JPS6133658Y2 - - Google Patents
Info
- Publication number
- JPS6133658Y2 JPS6133658Y2 JP5411880U JP5411880U JPS6133658Y2 JP S6133658 Y2 JPS6133658 Y2 JP S6133658Y2 JP 5411880 U JP5411880 U JP 5411880U JP 5411880 U JP5411880 U JP 5411880U JP S6133658 Y2 JPS6133658 Y2 JP S6133658Y2
- Authority
- JP
- Japan
- Prior art keywords
- light
- emitting
- receiving
- layer
- light emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004065 semiconductor Substances 0.000 claims description 18
- 150000001875 compounds Chemical class 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 239000013307 optical fiber Substances 0.000 description 12
- 230000003287 optical effect Effects 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- 229910052725 zinc Inorganic materials 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910015363 Au—Sn Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Description
【考案の詳細な説明】
本考案は光フアイバを伝送路とする通信、即ち
光フアイバ通信用の光半導体素子に属する双方向
性電気・光変換素子の改良に関するものである。[Detailed Description of the Invention] The present invention relates to communication using an optical fiber as a transmission path, that is, improvement of a bidirectional electrical-to-optical conversion element belonging to an optical semiconductor element for optical fiber communication.
近年、光フアイバ通信は光フアイバの電磁無誘
導性、軽量性、低伝送損失特性などが注目されて
種々の用途に急速な実用化が進められている。発
光受光兼用半導体素子は、光フアイバ通信装置で
使用されている発光素子、例えば発光ダイオード
と受光素子、例えばフオトダイオードの機能を一
個の素子で兼用して賄い、かつ時分割方式で一本
の光フアイバを往復双方向に有効利用することを
可能とするものである。発光受光兼用半導体素子
は双方向分離用光回路を用いないで一本の光フア
イバを双方向に利用可能とすることの他、発光素
子と受光素子の二つの部品を一つの部品で置換し
かつ関連の光部品点数を著しく低減するなどの利
点をもち、とりわけデータ伝送用の光送受信装置
を簡易化及び経済化する要の素子として注目を集
めて、従来から開発が進められていた。 In recent years, optical fiber communication has attracted attention due to its non-electromagnetic induction, light weight, and low transmission loss characteristics, and has been rapidly put into practical use for a variety of applications. A light-emitting/light-receiving semiconductor element is a semiconductor element that combines the functions of a light-emitting element, such as a light-emitting diode, and a light-receiving element, such as a photodiode, used in optical fiber communication equipment, and is capable of processing a single beam of light in a time-sharing manner. This allows the fiber to be used effectively in both directions. In addition to making it possible to use a single optical fiber in both directions without using a bidirectional separation optical circuit, the light-emitting and light-receiving semiconductor device can also replace two parts, a light-emitting element and a light-receiving element, with a single part. It has the advantage of significantly reducing the number of related optical components, and has attracted attention as a key element for simplifying and economicalizing optical transmitter/receivers for data transmission, and has been under development for some time.
例えば、昭和53年度電子通信学会総合全国大会
講演論文集第4分冊、65頁に記載の各種GaAs−
GaAlAsLEDの光検知特性の検討や、1978年発行
のエレクトロニクス・レターズ(Electronics
Letters)誌第14巻、553−554頁に記載のGaAs−
GaAlAs LEDにおけるアバランシ増倍の観測な
どが報告されている。また、第4回ヨーロツパ光
通信会議(1978年)において、第3図に示す多層
構造の層厚や不純物ドーピング量を最適化するこ
とによる特性改良が報告されている。 For example, various GaAs-
A study of the photodetection characteristics of GaAlAsLEDs and an article published in Electronics Letters published in 1978.
GaAs-
Observations of avalanche multiplication in GaAlAs LEDs have been reported. Furthermore, at the 4th European Optical Communication Conference (1978), it was reported that the characteristics were improved by optimizing the layer thickness and impurity doping amount of the multilayer structure shown in FIG.
第3図に断面図を示す。従来例では、P形
GaAsから成る基板21に液相エピタキシヤル成
長されたP形Ga0.65Al0.35As(厚さ1.5μm)から
成る閉じ込め層22、P形Ga0.92Al0.08As(厚さ
1μm)から成り、発光受光機能を有する活性層
23、n形Ga0.65Al0.35As(厚さ1.5μm)から成
る閉じ込め層24、n形Ga0.8Al0.2As(厚さ2.5
μm)から成るウインドウ層25電極26,27
をもつて構成され開口28を通して信号の入出力
が行なわれる。 A sectional view is shown in FIG. In the conventional example, P type
A confinement layer 22 made of P -type Ga 0 . 65 Al 0 . an active layer 23 made of n-type Ga 0.65 Al 0.35 As (thickness 1.5 μm ), and an active layer 23 made of n-type Ga 0.65 Al 0.35 As (thickness 1.5 μm ); Sa2.5
window layer 25 electrodes 26, 27
Signals are input and output through the opening 28.
