[go: up one dir, main page]

JPS61295388A - Production of ion exchange resin membrane-electrode joined body - Google Patents

Production of ion exchange resin membrane-electrode joined body

Info

Publication number
JPS61295388A
JPS61295388A JP60136492A JP13649285A JPS61295388A JP S61295388 A JPS61295388 A JP S61295388A JP 60136492 A JP60136492 A JP 60136492A JP 13649285 A JP13649285 A JP 13649285A JP S61295388 A JPS61295388 A JP S61295388A
Authority
JP
Japan
Prior art keywords
ion exchange
exchange resin
soln
membrane
contg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60136492A
Other languages
Japanese (ja)
Other versions
JPS6261119B2 (en
Inventor
Yuko Fujita
藤田 雄耕
Tamotsu Muto
保 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP60136492A priority Critical patent/JPS61295388A/en
Publication of JPS61295388A publication Critical patent/JPS61295388A/en
Publication of JPS6261119B2 publication Critical patent/JPS6261119B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To produce an ion exchange resin membrane-electrode joined body having a large working area by dissolving a metallic compound in a soln. of an ion exchange resin contg. fluorine in an org. solvent, treating the resulting soln. with a reducing agent, and applying it to a membrane of an ion exchange resin contg. fluorine. CONSTITUTION:A compound contg. a catalytic metal such as a salt or ammine complex of a platinum group metal is dissolved in a soln. prepd. by dissolving an ion exchange resin having a polymer contg. fluorine as the skeleton such as perfluorocarbonsulfonic acid resin in an org. solvent such as lower aliphatic alcohol or a mixture of the org. solvent with water. The soln. may be mixed with an aqueous soln. of the metallic compound. The resulting soln. is treated with a reducing agent such as hydrazine to deposit the catalytic metal. The ion exchange resin soln. contg. the dispersed or suspended fine metallic particles is applied to one side or both sides of a membrane of an ion exchange resin having a polymer contg. fluorine as the skeleton. The solvent is then evaporated. Thus, an ion exchange resin membrane-electrode joined body having an increased practical working area is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はイオン交換樹脂膜−電極接合体の製造法に関す
るものである。さらに詳しくは、本発明はイオン交換樹
脂膜を固体電解質とする各種電気化学装置に用いられる
イオン交換樹脂膜−電極接合体の製造法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing an ion exchange resin membrane-electrode assembly. More specifically, the present invention relates to a method for producing an ion exchange resin membrane-electrode assembly used in various electrochemical devices using an ion exchange resin membrane as a solid electrolyte.

従来の技術 イオン交換樹1111膜を固体電解質とする電気化学装
置には、燃料電池、水電解槽、食塩電解槽、酸素分離装
置、塩酸電解槽あるいは水電解式湿度はンサなどがある
。これらの電気化学装置においては、一般にイオン交換
樹脂膜に電極が一体に接合されたものが用いられる。イ
オン交換樹脂膜に電極を接合する方法としては、電橋触
媒粉末とフッ素樹脂結着剤との混合物をホットプレスす
る方法(例えば特公昭58−15544号)と、無電解
メッキ法(例えば特開昭55−38934号)とが提案
されている。
Conventional electrochemical devices using an ion exchange tree 1111 membrane as a solid electrolyte include fuel cells, water electrolyzers, salt electrolyzers, oxygen separators, hydrochloric acid electrolyzers, and water electrolysis humidity sensors. These electrochemical devices generally use an ion exchange resin membrane with an electrode integrally bonded thereto. Methods for bonding electrodes to ion-exchange resin membranes include hot-pressing a mixture of electric bridge catalyst powder and fluororesin binder (for example, Japanese Patent Publication No. 58-15544), and electroless plating method (for example, Japanese Patent Publication No. 58-15544). No. 55-38934) has been proposed.

