[go: up one dir, main page]

JPS61296115A - Production of acrylonitrile hollow fiber - Google Patents

Production of acrylonitrile hollow fiber

Info

Publication number
JPS61296115A
JPS61296115A JP13696085A JP13696085A JPS61296115A JP S61296115 A JPS61296115 A JP S61296115A JP 13696085 A JP13696085 A JP 13696085A JP 13696085 A JP13696085 A JP 13696085A JP S61296115 A JPS61296115 A JP S61296115A
Authority
JP
Japan
Prior art keywords
nitric acid
hollow
coagulation bath
acid solution
hollow fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13696085A
Other languages
Japanese (ja)
Inventor
Osamu Nishida
治 西田
Akihiro Ooyama
大山 昭博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP13696085A priority Critical patent/JPS61296115A/en
Publication of JPS61296115A publication Critical patent/JPS61296115A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain the titled fiber having relatively high tensile strength and breaking strength, by spinning and drawing a nitric acid dope of an AN copolymer through a ring nozzle using a specific fluid as the hollow-forming agent, the coagulation bath and the drawing bath under specific condition. CONSTITUTION:An acrylonitrile copolymer is dissolved in a nitric acid solution, and the obtained dope is introduced into a coagulation bath through a ring nozzle using a hollow-forming agent consisting of a fluid incompatible with the dope. The coagulation bath is a cold nitric acid solution cooled to about -10-0 deg.C, especially preferably -8--3 deg.C. The coagulated fiber is drawn in a nitric acid solution bath maintained at a temperature higher than the coagulation bath, washed with water, drawn in hot atmosphere, dried and wound. The draw ratio is preferably 0.9-6.0 to attain balanced tensile strength and substance permeability.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、実質的に均質な膜構造を有するアクリロニト
リル系中空#limを連続的に製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for continuously producing an acrylonitrile hollow #lim having a substantially homogeneous membrane structure.

(従来の技術) アクリロニトリル系共重合体より中空繊維を製造する公
知方法には、湿式、半乾式及び乾式の三方式があり、さ
らに、湿式製造方法としては、ポリマー溶解に有機溶剤
を用いる方法(特開昭54−34416)、無機酸を用
いる方法、濃厚塩溶液を用いる方法(特開昭53−10
6769)及びそれ等を組み合わせて用いる方法(特開
昭58−98413)がある゛。そして、本発明と関係
する無機酸、特に硝酸溶液にアクリロニトリル系共重合
体を溶解して中空糸を製造する方法には、特開昭55−
90616、特開昭55−103306、特開昭58−
93708、特開昭58−94862等があり、中空形
成剤及びl又は凝固浴剤として、水又は硝酸溶液を用い
ることも開示している。
(Prior art) There are three known methods for producing hollow fibers from acrylonitrile copolymers: wet, semi-dry, and dry. JP-A-54-34416), method using inorganic acid, method using concentrated salt solution (JP-A-53-10)
6769) and a method of using them in combination (Japanese Patent Application Laid-Open No. 58-98413). The method of manufacturing hollow fibers by dissolving an acrylonitrile copolymer in an inorganic acid solution, especially a nitric acid solution, which is related to the present invention, includes
90616, JP-A-55-103306, JP-A-58-
93708, JP-A No. 58-94862, etc., which also disclose the use of water or a nitric acid solution as a hollow forming agent and a coagulating bath agent.

(発明が解決しようとする問題点) ところで、中空形成剤に水又は希薄な硝酸溶液を使用す
ると、中空fpt維の膜壁中に、大きな空洞を生じ、両
表面に向かって傾斜型多孔質構造になる傾向が強い。従
って、この様に大きな空洞を有する中空繊維は、膜厚が
薄く出来ず、その結果、透析性が悪くなり、引張強さや
破壊強度も比較的弱く1人工腎臓として使用する場合、
プライミング時のエアー抜きに多くの時間と多量のブラ
イミング液が必要である等の問題点がある。そこで中空
繊維の膜壁中の大きな空洞発生を回避し、均質な膜構造
を得る手段として、中空形成剤及び/又は凝固浴剤に高
濃度の硝酸溶液が使用されている(特開昭55−906
16 )。
(Problems to be Solved by the Invention) By the way, when water or a dilute nitric acid solution is used as a hollow forming agent, large cavities are created in the membrane wall of the hollow FPT fiber, resulting in a tilted porous structure toward both surfaces. There is a strong tendency to Therefore, hollow fibers with such large cavities cannot be made thin, resulting in poor dialysis properties and relatively weak tensile strength and breaking strength when used as an artificial kidney.
There are problems such as the need for a lot of time and a large amount of briming liquid to remove air during priming. Therefore, as a means of avoiding the generation of large cavities in the membrane wall of hollow fibers and obtaining a homogeneous membrane structure, a highly concentrated nitric acid solution is used as a hollow forming agent and/or a coagulating bath agent (Japanese Patent Application Laid-Open No. 55-117-1). 906
16).

