invention,
The layer 39 is formed by vacuum evaporation, and to explain it specifically, first, the wafer with the Au-Zn alloy layer 35a deposited on it is placed in a evaporation apparatus, and the vacuum level is
Evacuate until the temperature reaches about 10 -7 to 10 -8 Torr, then evacuate methane gas, acetylene gas, or carbon dioxide gas to the vacuum level.
Insert until 10 -4 to 10 -6 Torr is reached, and in this state Ta
is deposited to form a Ta layer containing C. In addition
The formation of the Au-Zn alloy layer 35a and the Au layer 35b is as follows:
Perform normal vacuum deposition (vacuum level 10 -6 to 10 -8 Torr). Thereafter, heat treatment is performed at a temperature of, for example, 500° C. for about 10 minutes so that the respective electrodes 34 and 35 make ohmic contact with the n-type GaP substrate 31 and the p-type GaP layer 33 (FIG. 3b). Next, Au layer 35b, Ta containing C
The layer 39 and the Au--Zn alloy layer 35a are sequentially selectively etched to form the result as shown in FIG. 3c. When performing selective etching in this manner, the etching of the Au layer 35b is performed by selectively forming a resist (not shown), for example.
Using this as a mask, a mixed solution of iodine (I 2 ) and potassium iodide (KI) is used to etch the Ta layer 39 containing C. Using the Au layer 35b as a mask, etching is performed using an alkaline solution such as caustic soda (NaOH) and potassium iodide (KOH). ) with a 9:1 mixture,
Moreover, the etching of the Au-Zn alloy layer 35a is
Etching is performed using the same etching solution as the one used for the Au layer, using the Ta layer 39 containing the above as a mask. Further, since this etching step is performed after the heat treatment step, there is no problem that the C-containing Ta layer 39 and the Au--Zn alloy layer 35a separate during the etching step. The subsequent steps are similar to the conventional steps, and the wafer shown in FIG. 3c is processed and separated into predetermined dimensions by dicing, scribing, etc. (FIG. 3d). At this time, the side surface of the p-n junction, which becomes the light emitting part, is crushed due to machining, and the light emitting efficiency deteriorates. Therefore, as before, p
The side surface of the -n junction is etched with a heated mixture of hydrochloric acid and nitric acid to form a rough surface with irregularities as shown in FIG. 3e. If the side surface of the p-n junction is roughened in this way,
The light emitted at the pn junction surface becomes easier to emit, and the luminous efficiency inevitably improves. After this,
n-type GaP on TO header 36 with conductive paste 37
The electrode 34 on the substrate side is fixed with adhesive, and the gold wire 3
8 to the electrode 35 on the p-type GaP layer side,
A GaP red light emitting device as shown in FIG. 3f is obtained.
以上説明した実施例の方法によれば、p型GaP
層側電極35への金線ワイヤー38のボンデイン
グが容易になると共に発光効率も理論値に近い値
のものが得られる。これはp型GaP層側の電極3
5を三層構造にし、その中間層にCを含むTa層
39を設けている為である。 According to the method of the embodiment described above, p-type GaP
Bonding of the gold wire 38 to the layer-side electrode 35 becomes easy, and a luminous efficiency close to the theoretical value can be obtained. This is electrode 3 on the p-type GaP layer side.
This is because 5 has a three-layer structure, and the Ta layer 39 containing C is provided in the middle layer.
即ち、Cを含むTa層39はオーミツク接触を
得る為の熱処理時等において、Zn,Ga,P等の
イオン(或いは元素)の移動を阻止する為、Au
層35b表面にこれらのイオンが堆積したりする
のを防止する。したがつてAu層35b表面にお
いて複雑な酸化膜等ができたりせず、このAu層
35b上にAu線ワイヤー38を容易にボンデイ
ング可能となる。なおCを含むTa層39は、Ta
単体の層より熱処理時におけるZn,Ga,P等の
イオンの移動を阻止する効果が大きいので、上記
した作用効果がさらに顕著に現われる。この理由
として、TaにCを含ませると、Ta単体の層より
緻密な層となり、微細なイオン(或いは元素)が
Au層表面に達することがなくなる為と思われ
る。実際にAu層35bをイオンマイクロアナイ
ザー(IMA)により分析して見るとZn,Ga,P
等がほとんどなかつた。またTaにCを含ませた
層を同様にIMAにより分析し、Cの含有量(原
子パーセント=at%)を測定して見たところ、比
較的少ない量(0.5〜0.2at%)であつた。 That is, the Ta layer 39 containing C contains Au to prevent the movement of ions (or elements) such as Zn, Ga, and P during heat treatment to obtain ohmic contact.