発明が解決しようとする問題点 従来のイオン交換樹脂膜−電極接合体においては、ホッ
トプレス法にしろ無電解メッキ法にしろ、    ′電
極反応サイトが電解質であるイオン交換樹脂膜と電極と
の接合部である二次元的な界面に局限されていたため、
実質的な作用面積が小さかった。
Problems to be Solved by the Invention In conventional ion exchange resin membrane-electrode assemblies, whether using the hot press method or the electroless plating method, 'the bonding between the ion exchange resin membrane and the electrode where the electrode reaction site is the electrolyte is difficult. Because it was localized to the two-dimensional interface that is the
The effective area of action was small.

問題点を解決するための手段 本発明は、含フッ素高分子を骨格とするイオン交換樹脂
の有機溶媒溶液もしくは有機溶媒と水との混合溶媒溶液
に触媒金属を含む化合物を直接溶解せしめるか又は触媒
金属を含む化合物の水溶液を混合せしめたものに還元剤
を作用せしめることにより、金属を析出せしめて得られ
る金属が分散懸濁せるイオン交換樹脂の溶液もしくは該
溶液とフッ素樹脂懸濁液との混合懸濁液をイオン交換樹
脂膜に塗着せしめることによって、上述の如き問題点を
解決せんとするものである。
Means for Solving the Problems The present invention involves directly dissolving a compound containing a catalyst metal in an organic solvent solution or a mixed solvent solution of an organic solvent and water of an ion exchange resin having a fluorine-containing polymer skeleton, or A solution of an ion exchange resin in which the metal is dispersed and suspended by precipitating the metal by acting on a reducing agent on a mixture of an aqueous solution of a compound containing a metal, or a mixture of the solution and a fluororesin suspension. The above-mentioned problems are attempted to be solved by applying a suspension to an ion exchange resin membrane.

作  用 含フッ素高分子を骨格とするイオン交換樹脂には、例え
ばパーフルオロカーボンスルフオン酸樹脂がある。パー
フルオロカーボンスルフオン酸樹脂は、高温高圧下では
低級脂肪族アルコールあるいはジメチルスルフオキシド
などの有機溶媒に溶解することが知られている。このよ
うなパーフルオロカーボンスルフオン酸樹脂の溶液は例
えばアメリカのアルドリッチケミカル社からナフィオン
溶液(低級脂肪族アルコールと水との混合溶媒溶液)と
いう商標で発売されている。
Function Examples of ion exchange resins having a skeleton of fluorine-containing polymers include perfluorocarbon sulfonic acid resins. It is known that perfluorocarbon sulfonic acid resins dissolve in lower aliphatic alcohols or organic solvents such as dimethyl sulfoxide under high temperature and high pressure. Such solutions of perfluorocarbon sulfonic acid resins are sold, for example, by Aldrich Chemical Company of the United States under the trademark Nafion Solution (mixed solvent solution of lower aliphatic alcohol and water).

上記パーフルオロカーボンスルフオン酸樹脂の溶液に触
媒金属を含む化合物を直接溶解させるが又は触媒金属を
含む化合物の水溶液を混合すると、スルフォン酸基の水
素イオンと触媒金属イオンあ     □るいは触媒金
属を含むカチオンとの置換が起こり、パーフルオロカー
ボンスルフオン酸樹脂に触媒金属が捕捉されたような形
になる。このような混合溶液を還元剤で処理すると触媒
金属が析出し、イオン交換樹脂溶液の中で、微細に分散
懸濁する。
If a compound containing a catalytic metal is directly dissolved in the solution of the perfluorocarbon sulfonic acid resin, or an aqueous solution of a compound containing a catalytic metal is mixed, hydrogen ions of the sulfonic acid group and catalytic metal ions or catalytic metals are mixed. Substitution with cations occurs, and the catalyst metal becomes trapped in the perfluorocarbon sulfonic acid resin. When such a mixed solution is treated with a reducing agent, the catalyst metal is precipitated and finely dispersed and suspended in the ion exchange resin solution.