この製造方法によれば、均質な膜構造を有する中空繊維
と比較的高速の紡糸が達成されるが、一方得られた中空
繊維を乾燥する為には、一度必要な長さに切断し、水又
はアルコール等で洗浄を行なった後乾燥する必要が生じ
、紡糸に引続いて乾燥処理を行なえないという欠点を有
する。さらに、中空繊維を一度切断する為に、その後の
水洗及び乾燥は、フリー状態で行なわざるを得す、結果
的に#lI維配面配向配向に近くなり、引張り強さ及び
破壊強度の弱い中空繊維となり易い。又切断された中空
糸を一木一本個々に処理する事は生産性上非常にコスト
高になる為に、必要単位に束ねられて処理されるが、そ
の結果、束の中央部と外周部、さらに束の両端部と中心
部等に処理ムラが起こり易い等の欠点を有する。
According to this manufacturing method, hollow fibers with a homogeneous membrane structure and spinning at relatively high speeds can be achieved. On the other hand, in order to dry the obtained hollow fibers, it is necessary to cut them to the required length and then water them with water. Alternatively, it is necessary to dry after washing with alcohol or the like, which has the drawback that drying cannot be performed subsequent to spinning. Furthermore, since the hollow fibers are cut once, the subsequent water washing and drying must be carried out in a free state, resulting in hollow fibers with a low tensile strength and breaking strength as the orientation is close to the #lI fiber orientation. Easy to become fibers. In addition, processing the cut hollow fibers one by one individually is very costly in terms of productivity, so they are bundled into necessary units and processed, but as a result, the central part and the outer part of the bundle are Furthermore, it has the disadvantage that processing unevenness tends to occur at both ends and the center of the bundle.

(問題点を解決するための手段) そこで本発明者等は、硝酸溶液に溶解したアクリロニト
リル系共重合体から均質な膜構造と比較的高い引張強さ
と破壊強度を有する中空繊維を、高速でしかも連続した
乾燥1巻き取り処理によって製造する方法を検討した結
果本発明を完成したものである。
(Means for Solving the Problems) Therefore, the present inventors produced hollow fibers having a homogeneous membrane structure and relatively high tensile strength and breaking strength from an acrylonitrile copolymer dissolved in a nitric acid solution at high speed. The present invention was completed as a result of studying a manufacturing method using continuous drying and winding.

本発明の骨子は、アクリルニトリル系共重合体を硝酸溶
液で均一に溶解した原液から、環状ノズルを用いて中空
繊維を製造する際に、中空形成剤として原液に対し非相
溶性の流体を、凝固浴として低温に保持した硝酸溶液を
使用して、環状ノズルから中空#!維を直接又は空中走
行を経た後、凝固浴中に導入し、次いで、凝固浴より高
温に保持した硝酸溶液浴中で延伸し、その後、連続的に
水洗、熱雰囲気中の通過、乾燥、巻き取りを行なう点に
ある。
The gist of the present invention is that when producing hollow fibers using an annular nozzle from a stock solution in which an acrylonitrile copolymer is uniformly dissolved in a nitric acid solution, a fluid that is incompatible with the stock solution is used as a hollow forming agent. Hollow #! from an annular nozzle using a nitric acid solution kept at low temperature as a coagulation bath! The fibers are introduced into a coagulation bath directly or after passing through the air, and then stretched in a nitric acid solution bath maintained at a higher temperature than the coagulation bath, followed by successive washing with water, passing through a hot atmosphere, drying, and rolling. The point is to take action.

