JPS6131824B2 - - Google Patents
Info
- Publication number
- JPS6131824B2 JPS6131824B2 JP16958079A JP16958079A JPS6131824B2 JP S6131824 B2 JPS6131824 B2 JP S6131824B2 JP 16958079 A JP16958079 A JP 16958079A JP 16958079 A JP16958079 A JP 16958079A JP S6131824 B2 JPS6131824 B2 JP S6131824B2
- Authority
- JP
- Japan
- Prior art keywords
- deterioration
- oil
- sample
- determining
- degree
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Testing Relating To Insulation (AREA)
Description
【発明の詳細な説明】
本発明は、電気機器絶縁用の合成絶縁油の経年
劣化などによる劣化度の判定法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for determining the degree of deterioration due to age-related deterioration of synthetic insulating oil for insulating electrical equipment.
電気機器、例えば車輌用の油入り変圧器などの
電気絶縁用として、合成絶縁油が用いられてい
る。 Synthetic insulating oils are used for electrical insulation in electrical equipment, such as oil-filled transformers for vehicles.
上記合成絶縁油の中でも、例えばシリコーン油
は、鉱油より耐熱性、難然性が優れているので、
前記変圧器などの電気機器に広く使用されてい
る。 Among the synthetic insulating oils mentioned above, silicone oil, for example, has better heat resistance and resistance than mineral oil, so
It is widely used in electrical equipment such as the transformer.
しかし、この種の油でも、電気機器の運転によ
り経年劣化し、あるいは異常加熱、放電などの異
常事態によつて劣化し、そのために引火点が低下
して引火する危険がある。 However, even this type of oil deteriorates over time due to the operation of electrical equipment, or due to abnormal situations such as abnormal heating or electric discharge, which lowers the flash point and poses a risk of ignition.
従つて、シリコーン油などの合成絶縁油の特性
の低下を把握し、油の劣化による事故を未然に防
止することが望まれる。 Therefore, it is desirable to understand the deterioration of the properties of synthetic insulating oils such as silicone oils and to prevent accidents due to oil deterioration.
従来、これら合成絶縁油、例えばシリコーン油
の引火点の低下を判定する方法として、シリコー
ン油の蒸発量を測定する方法がある。この方法
は、試料油を150℃で24時間加熱した後、試料油
の減量を測定する方法である。これは、油の蒸発
量と引火点が相関関係にあることに基づくもので
ある。即ち油の蒸発量がある値以上になると、引
火点が急激に低下することが知られている。 Conventionally, as a method for determining a decrease in the flash point of these synthetic insulating oils, such as silicone oil, there is a method of measuring the amount of evaporation of silicone oil. In this method, the weight loss of sample oil is measured after heating the sample oil at 150°C for 24 hours. This is based on the fact that there is a correlation between the amount of evaporation of oil and the flash point. That is, it is known that when the amount of evaporation of oil exceeds a certain value, the flash point decreases rapidly.
シリコーン油のうち、油入りの電気機器に多く
用いられているものは、ポリジメチルシロキサン
(25℃における粘度50cst)である。このポリジメ
チルシロキサンの劣化後の引火点と蒸発量との関
係は第1図の線図に示すとおりである。すなわ
ち、蒸発量が1%以上になると、引火点が急激に
低下する。従つて、蒸発量1%が、蒸発量測定法
によるポリジメチルシロキサンの劣化判定の管理
値となる。 Among silicone oils, polydimethylsiloxane (viscosity 50 cst at 25°C) is often used in oil-filled electrical equipment. The relationship between the flash point of this polydimethylsiloxane after deterioration and the amount of evaporation is as shown in the diagram of FIG. That is, when the amount of evaporation becomes 1% or more, the flash point decreases rapidly. Therefore, the evaporation amount of 1% is the control value for determining the deterioration of polydimethylsiloxane by the evaporation amount measurement method.
上記のように、蒸発量の測定によつてシリコー
ン油の劣化度を判定することはできるが、蒸発量
測定法は、
(i) 24時間の加熱を必要とするため、測定に長問
間を要する。 As mentioned above, it is possible to determine the degree of deterioration of silicone oil by measuring the amount of evaporation, but the evaporation amount measurement method requires (i) 24-hour heating, so it takes a long time to measure; It takes.
(ii) 試料の秤量回数が多く、繁雑である。(ii) Samples must be weighed many times and it is complicated.