しかしながら、上述の従来例では単に発光ダイ
オードが副次的にもつフオトダイオード機能を利
用して構成されていた。このために従来例では発
光ダイオードとしての性能が良くても、受光素子
としてのフオトダイオード性能が不満足であると
いう欠点が見られた。即ち、従来例において、発
光素子としての性能を高め光フアイバへ大きな光
出力を得ようとして、発光領域の直径を小さくす
ると、光フアイバからの出射光を受光素子として
検出する場合に、微小な発光受光領域へ光を有効
に集光する高性能な光学素子と高精度に調整され
た光学系が必要となるという欠点が見られた。 However, in the above-mentioned conventional example, the light emitting diode was constructed by simply utilizing the photodiode function that the light emitting diode had as a secondary function. For this reason, in the conventional example, even if the performance as a light emitting diode is good, the performance of a photodiode as a light receiving element is unsatisfactory. In other words, in the conventional example, when the diameter of the light emitting region is reduced in an attempt to improve the performance of the light emitting element and obtain a large light output to the optical fiber, when the emitted light from the optical fiber is detected as a light receiving element, the minute emitted light is The drawback was that it required a high-performance optical element and a highly precisely adjusted optical system to effectively focus light on the light-receiving area.
また、共通の発光領域と受光領域をもつことに
起因して、例えば発光動作時に良好な周波数応答
特性が得られるように、発光受光領域の層厚を薄
くした素子では、受光動作時の光吸収が不十分で
あり受光感度が低劣であるとか、あるいは、発光
受光領域の層厚が厚い素子では逆に受光動作時の
受光感度は高いが、発光動作時の周波数応答特性
が劣悪であるなどの不都合が見られる。 In addition, due to having a common light-emitting region and light-receiving region, for example, in order to obtain good frequency response characteristics during light-emitting operation, an element with a thinner layer thickness in the light-emitting and light-receiving region may absorb light during light-receiving operation. or, conversely, a device with a thick layer in the light-emitting/receiving region may have high light-receiving sensitivity during light-receiving operation, but poor frequency response characteristics during light-emitting operation. I can see the inconvenience.
本考案の目的は上述の欠点を除去し、光フアイ
バとの結合において高い発光受光結合効率を容易
に得、かつ同時に発光動作時における高い周波数
応答特性を可能とする発光受光兼用半導体素子を
提供することにある。 The purpose of the present invention is to eliminate the above-mentioned drawbacks, and to provide a light-emitting and light-receiving semiconductor device that can easily obtain high light-emitting and light-receiving coupling efficiency when coupled with an optical fiber, and at the same time enable high frequency response characteristics during light-emitting operation. There is a particular thing.
本考案によれば、−族化合物半導体を組成
する二重ヘテロ接合構造を内部に含みかつ素子の
上面に発光受光開口を有する発光受光兼用半導体
素子において、近接する層よりも狭い禁制帯幅を
有する発光受光層の厚さが発光受光波長の光に対
する該発光受光層の減衰定数の逆数よりも大き
く、かつ前記発光受光開口の略中央部の該発光受
光開口よりも狭い領域下に前記発光受光層の内部
へ達する不純物導入により形成された局部的に深
い位置のPn接合を有することを特徴とする発光
受光兼用半導体素子が得られる。 According to the present invention, in a light-emitting and light-receiving semiconductor device that includes a double heterojunction structure composed of a - group compound semiconductor and has a light-emitting and light-receiving opening on the top surface of the device, the device has a forbidden band width narrower than that of adjacent layers. The light emitting and receiving layer has a thickness larger than the reciprocal of the attenuation constant of the light emitting and receiving layer for light having the wavelength of light emitting and receiving, and is located below an area narrower than the light emitting and receiving aperture at approximately the center of the light emitting and receiving aperture. A light-emitting/light-receiving semiconductor element is obtained, which is characterized by having a locally deep Pn junction formed by introducing impurities into the interior of the semiconductor element.