(作用) 本発明において、中空形成剤として有用な物質は、原液
に対して非相溶性の物質である事が必要である。即ち、
水、硝酸水溶液等の酸溶液、又は塩水溶液等の原液に対
して相溶性のある流体を使用すると、原液中の水及び硝
酸の中空形成剤への移動が起こり、中空la維の内表面
層が急速に凝固し、空中走行及び凝固浴中での延伸が紡
糸速度に追いつかず結果的に糸切れが発生する。又、糸
切れ直前の速度で引上げても、延伸切れと凝固をくり返
す形態となりスムーズな内表面は得られない。従って紡
糸速度は比較的遅く(約50m/分程度)ならざるを得
ない。さらに、該相溶性溶液を用いると、中空繊維膜壁
中に大きな空洞が生じ易くなる欠点及び連続して乾燥で
きない欠点をも    ・生ずる。又、中空形成剤が非
相溶性流体であっても、分子径の小さい空気、窒素、酸
素及び炭酸ガス等では、熱雰囲気中及び乾燥中に中空繊
維膜壁を通過し易いので、常に一定の中空繊維内径を維
持する事が難しい。中空形成剤としては、四弗化炭素、
パーフロロエタン、パーフロロペンクン、パーフロロヘ
キサン、トリフロロメチル−パーフロロシクロヘキサン
、1.2−)リフロロメチルーパーフロロシクロへキサ
ン、2−デカフロロブチル−パーフロロテトラヒドロフ
ラン又はパーフロロテトラヒドロフラン及び該物質の弗
素の1ケ又は2ケが水素に置換した物質のフロロカーボ
ン類及び四塩化炭素、パークロロエタン、パークロロエ
チレン及び該物質の塩素の1ケ又は2ケが水素に置換し
た物質等のクロロカーボン類が好ましい。次に環状ノズ
ルより導出された中空繊維は、直接又は一定の空中走行
距離を経た後、凝固浴に導かれる。
(Function) In the present invention, the substance useful as a hollow-forming agent must be incompatible with the stock solution. That is,
When a fluid that is compatible with the stock solution such as water, an acid solution such as an aqueous nitric acid solution, or an aqueous salt solution is used, water and nitric acid in the stock solution migrate to the hollow forming agent, causing the inner surface layer of the hollow LA fibers to form. is rapidly solidified, and air running and stretching in the coagulation bath cannot keep up with the spinning speed, resulting in yarn breakage. Furthermore, even if the yarn is pulled at a speed just before yarn breakage, a smooth inner surface cannot be obtained due to repeated stretching breakage and solidification. Therefore, the spinning speed must be relatively slow (about 50 m/min). Furthermore, the use of such a compatible solution also has the disadvantage that large cavities tend to form in the hollow fiber membrane wall and the disadvantage that continuous drying is not possible. In addition, even if the hollow forming agent is an incompatible fluid, air, nitrogen, oxygen, carbon dioxide, etc. with small molecular diameters easily pass through the hollow fiber membrane wall in a hot atmosphere and during drying, so it is always constant. Difficult to maintain hollow fiber inner diameter. As the hollow forming agent, carbon tetrafluoride,
Perfluoroethane, perfluoropencune, perfluorohexane, trifluoromethyl-perfluorocyclohexane, 1.2-)lifluoromethyl-perfluorocyclohexane, 2-decafluorobutyl-perfluorotetrahydrofuran or perfluorotetrahydrofuran and Fluorocarbons, carbon tetrachloride, perchloroethane, perchlorethylene, and chlorocarbons, such as substances in which one or two of the fluorines of the substance are replaced with hydrogen, and substances in which one or two of the chlorines of the substance are replaced with hydrogen. Preferably. Next, the hollow fibers led out from the annular nozzle are led to a coagulation bath either directly or after passing through a certain distance in the air.

この際、環状ノズルを直接、凝固浴中に浸漬して中空繊
維を吐出すると、該中空繊維は、凝固浴液の条件に左右
され、巻き上げ速度の限度は50m/分であるが、環状
ノズルの直下に一定の空中走行距離を設けた場合には、
該領域内では、中空繊維は、未凝固の状態であり延伸さ
れ易いので、凝固浴液中を経た後の巻き上げ速度は非常
に早い速度(実験的には200m/分以上)を得る事が
可能である。又、該空中走行距離の長さを変える事によ
り紡糸の安定性も異なる事を確認した。本発明者等の検
討結果によれば、該空中走行距離は、0.5〜50cm
が望ましく、特に2〜30Cmが良好である。空中走行
を経た中空繊維は、次に凝固浴に導入される。均質な膜
構造を得るためには、中空繊維を凝固浴中で、ゆっくり
と凝固させる必要がある。凝固浴の温度は一1O〜0°
C2特に−8〜−3℃が望ましい。凝固浴温度が高いと
中空繊維の膜壁中に大きな空洞が生じる。
At this time, when the annular nozzle is directly immersed in the coagulation bath and the hollow fibers are discharged, the hollow fibers are affected by the conditions of the coagulation bath liquid, and the winding speed limit is 50 m/min. If a certain aerial distance is set directly below,
In this region, the hollow fiber is in an uncoagulated state and is easily drawn, so it is possible to obtain a very high winding speed (experimentally more than 200 m/min) after passing through the coagulation bath liquid. It is. Furthermore, it was confirmed that the stability of spinning varies by changing the length of the air travel distance. According to the study results of the present inventors, the aerial travel distance is 0.5 to 50 cm.
is desirable, and 2 to 30 cm is particularly good. The hollow fibers that have passed through the air are then introduced into a coagulation bath. In order to obtain a homogeneous membrane structure, the hollow fibers must be coagulated slowly in a coagulation bath. The temperature of the coagulation bath is -10° to 0°.
C2 is preferably -8 to -3°C. When the coagulation bath temperature is high, large cavities are created in the membrane wall of the hollow fibers.