(iii) 約10gの試料を採取する必要がある。(iii) Approximately 10g of sample needs to be collected.
などの欠点がある。There are drawbacks such as.
本発明は、上記従来の合成絶縁油の劣化度判定
法の欠点を除去し、短時間で簡単に、しかも少量
の試料を用いて油の劣化度を把握できる判定法を
提供することを目的とする。 The purpose of the present invention is to eliminate the drawbacks of the conventional method for determining the degree of deterioration of synthetic insulating oil, and to provide a method for determining the degree of deterioration of oil in a short time, easily, and using a small amount of sample. do.
この目的を達成するため、本発明は電気機器絶
縁用の合成絶縁油より試料を採取し、分析機器に
より前記試料の低分子量成分を定量分析し、分析
結果によつて前記低分子量成分の濃度を求め、こ
の濃度を管理値と照合して前記試料の劣化度を判
定することを特徴とする。 In order to achieve this objective, the present invention collects a sample from synthetic insulating oil for electrical equipment insulation, quantitatively analyzes the low molecular weight components of the sample using an analytical instrument, and determines the concentration of the low molecular weight component based on the analysis results. The method is characterized in that the degree of deterioration of the sample is determined by comparing this concentration with a control value.
本発明は、合成絶縁油の劣化により低分子化合
物が生じ、ために蒸発量が増大し、引火点が低下
するという知見に基づいている。例えばシリコー
ン油(ポリジメチルシロキサン)の場合には、主
鎖の開裂により低分子量の環状化合物、D3(ヘ
キサメチルシクロトリシロキサン)、D4(オクタ
メチルシクロテトラシロキサン)、D5(デカメチ
ルシクロペンタシロキサン)およびD6(ドデカ
メチルシクロヘキサシロキサン)が主として生ず
る。 The present invention is based on the knowledge that deterioration of synthetic insulating oil produces low-molecular compounds, which increases the amount of evaporation and lowers the flash point. For example, in the case of silicone oil (polydimethylsiloxane), cleavage of the main chain produces low molecular weight cyclic compounds such as D 3 (hexamethylcyclotrisiloxane), D 4 (octamethylcyclotetrasiloxane), and D 5 (decamethylcyclotrisiloxane). (pentasiloxane) and D 6 (dodecamethylcyclohexasiloxane) are mainly formed.
第2図は、25℃における粘度が50cstであるポ
リジメチルシロキサンを試料とし、従来の方法に
より測定した蒸発量(%)と、本発明の方法に従
い環状化合物D3ないしD6を定量分析してその総
和をとつた低分子量化合物濃度(%)とがどのよ
うな対応関係にあるかを求めた結果を示す。この
線図から、蒸発量と低分子化合物濃度とは、直線
性のよい対応関係にあることが解る。このこと
が、即ち、低分子化合物濃度が蒸発量ときわめて
よい対応関係にあることが、本発明の方法の基礎
となつている。 Figure 2 shows the amount of evaporation (%) measured using a conventional method and the quantitative analysis of cyclic compounds D 3 to D 6 using the method of the present invention using a sample of polydimethylsiloxane with a viscosity of 50 cst at 25°C. The results of determining the correspondence relationship between the total sum and the low molecular weight compound concentration (%) are shown. From this diagram, it can be seen that the amount of evaporation and the concentration of low molecular weight compounds have a linear relationship. This fact, that is, the fact that the concentration of low molecular weight compounds has an extremely good correspondence with the amount of evaporation, is the basis of the method of the present invention.
そして、例えばD3ないしD6というような低分
子化合物は、分析機器、例えばガスクロマトグラ
フを用いて、微量の試料で、短時間に精度よく定
量分析することが可能である。 For example, low-molecular compounds such as D 3 to D 6 can be quantitatively analyzed in a short time with high precision using an analytical instrument such as a gas chromatograph using a small amount of sample.
ポリジメチルシロキサン(25℃における粘度
50cst)についての、蒸発量測定法による劣化判
定の管理値は、第1図から1%であるから、本発
明の方法における上記油の管理値は、第2図から
約0.75%ということになる。 Polydimethylsiloxane (viscosity at 25℃
The control value for deterioration determination using the evaporation measurement method for 50cst) is 1% from Figure 1, so the control value for the above oil in the method of the present invention is approximately 0.75% from Figure 2. .