次に図面を参照して本考案を詳細に説明する。
第1図及び第2図は、本考案に基づく一実施例の
それぞれ平面図及び側断面図である。本実施例は
−族化合物半導体に属し導電形がn形のn−
InP単結晶基板11の(100)面上に順次液相エピ
タキシヤル成長された、ノンドーブで導電形がn
形の発光波長の光に対する実効的な減衰定数0.5
〜1×104/cmの逆数の数倍の厚さ3μmのn−
In0.76Ga0.24As0.55P0.45層12、亜鉛ドープで導電
形がP形のP−InP層13及びこれらの層構造の
両面に設けられたn側電極17と発光受光開口1
5を囲むP側電極16とから構成され、発光受光
開口15の側の面から施され発光受光開口15の
中央の円形小領域にのみ深く拡散された亜鉛拡散
領域14とこれによつて形成された深いPn接合
18bを有している。なお図中18aは液相エピ
タキシヤル成長時に形成されたn−
In0.76Ga0.54As0.55P0.45層12とP−InP層13と
のヘテロ接合部付近の浅いPn接合を表わす。n
側電極17及びP側電極16はそれぞれ周知の錫
15%金75%のAu−Sn合金及び亜鉛10%金90%の
Au−Zn合金を使用し真空蒸着法によつて形成さ
れたものである。 Next, the present invention will be explained in detail with reference to the drawings.
1 and 2 are a plan view and a side sectional view, respectively, of an embodiment based on the present invention. This example belongs to the - group compound semiconductor and has an n-type conductivity type.
A non-doped, conductive type n
The effective attenuation constant for light with the emission wavelength of the shape is 0.5
~ 3 μm thick n-
In 0 . 76 Ga 0 . 24 As 0 . 55 P 0 . Light receiving aperture 1
A zinc diffusion region 14 is formed from the surface on the side of the light emitting/receiving aperture 15 and is deeply diffused only in a small circular area in the center of the light emitting/receiving aperture 15. It has a deep Pn junction 18b. In addition, 18a in the figure is an n- layer formed during liquid phase epitaxial growth.
A shallow Pn junction near the heterojunction between the In 0 . 76 Ga 0 . 54 As 0 . 55 P 0 . 45 layer 12 and the P-InP layer 13 is shown. n
The side electrode 17 and the P side electrode 16 are each made of well-known tin.
15% gold 75% Au-Sn alloy and zinc 10% gold 90%
It was formed using a vacuum evaporation method using an Au-Zn alloy.
本実施例はn側電極17に対するP側電極16
の極性を正負切換えることにより、時分割で発光
素子及び受光素子として使用することができる。
P側電極16を正とすれば浅いPn接合18a及
び深いPn接合18b共に順方向にバイアスされ
ることになり発光受光層としてのn−
In0.76Ga0.24As0.55P0.45層12へ少数キヤリヤ注入
が行なわれP−InP層13及びn−InP層単結晶
基板11よりも禁制帯幅の狭いn−
In0.76Ga0.24As0.55P0.45層12の禁制帯幅約0.95eV
に対応して波長1.3μmの発光が生じる。少数の
キヤリヤ注入は浅いPn接合18aを通しても行
なわれるので、浅いPn接合18aの領域からも
もちろん発光が見られるが、亜鉛拡散領域14の
低抵抗性のために、大部分の電流は深いPn接合
18bを通して流れ、実質的な発光は発光受光開
口15の中央部に設けられた深いPn接合18b
の領域を中心として行なわれる。 In this embodiment, the P-side electrode 16 is connected to the N-side electrode 17.
By switching the polarity between positive and negative, it can be used as a light emitting element and a light receiving element in a time-sharing manner.
If the P-side electrode 16 is made positive, both the shallow Pn junction 18a and the deep Pn junction 18b will be biased in the forward direction, so that the n-
Minority carrier injection is performed into the In 0 . 76 Ga 0 . 24 As 0 . 55 P 0 .
In 0.76 Ga 0.24 As 0.55 P 0.45 Forbidden band width of layer 12 approximately 0.95eV
Corresponding to this, light emission with a wavelength of 1.3 μm is generated. A small number of carrier injections also occur through the shallow Pn junction 18a, so light emission can of course be seen from the shallow Pn junction 18a region, but due to the low resistance of the zinc diffusion region 14, most of the current flows through the deep Pn junction 18a. 18b, and the substantial light emission flows through the deep Pn junction 18b provided in the center of the light emitting/receiving aperture 15.