さらに均質な膜構造を得る為には、凝固浴の硝酸濃度は
5〜35%(以下すべて重量%を示す)であることが望
ましい。硝酸濃度が38%を越えると中空繊維は、凝固
浴中で凝固ができず、紡糸が不能となる。凝固浴で得ら
れた半ゲル状の中空繊維は、次に実質的に凝固浴温度よ
り高温に保った硝酸溶液中でゲル延伸され、繊維配向性
と引張強さを高められる。硝酸溶液からなる延伸浴の温
度は10〜70℃である。又、硝酸濃度は、5〜50%
が望ましい。該温度と該硝酸濃度の関係について種々検
討を行なった結果、比較的低温度で低濃度である20〜
40℃で5〜15%の領域と比較的高温度で、高濃度で
ある55〜65℃で30〜50%の領域が、中空繊維の
S壁中に大きな空洞を発生させない、特に好ましい領域
である事を確認した。さらにゲル延伸倍率について種々
検討を行なった結果、該延伸倍率を増す事により中空繊
維の配向度は、比例的に増加し、引張強さも向上する。
In order to obtain a more homogeneous membrane structure, it is desirable that the nitric acid concentration in the coagulation bath be 5 to 35% (all percentages by weight hereinafter). If the nitric acid concentration exceeds 38%, the hollow fibers cannot be coagulated in the coagulation bath, making spinning impossible. The semi-gelled hollow fibers obtained in the coagulation bath are then gel-stretched in a nitric acid solution maintained at a temperature substantially higher than the coagulation bath temperature to enhance fiber orientation and tensile strength. The temperature of the stretching bath made of nitric acid solution is 10 to 70°C. In addition, the nitric acid concentration is 5 to 50%.
is desirable. As a result of various studies on the relationship between the temperature and the nitric acid concentration, we found that 20~
A relatively high temperature region of 5-15% at 40°C and a high concentration region of 30-50% at 55-65°C are particularly preferred regions that do not cause large cavities in the S-wall of the hollow fibers. I confirmed something. Furthermore, as a result of various studies regarding the gel stretching ratio, it was found that by increasing the stretching ratio, the degree of orientation of the hollow fibers increases proportionally, and the tensile strength also improves.

しかし反面、物質の透過性は減少する。引張強さと物質
の透過性のバランスのとれた好ましい範囲は、延伸倍率
が0.9〜6.0倍である。延伸倍率が6.0倍を越え
ると中空繊維に亀裂が発生し、引張強さが低下傾向を示
すと共に、物質の透過性が急激に向上し、又、延伸倍率
が0.9倍未満の場合は、中空繊維は、引張強さが低下
したり、生産時に浴抵抗によりローラー巻き付き等が発
生する欠点を有する。
However, on the other hand, the permeability of the substance decreases. A preferred range for achieving a good balance between tensile strength and material permeability is a stretching ratio of 0.9 to 6.0 times. When the stretching ratio exceeds 6.0 times, cracks occur in the hollow fibers, the tensile strength tends to decrease, and the permeability of the substance increases rapidly, and when the stretching ratio is less than 0.9 times. Hollow fibers have drawbacks such as reduced tensile strength and roller wrapping due to bath resistance during production.