このようなイオン交換樹脂の溶液もしくは該溶液とフッ
素樹脂懸濁液との混合懸濁液を含フッ素高分子を骨格と
するイオン交換樹脂膜に塗着し、溶媒を揮散せしめると
、イオン交換膜と触媒金属−イオン交換樹脂混合体との
接合体が形成される。
When a solution of such an ion exchange resin or a mixed suspension of the solution and a fluororesin suspension is applied to an ion exchange resin membrane having a fluorine-containing polymer skeleton and the solvent is evaporated, the ion exchange membrane is formed. A bonded body of the catalytic metal and the ion exchange resin mixture is formed.

なお、塗着したのち、常温でプレスするが加熱してプレ
スすると接合強度が大きくなる。かくして、イオン交換
樹脂膜と触媒金属−イオン交換樹脂混合体との接合体が
完成する。触媒金属−イオン交換樹脂混合体は電極とし
て作用する。
Note that after coating, it is pressed at room temperature, but if it is heated and pressed, the bonding strength increases. In this way, a bonded body of the ion exchange resin membrane and the catalyst metal-ion exchange resin mixture is completed. The catalytic metal-ion exchange resin mixture acts as an electrode.

このようなイオン交換樹脂膜−電極接合体においては、
電極の中のイオン交換樹脂も固体電解質として機能する
ので、反応サイトは従来のようにイオン交換樹脂膜と電
極との二次元的な界面だけでなくて、電極の中の触媒金
属とイオン交換樹脂との接点をも含めた三次元的な拡が
りをもっことになり、実質的な電極作用面積が増大し、
このような接合体を電気化学装置に適用したとぎ、分極
特性が向上する。
In such an ion exchange resin membrane-electrode assembly,
Since the ion exchange resin in the electrode also functions as a solid electrolyte, the reaction site is not only the two-dimensional interface between the ion exchange resin membrane and the electrode as in the past, but also the reaction site between the catalyst metal and the ion exchange resin in the electrode. It has a three-dimensional spread including the contact point with the electrode, and the effective area of electrode action increases.
When such a conjugate is applied to an electrochemical device, the polarization characteristics are improved.

触媒金属としては、白金族全屈を用いるのが適当である
。また触媒金属を含む化合物としては、触媒金属の塩も
しくはアンミン錯体が適当である。
As the catalyst metal, it is appropriate to use a platinum group metal. Further, as the compound containing the catalytic metal, a salt of the catalytic metal or an ammine complex is suitable.

さらに還元剤としては、ヒドラジン、水素化ホウ素ナト
リウムあるいは水素等が適用可能である。
Further, as the reducing agent, hydrazine, sodium borohydride, hydrogen, etc. can be used.

なお、塗着の際、カーボン粉末を混合懸濁液の中に添加
すると、触媒金属の使用量を減量することができるとい
う意味で効果的なことがある。
Note that adding carbon powder to the mixed suspension during coating may be effective in the sense that the amount of catalyst metal used can be reduced.

実施例 次に本発明によるイオン交換樹脂膜−電極接合体の製造
法の一実施例を説明する。
EXAMPLE Next, an example of the method for producing an ion exchange resin membrane-electrode assembly according to the present invention will be described.

直径が120111mのパーフルオロカーボンスルフオ
ン酸樹脂膜であるデュポン社(アメリカ)製のナフィオ
ン117膜の片面の中心部の直径80vnの部分に、無
電解メッキ法により白金を接合せしめた。
Platinum was bonded by electroless plating to the 80vn diameter portion at the center of one side of a Nafion 117 membrane manufactured by DuPont (USA), which is a perfluorocarbon sulfonic acid resin membrane having a diameter of 120111m.