It is conducted mainly in the area of
本実施例は十分厚いn−In0.76Ga0.24As0.55P0.45
層12にもかかわらず、発光の主要部分では亜鉛
拡散領域14における短いキヤリヤ寿命と薄いn
形領域の効果、即ち高い注入キヤリヤ密度による
高い発光再結合速度により、発光動作時の高い周
波数応答特性を有している。また、深いPn接合
18bの領域を中心とする狭い発光領域に比べ発
光受光開口15が大きいので光フアイバとの結合
において後述の通り有利な特徴がある。 In this example , sufficiently thick n-In 0.76 Ga 0.24 As 0.55 P 0.45
Despite the layer 12, the main part of the emission is due to the short carrier lifetime in the zinc diffusion region 14 and the thin n
Due to the shape area effect, ie, the high emission recombination rate due to the high injection carrier density, it has a high frequency response characteristic during light emission operation. Furthermore, since the light emitting/receiving aperture 15 is larger than the narrow light emitting region centered on the deep Pn junction 18b, it has an advantageous feature in coupling with an optical fiber, as will be described later.
一方P側電極16を負とし浅いPn接合18a
及び深いPn接合18bを共に逆方向にバイアス
すれば、受光時にn−In0.76Ga0.24As0.55P0.45層1
2で発生した電子正孔対はPn接合の逆バイアス
電界によりn側電極17及びP側電極16を通じ
光電流として外部へ取り出される。本実施例では
受光時に光吸収層として働くn−
In0.76Ga0.24As0.55P0.45層12の厚さが発光受光波
長の光に対する実効的な減衰定数の逆数の数倍と
大きく受光量子効率が60〜80%と通常の発光ダイ
オードを流用した場合に得られる高々30〜40%の
受光量子効率に比べればかなり高い値が得られ
る。 On the other hand, the P-side electrode 16 is made negative and the shallow Pn junction 18a
If both the deep Pn junction 18b and the deep Pn junction 18b are biased in the opposite direction, the n-In 0.76 Ga 0.24 As 0.55 P 0.45 layer 1
The electron-hole pairs generated in step 2 are taken out as photocurrent through the n-side electrode 17 and the p-side electrode 16 by the reverse bias electric field of the Pn junction. In this example, n-
In 0 . 76 Ga 0 . 24 As 0 . 55 P 0 . 45 The thickness of the layer 12 is large, several times the reciprocal of the effective attenuation constant for light at the wavelength of light emitted and received, and the light reception quantum efficiency is typically 60 to 80%. Compared to the 30 to 40% light-receiving quantum efficiency that can be obtained if a light-emitting diode is used, this value is considerably higher.
また、面積的には発光受光開口15の多くを占
める浅いPn接合18aの領域は発光動作に対す
る寄与が少いために、亜鉛拡散前のn−
In0.76Ga0.24As0.55P0.45層12はノンドーブとし受
光動作に好都合な低いキヤリヤ濃度に抑えてい
る。 In addition, since the area of the shallow Pn junction 18a that occupies most of the light emitting/receiving aperture 15 in terms of area has little contribution to the light emitting operation, the n-
The In 0 . 76 Ga 0 . 24 As 0 . 55 P 0 . 45 layer 12 is non-doped and suppressed to a low carrier concentration convenient for light receiving operation.
受光動作時には発光動作時と異なり、発光受光
開口15の下にあるPn接合領域、即ち浅いPn接
合18a及び深いPn接合18bがいずれも有効
に働く。従つて、本実施例を光フアイバとの組合
せで使用する場合には発光動作時の結合効率を中
心に考慮すれば十分であつて、例えば結合レンズ
系の収差等により、光フアイバの光が発光受光開
口15の中心部へ集光しきれないことがあつても
実質的に効率低下を防ぐことができるという特徴
がある。 During the light receiving operation, unlike during the light emitting operation, both the Pn junction regions under the light emitting/receiving aperture 15, that is, the shallow Pn junction 18a and the deep Pn junction 18b, work effectively. Therefore, when using this embodiment in combination with an optical fiber, it is sufficient to mainly consider the coupling efficiency during light emission operation. Even if the light cannot be completely focused on the center of the light-receiving aperture 15, a decrease in efficiency can be substantially prevented.