中空#に維は、延伸処理に続いて水洗された後、熱雰囲
気中で延伸処理される。この処理により中空繊維膜壁中
に残留する微量な溶剤は完全に除去され、同時に中空繊
維は収縮又は延伸を受け、最終的な物質の透過性と配向
性を含めた引張強さが決定される。この熱雰囲気の条件
としては、60〜95℃の熱水中を通過させるか、又は
、該熱水中を通過後60〜120℃の水蒸気中を通過さ
せる事、さらに該熱雰囲気中での延伸倍率が0.8〜2
.0倍、好ましくは0.9〜1.5倍であるのが最良の
条件である事が判明した。最後に、該中空繊維は、グリ
セリン溶液に浸漬後、一定張力のもとで乾燥され巻き取
られる。
Following the drawing process, the hollow fibers are washed with water and then drawn in a hot atmosphere. This treatment completely removes traces of solvent remaining in the hollow fiber membrane walls, and at the same time the hollow fibers undergo shrinkage or stretching, which determines the tensile strength, including permeability and orientation, of the final material. . The conditions for this hot atmosphere include passing through hot water at 60 to 95°C, or passing through steam at 60 to 120°C after passing through the hot water, and further stretching in the hot atmosphere. Magnification is 0.8-2
.. It has been found that the best conditions are 0 times, preferably 0.9 to 1.5 times. Finally, the hollow fibers are dipped in a glycerin solution, dried under constant tension and wound up.

次に、本発明を実施例によって具体的に説明する。Next, the present invention will be specifically explained using examples.

(実施例1) アクリロニトリル91.5wt%、アクリル酸メチル8
.05wt%、メタリルスルホン酸ナトリウム0.45
wt%からなる共重合体を、67.0wt%の硝酸水溶
液に溶解脱泡して、15.8wt%の共重合体濃度を有
する紡糸原液を調整した。この原液を環状ノズルに4.
4mM/分で導入すると共に、中空形成剤としてパーフ
ロロテトラヒドロフランを4.4mjL/分で該環状ノ
ズルに導入した。該環状ノズルより押し出された中空繊
維は、温度−3℃濃度31wt%の硝酸凝固浴に直接導
入され、半ゲル状態で12m/分の速度で引き上げられ
た後、温度60”O濃度32wt%の硝酸延伸浴中で3
倍に延伸された。その後、該中空繊維は、水洗され、次
いで、80”Oの熱水中で2倍に延伸した後、グリセリ
ン溶液に浸漬した。最後に、乾燥機で乾燥して巻き取っ
た。
(Example 1) Acrylonitrile 91.5wt%, methyl acrylate 8
.. 05wt%, sodium methallylsulfonate 0.45
A copolymer having a copolymer concentration of 15.8 wt% was prepared by dissolving the copolymer in a 67.0 wt% aqueous nitric acid solution and degassing it. 4. Apply this stock solution to the annular nozzle.
At the same time, perfluorotetrahydrofuran was introduced into the annular nozzle at a rate of 4.4 mjL/min as a hollow forming agent. The hollow fibers extruded from the annular nozzle were directly introduced into a nitric acid coagulation bath with a temperature of -3°C and a concentration of 31 wt%, and were pulled up in a semi-gel state at a speed of 12 m/min. 3 in a nitric acid drawing bath
Stretched twice. Thereafter, the hollow fibers were washed with water, then stretched twice in 80''O hot water, and then immersed in a glycerin solution.Finally, they were dried in a dryer and rolled up.

得られた中空ramは、走査型電子Im微鏡(以下SE
M、!=18す)で切断面を[寮したところ、透明で、
内径20011.m、膜厚30μmの均質な膜構造を有
していた。又、該中空繊維の透水量は13m文/ Hr
 a rrf・m m Hg、尿素物質移動係数→ は、6.5XlOcm/秒、ビタミンB 12物質移動
係数は、0 、9X 10−′1′cm/秒、牛血清U
FRは、4.1mu/Hrerrf*mmHgであった
The obtained hollow RAM was used as a scanning electron Im microscope (hereinafter SE
M,! = 18) to cut the cut surface [I cut it, it was transparent,
Inner diameter 20011. It had a homogeneous film structure with a film thickness of 30 μm. In addition, the water permeability of the hollow fiber is 13m/hr.
a rrf・m m Hg, urea mass transfer coefficient → is 6.5XlOcm/sec, vitamin B12 mass transfer coefficient is 0, 9X 10-'1'cm/sec, bovine serum U
FR was 4.1 mu/Hrerrf*mmHg.