These ions are prevented from being deposited on the surface of the layer 35b. Therefore, no complicated oxide film or the like is formed on the surface of the Au layer 35b, and the Au wire 38 can be easily bonded onto the Au layer 35b. Note that the Ta layer 39 containing C is Ta
Since this layer has a greater effect of inhibiting the movement of ions such as Zn, Ga, P, etc. during heat treatment than a single layer, the above-mentioned effects appear even more prominently. The reason for this is that when Ta contains C, it becomes a denser layer than a single Ta layer, and fine ions (or elements)
This seems to be because it no longer reaches the surface of the Au layer. When the Au layer 35b was actually analyzed using an ion microanalyzer (IMA), Zn, Ga, and P
There were almost no such things. In addition, when a layer containing Ta and C was similarly analyzed by IMA and the content of C (atomic percent = at%) was measured, it was found that the amount was relatively small (0.5 to 0.2 at%). .
さらにCを含むTa層39は上述した如くGa或
いはP(特にGa)のイオンの移動を阻止する
為、p型GaP層表面においてGaの欠乏即ち結晶
性の悪化が生じたりすることが少なく、結果的に
理論値に近い発光効率が得られるようになる。同
時に例えばオーミツク接触を得る場合の熱処理の
温度がロツト毎に多少変化しても、ロツト毎の発
光素子ペレツトの発光効率のバラツキが少なくな
り、結果的に歩留りも向上することになる。 Furthermore, since the Ta layer 39 containing C prevents the movement of Ga or P (particularly Ga) ions as described above, Ga deficiency, that is, deterioration of crystallinity, is less likely to occur on the surface of the p-type GaP layer. Therefore, a luminous efficiency close to the theoretical value can be obtained. At the same time, even if the heat treatment temperature for obtaining ohmic contact varies somewhat from lot to lot, the variation in luminous efficiency of light emitting element pellets from lot to lot is reduced, resulting in improved yield.
なお、上記実施例ではGaP発光素子について説
明したが、本発明はこのGaP発光素子に限ること
なく、例えばGaAs発光素子等の−族化合物
半導体発光素子に適用されることは言うまでもな
い。 Although the above embodiments have been described with reference to a GaP light emitting device, it goes without saying that the present invention is not limited to this GaP light emitting device, but can be applied to - group compound semiconductor light emitting devices such as a GaAs light emitting device.
第1図は一般に用いられているGaP発光ダイオ
ードの構成断面図、第2図a〜eは従来のGaP発
光素子の製造プロセスを示す工程断面図、第3図
a〜fは本発明一実施例のGaP発光素子の製造プ
ロセスを示す工程断面図である。
31……n型GaP基板、32……n型GaP層、
34……n型GaP基板側の電極、35……p型
GaP層側の電極、35a……Au−Zn合金層、3
5b……Au層、39……Cを含むTa層。
Fig. 1 is a cross-sectional view of the configuration of a commonly used GaP light emitting diode, Fig. 2 a to e are process cross-sectional views showing the manufacturing process of a conventional GaP light emitting element, and Fig. 3 a to f are an embodiment of the present invention. FIG. 3 is a process cross-sectional view showing the manufacturing process of the GaP light emitting device. 31... n-type GaP substrate, 32... n-type GaP layer,
34...N-type GaP substrate side electrode, 35...P-type
Electrode on the GaP layer side, 35a...Au-Zn alloy layer, 3
5b...Au layer, 39...Ta layer containing C.
Claims (1)
光素子において、前記p−n接合を構成するp型
層の電極を、金を主成分とするベリリウム又は亜
鉛の合金層、炭素を含むタンタル層、金又はアル
ミニウムからなる金属層を順次積層して構成した
ことを特徴とする−族化合物半導体発光素
子。 2 n型−族化合物半導体基体上にp型−
族化合物半導体層を形成してp−n接合を構成
する工程と、該p型−族化合物半導体層上に
金を主成分とするベリリウム又は亜鉛の合金層を
蒸着により形成する工程と、該合金層上に真空度
10-4〜10-6Torr台で炭素を含むタンタル層を蒸着
により形成する工程と、該炭素を含むタンタル層
上に金層又はアルミニウム層を蒸着により形成す
る工程とを具備してなることを特徴とする−
族化合物半導体発光素子の製造方法。[Scope of Claims] 1. In a - group compound semiconductor light emitting device having a p-n junction, the electrode of the p-type layer constituting the p-n junction may be made of a beryllium or zinc alloy layer mainly composed of gold, a carbon 1. A - group compound semiconductor light-emitting device, characterized in that it is constructed by sequentially laminating a tantalum layer containing a metal layer containing gold or aluminum, and a metal layer consisting of gold or aluminum. 2 p-type on the n-type compound semiconductor substrate
a step of forming a p-n junction by forming a p-type group compound semiconductor layer; a step of forming a beryllium or zinc alloy layer containing gold as a main component on the p-type group compound semiconductor layer by vapor deposition; Vacuum degree on the layer
The method comprises the steps of forming a tantalum layer containing carbon by vapor deposition at a 10 -4 to 10 -6 Torr level, and forming a gold layer or an aluminum layer on the tantalum layer containing carbon by vapor deposition. Features-
A method for manufacturing a group compound semiconductor light emitting device.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2339180A JPS56120176A (en) | 1980-02-28 | 1980-02-28 | Semiconductor luminous element of 3-5 group compound and its preparing method |
EP81100621A EP0035118B1 (en) | 1980-02-28 | 1981-01-28 | Iii - v group compound semiconductor light-emitting element and method of producing the same |
DE8181100621T DE3172935D1 (en) | 1980-02-28 | 1981-01-28 | Iii - v group compound semiconductor light-emitting element and method of producing the same |
US06/230,679 US4447825A (en) | 1980-02-28 | 1981-02-02 | III-V Group compound semiconductor light-emitting element having a doped tantalum barrier layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2339180A JPS56120176A (en) | 1980-02-28 | 1980-02-28 | Semiconductor luminous element of 3-5 group compound and its preparing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56120176A JPS56120176A (en) | 1981-09-21 |
JPS6134269B2 true JPS6134269B2 (en) | 1986-08-06 |
Family
ID=12109204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2339180A Granted JPS56120176A (en) | 1980-02-28 | 1980-02-28 | Semiconductor luminous element of 3-5 group compound and its preparing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56120176A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61159626A (en) * | 1985-01-07 | 1986-07-19 | Semiconductor Energy Lab Co Ltd | Semiconductor device |
-
1980
- 1980-02-28 JP JP2339180A patent/JPS56120176A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS56120176A (en) | 1981-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2803742B2 (en) | Gallium nitride-based compound semiconductor light emitting device and method for forming electrode thereof | |
KR100286699B1 (en) | Gallium Nitride Group 3-5 Compound Semiconductor Light-Emitting Device and Manufacturing Method Thereof | |
US8470621B2 (en) | Method for fabricating a flip-chip semiconductor optoelectronic device | |
KR100833313B1 (en) | GaN TYPE LIGHT EMITTING DIODE DEVICE AND METHOD OF MANUFACTURING THE SAME | |
US4447825A (en) | III-V Group compound semiconductor light-emitting element having a doped tantalum barrier layer | |
US7781785B2 (en) | Light emitting diode with plated substrate and method for producing the same | |
JP4121551B2 (en) | Light emitting device manufacturing method and light emitting device | |
JPH11177134A (en) | Manufacture of semiconductor element, semiconductor, manufacture of light emitting element, and light emitting element | |
JP3047960B2 (en) | N-type nitride semiconductor electrode | |
JP2000315819A (en) | Manufacture of semiconductor light emitting element | |
JP3239350B2 (en) | Electrode of n-type nitride semiconductor layer | |
JPS6133277B2 (en) | ||
JPS6134269B2 (en) | ||
JPS6133278B2 (en) | ||
US7518163B2 (en) | Gallium nitride-based compound semiconductor light-emitting device and negative electrode thereof | |
JP4108439B2 (en) | Light emitting device manufacturing method and light emitting device | |
JP2007317913A (en) | Semiconductor light emitting element, and its manufacturing method | |
JP2005203765A (en) | Semiconductor light emitting element of gallium nitride compound and its negative electrode | |
JP3187284B2 (en) | Electrode of n-type nitride semiconductor layer | |
JP3144534B2 (en) | Electrode of n-type nitride semiconductor layer | |
JPS5958877A (en) | semiconductor light emitting device | |
JPH06302858A (en) | GaP red light emitting device substrate and manufacturing method thereof | |
US20050191777A1 (en) | Method for producing light emitting diode with plated substrate | |
JP2006032837A (en) | Semiconductor luminous element | |
JPS61231760A (en) | compound semiconductor device |