本実施例の各部寸法は使用対象の光フアイバの
特性に応じて最適にすべきものであるが、コア径
50μm用素子の代表例を示すと、n−InP単結晶
基板11の厚さ70μm,n−
In0.76Ga0.24As0.55P0.45層12の厚さ3μm、P−
InP層13の厚さ1μm、深いPn接合18bの深
さ3.5μm及び直径20μm、発光受光開口15の
直径80μm、素子外径0.5mm角、であり、また素
子の切り出しに際して露出するPn接合を保護す
るために深さ約5μmのメサエツチングと発光受
光開口15における光の表面反射防止用のSiOコ
ーテイングが施されている。 The dimensions of each part in this example should be optimized according to the characteristics of the optical fiber to be used, but the core diameter
A typical example of a device for 50 μm is an n-InP single crystal substrate 11 with a thickness of 70 μm, an n-
In 0.76 Ga 0.24 As 0.55 P 0.45 Thickness of layer 12 is 3 μm , P-
The thickness of the InP layer 13 is 1 μm, the depth of the deep Pn junction 18b is 3.5 μm and the diameter is 20 μm, the diameter of the light emitting/receiving aperture 15 is 80 μm, the outer diameter of the device is 0.5 mm square, and the exposed Pn junction is protected when cutting out the device. In order to achieve this, mesa etching with a depth of approximately 5 μm and SiO coating for preventing surface reflection of light in the light emitting/receiving aperture 15 are applied.
なお上述の実施例では基板材料として導電形が
n形の半導体を用いたが、もちろんP形半導体の
基板を使用し、導電形を反転した構成をとつても
良い。但し、この場合にはP形不純物として周知
の亜鉛やカドミウムの替りにイオウ等を用い、導
入方法もイオン注入方式をとらなければならない
であろう。半導体材料についても上述のInP−
InGaAsP系に限らず、必要な波長域に応じGaAs
−GaAlAs系などの−族化合物半導体も使用
することができる。GaAs−GaAlAs系を使用す
る場合には、発光受光層としてGaAsもしくはAl
組相比の小さいGa1-xAlxAs,(0<x<1)を用
い、発光受光層の上下をA1組成比の大きい
Ga1-yAlyAs,(0<x<y<1)で挾む形式をと
れば良い。更に電極及び発光受光開口の構成につ
いても上述の実施例に限定されず。例えば、基板
側に発光受光開口を設けた構成としても支障はな
い。但し発光受光波長に対して不透明な、例えば
GaAs−GaAlAs系に対するGaAsなどを基板とし
て素子を作成した場合には、発光受光開口領域部
分の基板をエツチング等により除去することが必
要となる。 In the above-described embodiments, a semiconductor with an n-type conductivity type was used as the substrate material, but it is of course possible to use a substrate of a p-type semiconductor and have a configuration in which the conductivity type is reversed. However, in this case, sulfur or the like would have to be used instead of the well-known P-type impurities such as zinc or cadmium, and an ion implantation method would have to be used as the introduction method. Regarding semiconductor materials, the above-mentioned InP-
Not limited to InGaAsP, but also GaAs depending on the required wavelength range.
- Group compound semiconductors such as -GaAlAs can also be used. When using GaAs-GaAlAs system, GaAs or Al should be used as the light emitting/receiving layer.
Using Ga 1-x Al x As, (0<x<1), which has a small phase ratio, the upper and lower parts of the light-emitting and receiving layer have a high A1 composition ratio.
Ga 1-y Al y As, (0<x<y<1) may be used. Further, the configurations of the electrodes and the light emitting/receiving aperture are not limited to the above embodiments. For example, there is no problem in a configuration in which a light emitting/receiving aperture is provided on the substrate side. However, it is opaque to the wavelength of emitted light, e.g.
When an element is fabricated using a substrate such as GaAs for the GaAs-GaAlAs system, it is necessary to remove the substrate in the light-emitting and light-receiving aperture area by etching or the like.
最後に本考案が有する利点を要約すれば、通常
の発光ダイオードとほとんど同一の工程で製造可
能であり、電極構造と発光層構造の改良を通じ光
フアイバとの結合において高い総合効率が実現容
易で、かつ周波数応答特性に優れた発光受光兼用
半導体素子が得られることである。 Finally, to summarize the advantages of the present invention, it can be manufactured in almost the same process as ordinary light emitting diodes, and high overall efficiency can be easily achieved in coupling with optical fibers through improvements in the electrode structure and light emitting layer structure. In addition, a light-emitting/light-receiving semiconductor element having excellent frequency response characteristics can be obtained.