(実施例2) 実施例1で、80℃の熱水浴での2倍延伸処理迄を行な
った中空繊維を、さらに100℃のスチーム中を通過さ
せた後、グリセリン水溶液に浸漬した後、乾燥機で乾燥
して巻き取った。得られた中空繊維はSEM観察の結果
、透明で内径2゜Ogm、膜厚28g、mで、均質な膜
構造を有していた。又、該中空繊維の透水量は、l1m
立/Hr11rr1″・mmHg、牛血清UFRは、3
.8mJl/ Hr a rn” m m m Hgで
あった9(実施例3) 実施例1で調整した原液を環状ノズルに4.4m11分
で導入すると共に、環状ノズルの中央部分に中空形成剤
としてパークロロエチレンを4゜4mu/分で導入した
。該環状ノズルを通って中央にパークロロエチレンを包
み込んだ中空繊維を、15cmの空中走行後、表1に示
す種々の条件の硝酸溶液からなる凝固浴中に導入し、そ
の後、50m/分の速度で引き上げ、III Bt巾の
大きな空洞の発生割合(個/10cm)を調査した。
(Example 2) The hollow fibers that had been subjected to the double stretching treatment in a hot water bath at 80°C in Example 1 were further passed through steam at 100°C, immersed in an aqueous glycerin solution, and then dried. It was dried on a machine and rolled up. As a result of SEM observation, the obtained hollow fibers were transparent, had an inner diameter of 2° Ogm, a film thickness of 28 g, m, and had a homogeneous film structure. In addition, the water permeability of the hollow fiber is l1m
Standing/Hr11rr1″・mmHg, bovine serum UFR is 3
.. 8 mJl/Hr a rn" mm m Hg9 (Example 3) The stock solution prepared in Example 1 was introduced into the annular nozzle for 4.4 m11 minutes, and a permeate was added as a hollow forming agent to the center of the annular nozzle. Chlorethylene was introduced at a rate of 4.4 mu/min. After passing through the annular nozzle and running the hollow fiber with perchlorethylene wrapped in the center for 15 cm in the air, a coagulation bath consisting of a nitric acid solution under various conditions shown in Table 1 was added. It was then pulled up at a speed of 50 m/min to investigate the occurrence rate (number/10 cm) of large cavities with a width of III Bt.

その結果を表1に示す。The results are shown in Table 1.

(以下余白) (実施例4) 実施例1で行なった実験で、凝固浴を濃度15wt%、
温度−5℃の場合と濃度25wt%、温度−5℃の場合
の2条件とし、さらに種々の条件の硝酸溶液からなる延
伸浴を使用して中空繊維を処理し、その後、100m/
分で巻き上げ大きな空洞の発生割合(個/locm)を
調査した。その結果を表2及び表3に示す。
(Left below) (Example 4) In the experiment conducted in Example 1, the coagulation bath had a concentration of 15 wt%.
Two conditions were used: temperature -5°C and concentration 25wt% and temperature -5°C.The hollow fibers were further treated using a drawing bath consisting of nitric acid solution under various conditions, and then 100m/
The rate of occurrence of large cavities (pcs/locm) was investigated. The results are shown in Tables 2 and 3.

(実施例5) 実施例!で調整した原液を環状ノズルに4,4m文/分
で導入すると共に中空形成剤としてパークロロエチレン
を4.4mIL/分で導入した。該環状ノズルより押し
出した中空繊維を空中走行後、濃度15wt%、温度−
5℃の硝酸溶液凝固浴に浸漬後R1の速度で巻き上げ、
その後、s度10wt%、温度30℃の硝酸溶液延伸浴
に浸漬し、R2の速度で引き上げ、水洗後、配向度を調
査した。その結果をグラフに示す。
(Example 5) Example! The stock solution prepared above was introduced into the annular nozzle at a rate of 4.4 mIL/min, and perchlorethylene was introduced as a hollow forming agent at a rate of 4.4 mIL/min. After the hollow fibers extruded from the annular nozzle were run in the air, the concentration was 15 wt% and the temperature was -
After being immersed in a nitric acid solution coagulation bath at 5°C, it was rolled up at a speed of R1,
Thereafter, it was immersed in a nitric acid solution stretching bath with a temperature of 30° C. and a temperature of 10 wt%, and was pulled up at a speed of R2. After washing with water, the degree of orientation was investigated. The results are shown in the graph.

(実施例6) 実施例1で調整した原液を環状ノズルに4.4m l 
/分で導入すると共に中空形成剤としてパークロロエチ
レンを4.4m11分で導入した。該環状ノズルより押
し出した中空繊維を空中走行を経た場合と経ない場合に
ついて凝固浴浸漬後の引き上げ速度を調査した。空中走
行を経た場合には、250m/分以上の速度で引き一ヒ
げが可能であったが、空中走行を経ない場合には、32
m/分と極度に低い速度で糸切れを発生した。又、空中
走行距離が、50cmを超えると中空繊維の寸法バラツ
キが極度に犬きくなった。
(Example 6) Pour 4.4ml of the stock solution prepared in Example 1 into an annular nozzle.
/min, and perchlorethylene was introduced as a hollow forming agent at a rate of 4.4 ml/min. The lifting speed of the hollow fibers extruded from the annular nozzle after immersion in the coagulation bath was investigated with and without air travel. In the case of aerial travel, it was possible to perform a single pull at a speed of 250 m/min or more, but without aerial travel, it was possible to perform a single pull at a speed of 32 m/min or more.
Yarn breakage occurred at an extremely low speed of m/min. Moreover, when the air travel distance exceeded 50 cm, the dimensional variation of the hollow fibers became extremely large.