この値は、各油毎に個々に変わり得るものであ
るから、予め実験を行うことでそれぞれに求めて
おく必要がある。 Since this value can vary for each oil, it is necessary to determine it for each oil by conducting experiments in advance.
本発明の方法を実施するには、先ず、例えば変
圧器のタンクから微量の試料油を採取する。分析
機器としてガスクロマトグラフを用いる場合、約
1μの試料で充分である。 To carry out the method of the present invention, first, a small amount of sample oil is taken from, for example, a transformer tank. When using a gas chromatograph as the analytical instrument, a sample size of approximately 1 μm is sufficient.
次に、この試料中の低分子化合物成分、ポリジ
メチルシロキサンの場合なら、上記D3ないしD6
の定量分析を一例としてガスクロマトグラフを用
いて行う。この分析結果を基に、低分子化合物濃
度を算出し、予め求められていた管理値と比較
し、許容し得る劣化度の範囲内にあるか否かを判
定する。 Next, in the case of the low molecular compound component in this sample, polydimethylsiloxane, the above D 3 to D 6
As an example, quantitative analysis is performed using a gas chromatograph. Based on this analysis result, the low molecular compound concentration is calculated and compared with a control value determined in advance to determine whether it is within an acceptable degree of deterioration.
本発明の方法は、
(A) 従来の蒸発量測定法におけるような長時間の
加熱が不要のため、判定時間を著しく短縮でき
る。 The method of the present invention (A) does not require long-term heating as in conventional evaporation measurement methods, and therefore can significantly shorten the determination time.
(B) 試料採取量が極少量で済むので、少油量充填
の機器にも適用できる。(B) Since the amount of sample collected is extremely small, it can also be applied to equipment filled with a small amount of oil.
などの利点がある。There are advantages such as
本発明による合成絶縁油の劣化度判定法は、上
記実施例のシリコーン油ばかりでなく他の合成絶
縁油の劣化度判定法としても適用することができ
る。 The method for determining the degree of deterioration of synthetic insulating oil according to the present invention can be applied not only to the silicone oil of the above embodiment but also to determining the degree of deterioration of other synthetic insulating oils.
第1図はシリコーン油(ポリジメチルシロキサ
ン)の劣化後の引火点と蒸発量との関係を示す線
図、第2図はシリコーン油(ポリジメチルシロキ
サン)における低分子量成分濃度と蒸発量との対
応関係を示す線図である。
Figure 1 is a diagram showing the relationship between the flash point of silicone oil (polydimethylsiloxane) after deterioration and the amount of evaporation, and Figure 2 is the relationship between the concentration of low molecular weight components and the amount of evaporation in silicone oil (polydimethylsiloxane). It is a line diagram showing a relationship.
Claims (1)
し、分析機器により前記試料の低分子量成分を定
量分析し、分析結果によつて前記低分子量成分の
濃度を求め、この濃度を管理値と照合して前記試
料の劣化度を判定することを特徴とする合成絶縁
油の劣化度判定法。 2 特許請求の範囲第1項記載の判定法におい
て、分析機器がガスクロマトグラフであることを
特徴とする合成絶縁油の劣化度判定法。 3 特許請求の範囲第1項または第2項に記載の
判定法において、合成絶縁油がシリコーン油(ポ
リジメチルシロキサン)である場合に、低分子量
成分としてヘキサメチルシクロトリシロキサン、
オクタメチルシクロテトラシロキサン、デカメチ
ルシクロペンタシロキサンおよびドデカメチルシ
クロヘキサシロキサンを定量分析し、その総和量
を求めることを特徴とする合成絶縁油の劣化度判
定法。[Scope of Claims] 1. A sample is taken from a synthetic insulating oil for electrical equipment insulation, the low molecular weight components of the sample are quantitatively analyzed using an analytical instrument, the concentration of the low molecular weight components is determined based on the analysis results, and the A method for determining the degree of deterioration of synthetic insulating oil, characterized in that the degree of deterioration of the sample is determined by comparing the concentration with a control value. 2. A method for determining the degree of deterioration of synthetic insulating oil as set forth in claim 1, wherein the analytical instrument is a gas chromatograph. 3. In the determination method described in claim 1 or 2, when the synthetic insulating oil is silicone oil (polydimethylsiloxane), hexamethylcyclotrisiloxane,
A method for determining the degree of deterioration of synthetic insulating oil, which comprises quantitatively analyzing octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane and determining the total amount thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16958079A JPS5692468A (en) | 1979-12-26 | 1979-12-26 | Method for decision of degree of deterioration of synthetic insulating oil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16958079A JPS5692468A (en) | 1979-12-26 | 1979-12-26 | Method for decision of degree of deterioration of synthetic insulating oil |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5692468A JPS5692468A (en) | 1981-07-27 |