第1図、第2図はそれぞれ本考案に基づく一実
施例の平面図、及び側断面図である。第3図は従
来例の断面図である。
図中11……n−InP単結晶基板、12……n
−In0.76Ga0.24As0.55P0.45層、13……P−InP
層、14……亜鉛拡散領域、15……発光受光開
口、16……P側電極、17……n側電極、18
a……浅いPn接合、18b……深いPn接合を表
わす。
FIG. 1 and FIG. 2 are a plan view and a side sectional view, respectively, of an embodiment based on the present invention. FIG. 3 is a sectional view of a conventional example. In the figure, 11...n-InP single crystal substrate, 12...n
−In 0.76 Ga 0.24 As 0.55 P 0.45 layer , 13 ... P - InP
Layer, 14... Zinc diffusion region, 15... Light emitting/light receiving aperture, 16... P side electrode, 17... N side electrode, 18
a... Shallow Pn junction, 18b... Deep Pn junction.
Claims (1)
合構造を内部に含みかつ素子の上面に発光受光開
口を有する発光受光兼用半導体素子において、近
接する層よりも狭い禁制帯幅を有する発光受光層
の厚さが発光受光波長の光に対する該発光受光層
の減衰定数の逆数よりも大きく、かつ前記発光受
光開口の略中央部の該発光受光開口よりも狭い領
域下に主たる発光領域を形成すべく前記発光受光
層の内部へ達する不純物導入により形成された局
部的に深い位置のPn接合領域と前記発光受光開
口よりも広い領域下に主たる受光領域を形成する
浅い位置のPn接合領域とを有することを特徴と
する発光受光兼用半導体素子。 In a light-emitting/light-receiving semiconductor device that includes a double heterojunction structure composed of a - group compound semiconductor and has a light-emitting/light-receiving aperture on the top surface of the device, the thickness of the light-emitting/light-emitting layer having a narrower bandgap than the adjacent layer. is larger than the reciprocal of the attenuation constant of the light emitting/receiving layer for light having the wavelength of light emitting/receiving, and the main light emitting region is formed under an area narrower than the light emitting/receiving aperture at approximately the center of the light emitting/receiving aperture. It is characterized by having a locally deep Pn junction region formed by introducing impurities that reach the inside of the layer, and a shallow Pn junction region forming a main light receiving region under an area wider than the light emitting and receiving aperture. Semiconductor device that can emit light and receive light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5411880U JPS6133658Y2 (en) | 1980-04-21 | 1980-04-21 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5411880U JPS6133658Y2 (en) | 1980-04-21 | 1980-04-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56155465U JPS56155465U (en) | 1981-11-20 |
JPS6133658Y2 true JPS6133658Y2 (en) | 1986-10-01 |
Family
ID=29648897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5411880U Expired JPS6133658Y2 (en) | 1980-04-21 | 1980-04-21 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6133658Y2 (en) |
-
1980
- 1980-04-21 JP JP5411880U patent/JPS6133658Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS56155465U (en) | 1981-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6104047A (en) | Avalanche photodiode with thin built-in depletion region | |
US20070096240A1 (en) | Doped Absorption For Enhanced Responsivity For High Speed Photodiodes | |
US4614958A (en) | Light emitting and receiving device | |
US5332919A (en) | Photodetector with surrounding region | |
JPS6328506B2 (en) | ||
JPH022691A (en) | Semiconductor light receiving device | |
US4390889A (en) | Photodiode having an InGaAs layer with an adjacent InGaAsP p-n junction | |
US5281829A (en) | Optical semiconductor device having semiconductor laser and photodetector | |
US5304824A (en) | Photo-sensing device | |
US4608586A (en) | Back-illuminated photodiode with a wide bandgap cap layer | |
JP3828982B2 (en) | Semiconductor photo detector | |
Sasaki et al. | Optoelectronic integrated device with light amplification and optical bistability | |
JPS6244434B2 (en) | ||
JP3675223B2 (en) | Avalanche photodiode and manufacturing method thereof | |
JP4755341B2 (en) | Highly doped p-type contact for high speed front illuminated photodiodes | |
JPH04111478A (en) | Light receiving element | |
TWI728694B (en) | Mixed-layer composite charging layer accumulatively increasing breakdown photodiode | |
JP2002231992A (en) | Semiconductor light receiving element | |
CA1182200A (en) | High sensitivity photon feedback photodetectors | |
JPS6133658Y2 (en) | ||
Berger | Metal-semiconductor-metal photodetectors | |
JPH07118548B2 (en) | III-V group compound semiconductor PIN photo diode | |
JP2003158290A (en) | Photodiode | |
Scavennec et al. | High-gain low-noise GaAlAs-GaAs phototransistors | |
JPH04266070A (en) | Photodiode |