(実施例7) 実施例1で調整した原液を環状ノズルに4.4mu/分
で導入すると共に中空形成剤としてパークロロエチレン
を4.4mM/分で導入した。該環状ノズルより押し出
した中空糸を15cmの空中走行後、濃度15wt%、
温度−5℃の硝酸溶液凝固浴に浸漬し、R1の速度で引
き上げた。その後、該中空MIU維を濃度10wt%、
温度30 ’0の硝酸溶液延伸浴に浸漬し、R2の速度
で引き上げた。
(Example 7) The stock solution prepared in Example 1 was introduced into the annular nozzle at a rate of 4.4 mu/min, and perchlorethylene as a hollow forming agent was introduced at a rate of 4.4 mm/min. After the hollow fiber extruded from the annular nozzle traveled 15 cm in the air, the concentration was 15 wt%,
It was immersed in a nitric acid solution coagulation bath at a temperature of -5°C and pulled up at a speed of R1. Thereafter, the hollow MIU fibers were added at a concentration of 10 wt%.
It was immersed in a nitric acid solution stretching bath at a temperature of 30'0 and pulled out at a speed of R2.

該、中空繊維は、その後、水洗され80℃の熱水浴中に
浸漬後、R3の速度で引き上げられ、グリセリン溶液に
浸漬後、熱風乾燥機で乾燥されてR4の速度で巻き取ら
れた。得られた中空繊維は、全て真円でSEM観察の結
果均質な膜構造を有していた。又、その他の性能値は、
表4の通りであった・ 又、中空繊維の寸法は、内径的200gm、壁厚25〜
30終mであった。
The hollow fibers were then washed with water, immersed in a hot water bath at 80°C, pulled up at a speed of R3, immersed in a glycerin solution, dried in a hot air dryer, and wound up at a speed of R4. All of the obtained hollow fibers were perfectly circular and had a homogeneous membrane structure as a result of SEM observation. In addition, other performance values are
As shown in Table 4, the dimensions of the hollow fibers were 200gm in inner diameter and 25~25mm in wall thickness.
It was 30m at the end.

(発明の効果) 以上のごとく、本発明によれば、均質な膜構造と比較的
強い引張強さ、及び破壊強度を有する中空繊維を、高速
でしかも連続して製造することができる。又この様にし
て得られた中空繊維は、人工腎臓としての透析型あるい
は、口過透析型用として有用であり、連続した乾燥、巻
き取り処理が可能な為、コスト面からも又、品質面から
も大きなメリットを有する。
(Effects of the Invention) As described above, according to the present invention, hollow fibers having a homogeneous membrane structure and relatively strong tensile strength and breaking strength can be manufactured continuously at high speed. In addition, the hollow fibers obtained in this way are useful for dialysis-type or oral dialysis-type artificial kidneys, and because they can be continuously dried and rolled up, they are cost-effective and quality-friendly. It also has great advantages.

【図面の簡単な説明】 図は、実施例5によって得られた中空繊維の、配向度と
製造条件との関係を示すグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS The figure is a graph showing the relationship between the degree of orientation and manufacturing conditions of the hollow fibers obtained in Example 5.

Claims (1)