次にナフィオン117の5%有機溶媒−水混合溶液(ア
ルドリッチケミカル社(アメリカ)製、有機溶媒は低級
脂肪族アルコール) 10ccの中に、クロロペンタア
ンモニウム白金クロライド([Pt(NH3)s C1
コCl2)の水溶液(白金として2 IQ/ ccを含
む)を10cc加え、しばらく放置することにより、ナ
フィオン117溶液中のスルフォン酸基の水素イオンと
クロロペンタアンモニウム白金イオン([Pt  (N
H3)5 C1]” ) トト装換した。次に5%の水
素化ホウ素ナトリウムの水溶液を加え、クロロペンタア
ンモニウム白金イオンを還元して白金を析出させた。こ
のとき、微細な白金の粒子が溶液の中に分散懸濁される
。次にこの分散懸濁液に、ポリ4フッ化エチレンの60
%水懸濁液を3cc添加したものを、上述の白金を接合
したナフィオン117mの白金が接合されてぃない面に
吹き付け、100℃の湿度、  100Ki/−の圧力
でプレスした。そして最後に上述のナフィオン膜−電極
接合体を湯洗し、乾燥して、白金とナフィオン117と
ポリ4フッ化エチレン以外のすべての成分を除去した。
Next, chloropentaammonium platinum chloride ([Pt(NH3)s C1
By adding 10 cc of an aqueous solution (containing 2 IQ/cc of platinum) of chloropentaammonium platinum ion ([Pt (N
H3)5 C1]") was replaced. Next, a 5% aqueous solution of sodium borohydride was added to reduce the chloropentaammonium platinum ions and precipitate platinum. At this time, fine platinum particles were 60% of polytetrafluoroethylene is added to this dispersed suspension.
% water suspension was sprayed onto the platinum-unbonded surface of the above-mentioned platinum-bonded Nafion 117m, and pressed at a humidity of 100°C and a pressure of 100 Ki/-. Finally, the above Nafion membrane-electrode assembly was washed with hot water and dried to remove all components other than platinum, Nafion 117, and polytetrafluoroethylene.

かくして、イオン交換樹脂膜−電極接合体を完成した。In this way, an ion exchange resin membrane-electrode assembly was completed.

上記のようにして得られたイオン交換樹脂IK−電極接
合体は、無電解メッキ法により接合された白金電極をl
1ffiとし、白金とナフィオン117とポリ4フッ化
エチレンとの混合物層からなる電極を陰極とし、この陰
極に空気を供給し、陽極に水を供給すると、空気から酸
素を電気化学的に分離する装置となる。
The ion exchange resin IK-electrode assembly obtained as described above has platinum electrodes bonded by electroless plating.
1ffi, an electrode made of a mixture layer of platinum, Nafion 117, and polytetrafluoroethylene is used as a cathode, and when air is supplied to the cathode and water is supplied to the anode, oxygen is electrochemically separated from the air. becomes.

発明の効果 上述の実施例で得られたイオン交換樹脂膜−電極接合体
を△とじ、陽極を上述の実施例と同様にして形成し、陰
極をホットプレス法で白金ブラックとポリ4フッ化エチ
レンとの混合物により形成した従来方法によるイオン交
換樹[f膜−電極接合体を8とし、それぞれを用いて電
気化学的酸素分離装置を構成し、電流−電圧特性を求め
たところ、図に示すような結果が得られた。この図から
明らかなように、本発明によって1!?られたイオン交
換樹脂膜−電極接合体の方がよりすぐれた特性を示すこ
とが瞭然としている。。これは電橿層を電極触媒とイオ
ン交換樹脂との混合層から形成することによって、実質
的な作用面積が増大したからに他ならない。
Effects of the Invention The ion exchange resin membrane-electrode assembly obtained in the above example was △ bound, an anode was formed in the same manner as in the above example, and a cathode was formed by hot pressing with platinum black and polytetrafluoroethylene. The conventional ion exchange tree [f membrane-electrode assembly was formed by a mixture of The results were obtained. As is clear from this figure, according to the present invention, 1! ? It is clear that the ion-exchange resin membrane-electrode assemblies prepared by the ion-exchange resin membrane-electrode assembly exhibit better properties. . This is because the effective area is increased by forming the electrode layer from a mixed layer of an electrode catalyst and an ion exchange resin.