JPS6131824B2 true JPS6131824B2 (en) | 1986-07-23 |
Family
ID=15889106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16958079A Granted JPS5692468A (en) | 1979-12-26 | 1979-12-26 | Method for decision of degree of deterioration of synthetic insulating oil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5692468A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017213116A1 (en) * | 2016-06-07 | 2017-12-14 | 三菱電機株式会社 | Temperature estimation method |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4880489B2 (en) * | 2007-01-26 | 2012-02-22 | 株式会社日立製作所 | Silicone fluid-containing electrical equipment, silicone fluid-containing transformer, and method for measuring cyclic compounds in silicone fluid used in silicone fluid-containing electrical equipment |
JP5976439B2 (en) * | 2012-08-01 | 2016-08-23 | 東北電力株式会社 | Insulation deterioration diagnosis method for insulating oil in electrical equipment |
EP3327736B1 (en) * | 2015-07-17 | 2021-01-06 | Mitsubishi Electric Corporation | Method for determining abnormality in oil-filled electric apparatus |
-
1979
- 1979-12-26 JP JP16958079A patent/JPS5692468A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017213116A1 (en) * | 2016-06-07 | 2017-12-14 | 三菱電機株式会社 | Temperature estimation method |
JPWO2017213116A1 (en) * | 2016-06-07 | 2019-02-14 | 三菱電機株式会社 | Temperature estimation method |
Also Published As
Publication number | Publication date |
---|---|
JPS5692468A (en) | 1981-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Du et al. | Moisture solubility for differently conditioned transformer oils | |
Jalbert et al. | Cellulose chemical markers in transformer oil insulation Part 1: Temperature correction factors | |
Vasovic et al. | Aging of transformer insulation—Experimental transformers and laboratory models with different moisture contents: Part I—DP and furans aging profiles | |
Gielniak et al. | Moisture in cellulose insulation of power transformers-statistics | |
Hadjadj et al. | Potential of determining moisture content in mineral insulating oil by Fourier transform infrared spectroscopy | |
JPS6131824B2 (en) | ||
Shang et al. | Assessing aging of large transformers by furfural investigation | |
US20210033570A1 (en) | Method of Diagnosing Oil-Immersed Electrical Apparatus | |
US5644129A (en) | Direct analysis of paraffin and naphthene types in hydrocarbon | |
Gmati et al. | Bubbling Inception Temperature in Power Transformers–Part 1: Comparative Study of Kraft Paper, Thermally Upgraded Kraft Paper, and Aramid Paper with Mineral Oil | |
US20200326364A1 (en) | Method of Diagnosing Oil-Immersed Electrical Apparatus | |
Mehanna et al. | The minimum concentration of 1, 2, 3-benzotriazol to suppress sulfur corrosion of copper windings by DBDS in mineral transformer oils | |
Bernard et al. | Methods for monitoring age-related changes in transformer oils | |
Roussis | Exhaustive determination of hydrocarbon compound type distributions by high resolution mass spectrometry | |
CN111595928B (en) | Method for judging thermal cracking degree of crude oil | |
JP5079936B1 (en) | Diagnostic method for oil-filled electrical equipment | |
Roizman | How water affects transformer oil quality and helps monitor its aging | |
JP3018718B2 (en) | Deterioration determination method for electrical equipment containing synthetic oil | |
Kim et al. | Study on decomposition gas characteristics and condition diagnosis for gas-insulated transformer by chemical analysis | |
Tebbal et al. | Analysis and corrosivity testing of eight crude oils | |
Li | Low frequency, millimeter wavelength, interdigital dielectrometry of insulating media in a transformer environment | |
Schreiter et al. | Lifetime estimation of operational aged transformers with new fuzzy logic algorithms | |
Gill | The design of transformer oil | |
Reid | Use of High Resolution Mass Spectrometry in the Study of Petroleum Waxes, Microcrystalline Waxes, and Ozokerite. | |
Harvath et al. | Identification of Organic Acids in Used Engine Oil Residues by Pyrolysis-Comprehensive 2D Gas Chromatography-Time of Flight Mass Spectrometry |