【特許請求の範囲】[Claims] アクリロニトリル系共重合体を硝酸溶液で均一に熔解し
た原液から、環状ノズルを用いて中空繊維を製造する方
法において、中空形成剤として原液に対して非相溶性の
流体を、凝固浴として低温に保持した硝酸溶液を使用し
て、環状ノズルから中空繊維を直接又は空中走行を経た
後、該凝固浴中に導入し、次いで、凝固浴より高温に保
持した硝酸溶液浴中で延伸し、その後、連続的に水洗、
熱雰囲気中の通過、乾燥、巻き取りの各処理を行なうこ
とを特徴とするアクリロニトリル系中空繊維の製造方法
In a method for producing hollow fibers using an annular nozzle from a stock solution in which an acrylonitrile copolymer is uniformly dissolved in a nitric acid solution, a fluid that is incompatible with the stock solution is used as a hollow forming agent and is kept at a low temperature as a coagulation bath. Using the nitric acid solution, the hollow fibers are introduced into the coagulation bath directly or after passing through the air through an annular nozzle, and then stretched in a nitric acid solution bath maintained at a higher temperature than the coagulation bath, and then continuously stretched. Rinse with water,
A method for producing acrylonitrile hollow fibers, which comprises passing through a hot atmosphere, drying, and winding.
JP13696085A 1985-06-25 1985-06-25 Production of acrylonitrile hollow fiber Pending JPS61296115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13696085A JPS61296115A (en) 1985-06-25 1985-06-25 Production of acrylonitrile hollow fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13696085A JPS61296115A (en) 1985-06-25 1985-06-25 Production of acrylonitrile hollow fiber

Publications (1)

Publication Number Publication Date
JPS61296115A true JPS61296115A (en) 1986-12-26

Family

ID=15187515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13696085A Pending JPS61296115A (en) 1985-06-25 1985-06-25 Production of acrylonitrile hollow fiber

Country Status (1)

Country Link
JP (1) JPS61296115A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010373A1 (en) * 1995-09-14 1997-03-20 The Secretary Of State For Defence Apparatus and method for spinning hollow polymeric fibres
JP2007503862A (en) * 2003-08-28 2007-03-01 ガンブロ・ルンディア・エービー Membrane surface treatment and related products
US8118176B2 (en) 2003-08-28 2012-02-21 Gambro Ab Membrane unit element, semipermeable membrane, filtration device, and processes for manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010373A1 (en) * 1995-09-14 1997-03-20 The Secretary Of State For Defence Apparatus and method for spinning hollow polymeric fibres
GB2318760A (en) * 1995-09-14 1998-05-06 Secr Defence Apparatus and method for spinning hollow polymeric fibres
AU707988B2 (en) * 1995-09-14 1999-07-22 Qinetiq Limited Apparatus and method for spinning hollow polymeric fibres
GB2318760B (en) * 1995-09-14 2000-05-17 Secr Defence Hollow fibres and method of manufacture therefor
US6143411A (en) * 1995-09-14 2000-11-07 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Apparatus and method for spinning hollow polymeric fibres
US6242093B1 (en) 1995-09-14 2001-06-05 The Secretary Of State For Defense In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Carbon fibers
JP2007503862A (en) * 2003-08-28 2007-03-01 ガンブロ・ルンディア・エービー Membrane surface treatment and related products
US8118176B2 (en) 2003-08-28 2012-02-21 Gambro Ab Membrane unit element, semipermeable membrane, filtration device, and processes for manufacturing the same

Similar Documents

Publication Publication Date Title
JPS5860010A (en) Hollow fiber and dialytic membrane consisting of said hollow fiber
WO2021258701A1 (en) Preparation method of sustainable hydrophilic modified polyvinylidene fluoride hollow membrane
WO2005014151A1 (en) The preparation method of exo-pressure type poly(vinylidene fluoride) hollow fiber membrane spinned utilizing a immersion-coagulation method and the product thereof
US5290448A (en) Polyacrylonitrile membrane
US4284594A (en) Method of manufacturing hollow fiber
JP4051762B2 (en) Method for forming hollow fiber membrane
JPS61296115A (en) Production of acrylonitrile hollow fiber
JPH025132B2 (en)
JPS59166208A (en) Manufacture of gas separating membrane
JP2002253938A (en) Method for manufacturing hollow fiber membrane
JPH10216489A (en) Cellulose hollow fiber membrane and its production
JPH0929078A (en) Hollow fiber membrane manufacturing method
JP5028745B2 (en) Method for producing hollow fiber membrane
JP2004305953A (en) Method of manufacturing hollow fiber membrane
JPS63145345A (en) Production of porous polyacrylonitrile material
JPS6043442B2 (en) Manufacturing method of cellulose derivative hollow fiber with excellent permselectivity
JPS6256764B2 (en)
JPS61185305A (en) Preparation of cellulose acetate hollow yarn
JP2818366B2 (en) Method for producing cellulose ester hollow fiber membrane
JP2004313881A (en) Winding method for hollow fiber membrane and hollow fiber membrane
CN114395808B (en) A method for preparing polytetrafluoroethylene fibers by wet spinning
JPS621007B2 (en)
JPS6120644B2 (en)
JP3317876B2 (en) Method for producing hollow fiber type blood purification membrane
JPS60193504A (en) Hollow fiber membrane for dialysis