以上のように本発明方法によれば、従来・の無電解メッ
キ法、ホットプレス法に比べて、実質的な作用面積の多
いイオン交換樹脂膜−電極接合体を得ることができる。
As described above, according to the method of the present invention, it is possible to obtain an ion exchange resin membrane-electrode assembly with a substantially larger working area than the conventional electroless plating method or hot press method.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明方法および従来の方法によって得られたイオ
ン交換樹脂膜−電極接合体を電気化学的酸素分離装置に
用いた場合の電流−電圧特性を示す図である。
The figure shows current-voltage characteristics when ion exchange resin membrane-electrode assemblies obtained by the method of the present invention and the conventional method are used in an electrochemical oxygen separation device.

Claims (1)

【特許請求の範囲】[Claims] 含フッ素高分子を骨格とするイオン交換樹脂の有機溶媒
溶液もしくは有機溶媒と水との混合溶媒溶液に金属を含
む化合物を溶解せしめるか又は金属を含む化合物の水溶
液を混合せしめた混合液に還元剤を作用せしめることに
より、金属を析出せしめて得られる金属が分散懸濁せる
イオン交換樹脂の溶液もしくは該溶液とフッ素樹脂懸濁
液との混合懸濁液を含フッ素高分子を骨格とするイオン
交換樹脂の片面もしくは両面に塗着せしめることを特徴
とするイオン交換樹脂膜−電極接合体の製造法。
A reducing agent is added to a mixed solution in which a metal-containing compound is dissolved in an organic solvent solution or a mixed solvent solution of an organic solvent and water, or an aqueous solution of a metal-containing compound is mixed with an ion exchange resin having a fluorine-containing polymer skeleton. Ion exchange using a solution of an ion exchange resin in which the metal is dispersed and suspended, or a mixed suspension of the solution and a fluororesin suspension, using a fluorine-containing polymer as a backbone. A method for producing an ion exchange resin membrane-electrode assembly, which comprises coating one or both sides of a resin.
JP60136492A 1985-06-21 1985-06-21 Production of ion exchange resin membrane-electrode joined body Granted JPS61295388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60136492A JPS61295388A (en) 1985-06-21 1985-06-21 Production of ion exchange resin membrane-electrode joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60136492A JPS61295388A (en) 1985-06-21 1985-06-21 Production of ion exchange resin membrane-electrode joined body

Publications (2)

Publication Number Publication Date
JPS61295388A true JPS61295388A (en) 1986-12-26
JPS6261119B2 JPS6261119B2 (en) 1987-12-19

Family

ID=15176419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60136492A Granted JPS61295388A (en) 1985-06-21 1985-06-21 Production of ion exchange resin membrane-electrode joined body

Country Status (1)

Country Link
JP (1) JPS61295388A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0700108A3 (en) * 1992-04-03 1996-03-20 Gen Motors Corp
WO1999021239A1 (en) * 1997-10-17 1999-04-29 Axiva Gmbh Polymer-stabilised metal colloid solutions, method for producing said solutions and use of the same as catalysts for fuel cell
US6746793B1 (en) 1998-06-16 2004-06-08 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US6916575B2 (en) 2001-03-08 2005-07-12 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte type fuel cell
JP2006252910A (en) * 2005-03-10 2006-09-21 Konica Minolta Holdings Inc Fuel cell
US7132187B2 (en) 2001-09-27 2006-11-07 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell and production method thereof
US7201993B2 (en) 2000-08-04 2007-04-10 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US7220514B2 (en) 2000-07-03 2007-05-22 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US7569302B2 (en) 2002-11-05 2009-08-04 Panasonic Corporation Fuel cell for generating electric power
EP2704239A1 (en) 2012-08-29 2014-03-05 SolviCore GmbH & Co KG Colloidal dispersions comprising precious metal particles and acidic ionomer components and methods of their manufacture and use

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3712768B2 (en) * 1995-01-26 2005-11-02 松下電器産業株式会社 Production method of polymer electrolyte fuel cell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0700108A3 (en) * 1992-04-03 1996-03-20 Gen Motors Corp
WO1999021239A1 (en) * 1997-10-17 1999-04-29 Axiva Gmbh Polymer-stabilised metal colloid solutions, method for producing said solutions and use of the same as catalysts for fuel cell
US6746793B1 (en) 1998-06-16 2004-06-08 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US7220514B2 (en) 2000-07-03 2007-05-22 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US7201993B2 (en) 2000-08-04 2007-04-10 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US7455703B2 (en) 2000-08-04 2008-11-25 Panasonic Corporation Method for manufacturing polymer electrolyte fuel cell
US6916575B2 (en) 2001-03-08 2005-07-12 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte type fuel cell
US7132187B2 (en) 2001-09-27 2006-11-07 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell and production method thereof
US7569302B2 (en) 2002-11-05 2009-08-04 Panasonic Corporation Fuel cell for generating electric power
JP2006252910A (en) * 2005-03-10 2006-09-21 Konica Minolta Holdings Inc Fuel cell
EP2704239A1 (en) 2012-08-29 2014-03-05 SolviCore GmbH & Co KG Colloidal dispersions comprising precious metal particles and acidic ionomer components and methods of their manufacture and use
WO2014033204A1 (en) 2012-08-29 2014-03-06 Solvicore Gmbh & Co. Kg Colloidal dispersions comprising precious metal particles and acidic ionomer components and methods of their manufacture and use

Also Published As

Publication number Publication date
JPS6261119B2 (en) 1987-12-19

Similar Documents

Publication Publication Date Title
TW322431B (en)
US5346780A (en) Fuel cell and method for producing an electrode used therefor
EP0603175B1 (en) High utilization supported catalytic metal-containing gas-diffusion electrode, process for making it, and cells utilizing it
US5395705A (en) Electrochemical cell having an electrode containing a carbon fiber paper coated with catalytic metal particles
US5171644A (en) Electrochemical cell electrode
CN100379063C (en) Supported catalyst and fuel cell using it
US6391487B1 (en) Gas diffusion electrode, method for manufacturing the same, and fuel cell with such electrode
US5314760A (en) Electrochemical cell electrode
JPH05258755A (en) Manufacture of solid polyelectrolyte fuel cell
JPS61295388A (en) Production of ion exchange resin membrane-electrode joined body
JPS61295387A (en) Production of ion exchange resin membrane-electrode joined body
JP2836275B2 (en) Method for producing catalyst for liquid fuel cell and method for producing electrode thereof
US5538585A (en) Process for producing gas electrode
CA2413727A1 (en) Electrochemical cell
JPH027399B2 (en)
JP4870328B2 (en) Method for manufacturing membrane-electrode assembly
JP2002289051A (en) Method for producing proton conductive membrane and proton conductive membrane
US5853798A (en) Process for formation of an electrode on an anion exchange membrane
JP3049267B2 (en) Composition, electrode and assembly for polymer membrane fuel cell
JPS62240784A (en) Cathode film unit and its production
JP2001126738A (en) Method for preparing electrode for fuel cell and direct methanol fuel cell using the same
JP2003346815A (en) Membrane electrode assembly and method for producing the same
JP3108760B2 (en) Gas diffusion electrode and method for manufacturing the same
JPH04192270A (en) Manufacture of air electrode for air battery
JP2008177023A (en) Electrode for solid polymer fuel cell, its manufacturing method, and solid polymer fuel cell equipped with it

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees