[go: up one dir, main page]

JPS61295385A - Anode system comprising elongated sintered titanium piece inelectrolytic cell for anodic precipitation of electrolytic brown stone - Google Patents

Anode system comprising elongated sintered titanium piece inelectrolytic cell for anodic precipitation of electrolytic brown stone

Info

Publication number
JPS61295385A
JPS61295385A JP61140445A JP14044586A JPS61295385A JP S61295385 A JPS61295385 A JP S61295385A JP 61140445 A JP61140445 A JP 61140445A JP 14044586 A JP14044586 A JP 14044586A JP S61295385 A JPS61295385 A JP S61295385A
Authority
JP
Japan
Prior art keywords
anode system
sintered titanium
strips
anode
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61140445A
Other languages
Japanese (ja)
Other versions
JPS6311436B2 (en
Inventor
エーベルハルト・プライスラー
ヨハネス・ホルツエム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of JPS61295385A publication Critical patent/JPS61295385A/en
Publication of JPS6311436B2 publication Critical patent/JPS6311436B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/21Manganese oxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、それぞれ2つの平らな陰極の間に1つの陽極
系が懸吊しておシ、その際焼結チタン細長片の縦軸が陽
極系の平面内に存在する、電解褐石t−陽極析出させる
ための寛解槽中の焼結チタン細長片からなる陽極系に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a method in which an anode system is suspended between two flat cathodes, in which case the longitudinal axis of the sintered titanium strip is aligned with the anode system. The present invention relates to an anode system consisting of a sintered titanium strip in a remission bath for electrolytic brownstone t-anodic deposition, which lies in the plane of .

従来の技術 数年来、チタンは電解褐石(電解二酸化マンガン= E
MD )を珈造する際の陽極材料として次第に注目を浴
びる工うになつ友。それというのもチタンは、頻繁に使
用される黒鉛と比べて摩耗現象を示さず、また同様に使
用される鉛と比べて実際に腐食せず、したがって繰シ返
し使用することができるからである。
Conventional technology For several years, titanium has been produced using electrolytic brownstone (electrolytic manganese dioxide = E
Unatsutomo is gradually attracting attention as an anode material when manufacturing MD). This is because titanium does not show wear phenomena compared to the frequently used graphite, and compared to the similarly used lead it does not actually corrode and can therefore be used repeatedly. .

チタンの特定の欠点は、陽極負荷の際にそれが不動態化
する傾向があること、すがわち一定のll電流密度場合
に、その表面上に導を性の悪い酸化物の層が構成される
ことによって端子電圧の増加を惹起する傾向があること
である。しかしながら、マンガンイオン含有電解液には
冠によるチタンの良導電性被膜が形成され、これにより
マンガン不含電解液、たとえば希硫酸中で可能である高
い電解密度においても、端子電圧は増加しない。しかし
、EVD層による採暖は完全ではないので、一定の条件
下でチタン陽極はやはシネ動態化しうる。かかる現象は
、捌々に記載されており、その際電流密度の他に硫酸濃
度および温度もl解の制限バロメータとして重要な役割
を果たすことが示されている〔”ヒエミー・インジエニ
エイール―テヒニク(Ghamie −Ingsnie
ur −Technik )第49巻、第347頁(1
977年)お工び゛英国特許第977569号明細書参
照〕。
A particular drawback of titanium is that it has a tendency to passivate during anodic loading, i.e. at a constant current density, a layer of poorly conducting oxide forms on its surface. This tends to cause an increase in terminal voltage. However, electrolytes containing manganese ions form a highly conductive coating of titanium due to the cap, so that even at high electrolytic densities, which are possible in manganese-free electrolytes, such as dilute sulfuric acid, the terminal voltage does not increase. However, the heat absorption by the EVD layer is not perfect, so the titanium anode can become cine-like under certain conditions. Such phenomena have been extensively described, and it has been shown that, in addition to current density, sulfuric acid concentration and temperature also play an important role as limiting barometers for the solution. Ghamie-Ingsnie
ur-Technik) Volume 49, Page 347 (1
977) (see British Patent No. 977569).

かかる電解の制限を見服する多くの試みがなされた。こ
れには不動態化をさける目的で高い費用でチタン表面に
活性化層を設け、こうして高い電流密度、ひいては存在
する設備の高い経済性を保証することも入る。
Many attempts have been made to overcome such electrolytic limitations. This also includes the provision of an active layer on the titanium surface at high cost in order to avoid passivation, thus ensuring high current densities and thus high economic efficiency of the existing equipment.

1つの重要な方法は、電極の有効表11拡大し、ひいて
は摺電流の強さが規定されている場合に真の電流密度を
小さくすることである。
One important method is to enlarge the effective table 11 of the electrodes and thus reduce the true current density for a given sliding current strength.

それで、チタンの表面をサンドブラストにより粗面化し
、ひいては増大することが提案されたそれによって同時
に、陽伊上の析出したEMD被膜の良好な付着も達成さ
れる(米国特許第3436323号明細書)。同じ目的
をエキスパンデッドメタルによシ達成することも試みら
れた(米国特許第3654102号明細書)。
It has therefore been proposed to roughen the titanium surface by sandblasting and thus to increase it, thereby at the same time achieving good adhesion of the deposited EMD coating on the surface (US Pat. No. 3,436,323). Attempts have also been made to achieve the same objective using expanded metal (US Pat. No. 3,654,102).

既に1952年お工ひ1953年に、硫酸マンガン浴中
で焼結チタンからなる陽極が、チタン薄板刀)らなる陽
極↓シも高い電流密度を許すことが公知となっている(
米国特許 第2608531号明細書および米国特許第26+11
15号明細魯)。それにもかかわらず、多分技術上の塩
山から、焼結チタンは(財)の製造において長い間実際
に使用されなかった。1976I#−に初めてI焼結チ
タンを主体とする工業用電極か記述された(西トイ、ツ
国特許出緘公開1第2644:1414号明ml)、同
じ製造費では、この電極は薄いチタン板工9も者しく剛
性である。
Already in 1952 and in 1953, it became known that an anode made of titanium sintered in a manganese sulfate bath (a titanium thin plate) also allowed a high current density (
U.S. Patent No. 2,608,531 and U.S. Patent No. 26+11
No. 15 Specification Lu). Nevertheless, sintered titanium was not used in practice for a long time in the manufacture of goods, probably due to technical difficulties. In 1976 I#-, an industrial electrode based on I sintered titanium was first described (Nishitoi, Japan Patent Publication No. 1 2644:1414, Akira ml). At the same manufacturing cost, this electrode could be made using thin titanium. The boardwork 9 is also quite rigid.

現在、EMDの製造においては、さらに低い電流密度を
用いる傾向か認められるので、チタンの活性化は、大き
なW#極表面の使用工りもさほど重要ではない。1シヤ
ーナル・オプ・メタルレス(J ournal of 
Metals ) 434巻(1982年)、第67〜
′441頁に記載さtL fc 、方法技術上の理由か
ら板の形で製造さnる焼結チタンの機械的・電気的特性
が焼結チタンを圧延されたチタン薄板または中′実のチ
タン板ニジも重要な陽極材料にする。それというのも、
同じ費用に対し、L#)厚い陽極’kW造することがで
き、同時に析出すべきEMDの付着に対し℃有利な表面
粗さが得られるからである。
Currently, there is a trend in EMD manufacturing to use even lower current densities, so the activation of titanium and the use of large W# pole surfaces are less important. 1st annual of metalless
Metals) Volume 434 (1982), No. 67~
The mechanical and electrical properties of sintered titanium, which for technical reasons are produced in the form of plates, are described on page 441, and the mechanical and electrical properties of sintered titanium are determined by the method, which for technical reasons is produced in the form of sheets of rolled titanium or solid titanium plates. Rainbow is also an important anode material. That's because
This is because, for the same cost, a thicker anode (L#) can be manufactured in kW and at the same time a surface roughness advantageous for the adhesion of EMD to be deposited is obtained.

!IMD It屏の)tめの陽極のこれまで公知の形は
、黒鉛、チタンからなる板、またチタンエキスパンデッ
ドメタルまたは焼結チタン2工び鉛ま九は黒鉛からなる
棒ないしは管である(西ドイツ国特許出願公開第285
6820号明細曹)。
! Previously known forms of the second anode are plates made of graphite or titanium, or rods or tubes made of expanded titanium or sintered titanium or graphite. West German Patent Application Publication No. 285
No. 6820).

また、2つのチタン薄板からなる陽極も提案された。こ
の2つのチタン薄板に溝付けすることによシ波形にし、
−緒に浴接してなる陽極も提案されてお9、こうしてウ
ェブによシ互いに締金した管が生じる。これによυ陽極
の良好な剛性が得られる。
An anode consisting of two titanium sheets has also been proposed. By grooving these two thin titanium plates, they are made into a corrugated shape.
Anodes have also been proposed in which the anodes are bath-welded together, 9 thus resulting in tubes clamped together by webs. This provides good rigidity of the υ anode.

EMDを製造するための陽極には常に2つの実際的な要
求を出さねはならない。
Two practical demands must always be made on anodes for producing EMD.

a)電解中の良好な付着 b)11解後のKMDの容易な分離性 これら2つの要求は互いに矛盾しているので、妥協か必
要である。表面の平らな陽極からは、ハンマー衝撃によ
って容易にEMD被膜が除去され、陽極に対する被膜の
付着は看しく劣悪である。全ての側から結晶が自由に成
長しうる管法EMf)の付着に関しては、その直径が小
さい程ますます良好な基体である。しかしながら、これ
らの管は僅かな相互間距離に配置されているので、EM
Dは間隙中へも成長するので、ここからEMD i取p
出す場合には苦労して除去しうるにすぎない。変形可能
な鉛陽極の場合には、このことは問題にならないが、し
かし陽極成分が剛体でかつ固定されている場合には、]
1iVDの除去は手間のかかる工程である。
a) good adhesion during electrolysis b) easy separation of the KMD after 11 dissolution These two requirements are mutually exclusive, so a compromise is necessary. EMD coatings are easily removed from flat-surfaced anodes by hammer impact, and the adhesion of the coating to the anode is deceptively poor. The smaller the diameter, the better the substrate for the attachment of the tube method (EMf), in which the crystals can grow freely from all sides. However, since these tubes are placed at a small distance from each other, the E.M.
Since D also grows into the gap, EMD i is taken from here.
If it is released, it can only be removed with great effort. In the case of deformable lead anodes this is not a problem, but if the anode component is rigid and fixed]
Removal of 1iVD is a laborious process.

発明が解決しょうとする問題点 本発明の課題は、焼結チタンを主体とし、電解中の良好
な一〇の付着性の利点とその容易な剥離性とを、大きな
陽極面積を規定された槽容積へ装入することができかつ
焼結チタンの利点を中実のチタンと比べ完全に有効にす
るように結合するチタン陽極を提供することであった。
Problems to be Solved by the Invention The object of the present invention is to combine the advantages of good adhesion during electrolysis and its easy peelability by using sintered titanium as a main material in a tank with a large anode area. The object of the present invention was to provide a titanium anode which can be loaded into a volume and which combines in such a way that the advantages of sintered titanium compared to solid titanium are fully exploited.

問題点を解決するための手段 かかる課題は、幅の広い焼結金属板の代わシに寸法a、
b、L(a=幅、b=淳さおよびL=長さ)の狭い焼結
チタン細長片を、細長片の縦軸が陽極主平面の縦方向に
存在しかつ細長片はその縦軸を中心に電極主平面から一
定の取付は角αだけ旋回するように配置することによっ
て解決された。この取付は角は10〜90の間にある。
Means for solving the problem This problem was solved by using a sintered metal plate with dimensions a, instead of a wide sintered metal plate.
b, a narrow sintered titanium strip of L (a=width, b=thickness, and L=length), with the longitudinal axis of the strip lying in the longitudinal direction of the main plane of the anode, and the longitudinal axis of the strip A constant mounting from the central electrode main plane was solved by arranging it to pivot by an angle α. This installation has angles between 10 and 90.

細長片は互いに平行に存在するか、または互いにある角
度で存在してもよく;後者の場合、取付は角は交互にα
および18〇 −αである。有利には細長片は互いに接
触してはならす、相互間距*1維持すべきである。細長
片をその長さにエフ上方から下方へ懸吊する工うに固定
するのが有利であるが、9o−旋回した配置、つまり細
長片が電槽中へ水平に固定されている配置も本発明の範
囲内である。
The strips may lie parallel to each other or at an angle to each other; in the latter case, the mounting is done so that the corners alternate at α
and 180 −α. Advantageously, the strips should not touch each other, but should maintain a mutual distance of *1. Although it is advantageous to fix the strip in its length in a suspension structure from the top to the bottom, the invention also includes a 90-swiveled arrangement, i.e. an arrangement in which the strip is fixed horizontally into the container. is within the range of

詳細には本発明は、それぞれ2つの平らな陰極の間に陽
極系が@吊してお夛、焼結チタン細長片の縦軸が陽極系
の平面内に存在する、電解福石を陽極析出させるための
電解槽中の、焼結チタン細長片からなる陽極系に関し、
焼結チタン細長片がその縦軸を中心に陽極系の平面から
外方へ旋回し、かつこの平面と10〜9o の間の角度
αを回むことを特徴とする。
In particular, the present invention provides anodically deposited electrolytic stones, in which the anode system is suspended between two flat cathodes, respectively, and the longitudinal axis of the sintered titanium strip lies in the plane of the anode system. Regarding an anode system consisting of sintered titanium strips in an electrolytic cell for
It is characterized in that the sintered titanium strips pivot about their longitudinal axis outwards from the plane of the anode system and through an angle α between 10 and 9° with this plane.

さらに、本発明による陽極系は選択的にかつ有利に以下
のことtS徴とする: a)焼結チタン細長片がたがいに平行に配置され、陽極
系の平面上への細長片の投影で測定した、焼結チタン細
長片間の距離dがく0;0;または〉0である; b)焼結チタン細長片が陽極系の平面とジグザグ配置で
交互に角度αおよび18o−αを囲み、かつ陽極系の平
面上への細長片の投影で測定した、焼結チタン細長片間
の距離4が〉0である; C)角度αが30〜70 の間にある:d)焼結チタン
細長片の幅が、その厚さの2倍よシも大きいが陰極と陰
極との距離の半分よシも小さい。
Furthermore, the anode system according to the invention is selectively and advantageously characterized by: a) sintered titanium strips arranged parallel to each other, measured by the projection of the strips onto the plane of the anode system; and the distance d between the sintered titanium strips is 0; 0; or 〉0; b) the sintered titanium strips alternately enclose angles α and 18o−α with the plane of the anode system in a zigzag arrangement; and the distance 4 between the sintered titanium strips, measured by projection of the strips onto the plane of the anode system, is >0; C) the angle α is between 30 and 70: d) the sintered titanium strips The width of the electrode is twice as large as its thickness, but it is also smaller than half the distance between the cathodes.

実施例 次に本発明による陽極系を添付図面に示した実施例につ
き詳説する。
EXAMPLES Next, an anode system according to the present invention will be described in detail with reference to examples shown in the accompanying drawings.

第1図は2つの平らな陰極2Q間にジグザグ状に配置さ
れた陽極系の焼結チタン細長片1を示し、この焼結チタ
ン細長片はこの陽極系の平面3から交互に角度αないし
は180−αだけ外方へ旋回している。
FIG. 1 shows the sintered titanium strips 1 of the anode system arranged in a zigzag manner between two flat cathodes 2Q, which sintered titanium strips 1 are arranged at alternating angles α or 180 from the plane 3 of the anode system. It is turning outward by −α.

第2図は2つの平らな陰極2°に平行に配置された、陽
極系の焼結チタン細長片1を示し、この焼結チタン細長
片はこの陽極系の平面3から角度αだけ外方へ旋回して
いる。
FIG. 2 shows a sintered titanium strip 1 of the anode system arranged parallel to two flat cathodes 2°, which sintered titanium strip 1 extends outwardly from the plane 3 of the anode system by an angle α. It's circling.

第3図は、第1図からの部分図としての2つの焼結チタ
ン細長片を示す。この場合a=細長片の幅;b=細長片
の厚さ;d=陽極系の平面上への細長片の投影における
細長片間の距離を表わす。細長片縁aと細長片対角線と
の間の角度βは、次の計算式に重要である。第3図はd
〉0の場合を示す。
FIG. 3 shows two sintered titanium strips as a partial view from FIG. 1. FIG. In this case a=width of the strip; b=thickness of the strip; d=distance between the strips in their projection onto the plane of the anode system. The angle β between the strip edge a and the strip diagonal is important in the following equation. Figure 3 is d
〉0 is shown.

第4図は、d〈0の場合に対する、第2図からの部分図
としての2つの焼結チタン細長片を示す。
FIG. 4 shows two sintered titanium strips as a partial view from FIG. 2 for the case d<0.

細長片の幅および角度αならびに陽極系あたυの細長片
の数は、それぞれ存在する電解槽寸法および陽極系の所
望の全電流負荷に左右される。下記に、細長片の寸法が
与えられている場合に厚さDおよび陽極系の有効表面積
(Oaff )、ならひに陽極系の有効表面積(0ef
f )対形式的表面積(OfOrm )の割合(Q)を
角度αに依存して計算することのできる式を記載し几。
The width and angle α of the strips and the number of strips per anode system υ depend respectively on the electrolyzer dimensions present and the desired total current load of the anode system. Below, if the dimensions of the strip are given, the thickness D and the effective surface area of the anode system (Oaf), then the effective surface area of the anode system (0ef
f) Write the formula by which the ratio (Q) of the formal surface area (OfOrm) can be calculated as a function of the angle α.

しかし反対に、これらの式に従って作饗した線図から、
陽極系の特定の有効表面積を得たい場合に、角度αを少
なくともどれ程の大きさに選択しなければならないかを
知ることもできる。
However, on the contrary, from the line diagram created according to these formulas,
It is also possible to know at least how large the angle α has to be chosen if one wants to obtain a certain effective surface area of the anode system.

n=蛎「冒ア・5in(α+β)(■)Ooff ==
 n ・(a+ b) −L −2(1)(n=陽極系
1つあたりの細長片の数;a=細長片の@:b=細長片
の厚さ;1=細長片の長さ;d=陽極系の平面上への細
長片の投影における細長片間の距離;B=陽極系の幅)
n = Hajime "Adventure 5in (α + β) (■) Ooff ==
n · (a + b) −L −2 (1) (n = number of strips per anode system; a = @ of the strips; b = thickness of the strips; 1 = length of the strips; d = distance between the strips in their projection onto the plane of the anode system; B = width of the anode system)
.

電解槽中の陰極と陰極との利用しうる距離にニジ陽極系
の最大の厚さくD)が決まり、この最大の厚さになお、
HMD析出物の厚さおよび平らな陰極からの電着される
陽極系の最小距離が加算される。さらに、Dは細長片の
幅(−および角度αの関数であり、また細長片の厚さく
b)および角度βの関数でもある〔方程式(If)およ
び第3図参照〕。
The maximum thickness D) of the rainbow anode system is determined by the usable distance between the cathodes in the electrolytic cell, and within this maximum thickness,
The thickness of the HMD deposit and the minimum distance of the electrodeposited anode system from the flat cathode are added. Furthermore, D is a function of the width of the strip (- and the angle α, and also the thickness of the strip b) and the angle β [see equation (If) and FIG. 3].

本発明による陽極系は平面配置よシも優れていることが
立証される。それというのも、付加的な陽極iii[+
積の100%以上まで電解槽中に収容することができ、
かつ配置の形状寸法は陽極系上でのEMDの良好な付着
を惹起するからである。
It is demonstrated that the anode system according to the invention is also superior in planar arrangement. This is because the additional anode iii[+
More than 100% of the product can be accommodated in the electrolytic cell,
Moreover, the geometry of the arrangement induces good adhesion of EMD on the anode system.

例  1 陽極系の焼結チタン細長片のジグザク状配置細長片のI
Ig(a ) = 4 an細長片の厚さくb)=0.
8cm 細長片間の距離(d)=0.2cm 陽極系の形式的幅:100σ、陽極系の形式的長さ:1
00crn、陽極系の両側の形式的表面n=陽極系1つ
あたりの細長片の数、D=陽極系の厚さ 表  1 α !L  D  Q(off) Q (角度)     (儂)    (m2)10 22
1.48 2,11 1.0620 222.12 2
,111.0630 232.69 2,211.10
40 253.18 2,401.2050 27 3
.58 2,591.3055 293.74 2,7
81.3960 323、&S  3.031.546
5 353.96 3,361.6870 394.0
3 3,741.8775   45  4.07  
 4,32  2.1680   53  4.08 
  5.09  2.54(90834,007,97
3,94)表1は、α=20 まで外方へ旋回すること
は、細長片間の距離(d) = 、2 xxの場合、焼
結チタン細長片の平面配置(α=O−)に比し工特筆に
値する程の利点を提供しないことを示す。その理由は細
長片間の間隙はじきにEMDに工9橋絡され、これによ
って陽極系はこの場合内部応力下にある平面陽極系と同
様に引続き作業するからである。他面において、α=7
0 以上外方へ旋回することも不利である。それという
のも、細長片間の間隙がますます減少し、その結果EM
Dをそれから除去するのがいよいよ困難になシ、最後に
はα=90 ではジグデク状は放棄され、いわば再び平
面であるが不合理に厚い陽極が得られるからである。し
たがって、陽極系の平面から、焼結チタン細長片のその
縦軸のまわりでの陽極系の平面からの最適の旋回角度α
=30〜70 ないしは交互に150〜110 である
。また表1は、陽極系の厚さは約70 ないしは90 
工り下の角度範囲で4儒を上回ることを示す。それとい
うのもここでは焼結チタン細長片の対角線の幅が影響す
るからである。
Example 1 I of zigzag arrangement of sintered titanium strips for anode system
Ig(a) = 4 an strip thickness b) = 0.
8cm Distance between strips (d) = 0.2cm Formal width of anode system: 100σ, Formal length of anode system: 1
00crn, formal surfaces on both sides of the anode system n = number of strips per anode system, D = thickness of the anode system Table 1 α! L D Q(off) Q (angle) (my) (m2)10 22
1.48 2,11 1.0620 222.12 2
,111.0630 232.69 2,211.10
40 253.18 2,401.2050 27 3
.. 58 2,591.3055 293.74 2,7
81.3960 323, &S 3.031.546
5 353.96 3,361.6870 394.0
3 3,741.8775 45 4.07
4,32 2.1680 53 4.08
5.09 2.54 (90834,007,97
3,94) Table 1 shows that outward pivoting up to α = 20 is due to the planar arrangement of the sintered titanium strips (α = O−) when the distance between the strips (d) = , 2xx. Comparisons indicate that the technology does not offer any significant benefits. The reason for this is that the gaps between the strips are quickly bridged by the EMD, so that the anode system continues to work like a planar anode system, which in this case is under internal stress. On the other hand, α=7
Turning outward by more than 0 is also disadvantageous. This is because the gaps between the strips become smaller and smaller, so that the EM
This is because it becomes increasingly difficult to remove D from it, and finally, at α=90, the zigdeck shape is abandoned and an unreasonably thick anode, which is, as it were, plane again, is obtained. Therefore, from the plane of the anode system, the optimal rotation angle α of the sintered titanium strip about its longitudinal axis from the plane of the anode system
=30-70 or alternately 150-110. Table 1 also shows that the thickness of the anode system is approximately 70 to 90 mm.
It shows that it exceeds 4 Confucius in the angular range under construction. This is because the diagonal width of the sintered titanium strip plays a role here.

例  2 陽極系Q焼結チタン細長片の傾斜平行配置寸法は、次の
例外を除き、例1と同様である。
Example 2 The diagonal parallel arrangement dimensions of the anodic Q sintered titanium strips are the same as in Example 1 with the following exceptions.

細長片の幅(a)=3cm、細長片の厚す(b)= O
’、6 cat%細長片間の距離(a)=0表  2 10  32  1.11  2,30  1.152
0  33  1.59  2,38  1.1930
  34  2.02  2.45  1.2240 
 37  2.39  2,66  1.3350  
41  2.68  2,96  1.4855  4
5  2.80  3,24  1.6260  49
 2.90  3,53  1.7665  55  
2.97  3,96  1.987!:i   73
  3,05  5,26  2.63有効表面槓の必
要が少ない場合、当然数nを低くすることもできる。す
なわちfMJ極系における距離圧を大きくして少数の細
長片を配置することができる。
Width of strip (a) = 3 cm, thickness of strip (b) = O
', 6 cat% Distance between strips (a) = 0 Table 2 10 32 1.11 2,30 1.152
0 33 1.59 2,38 1.1930
34 2.02 2.45 1.2240
37 2.39 2,66 1.3350
41 2.68 2,96 1.4855 4
5 2.80 3,24 1.6260 49
2.90 3,53 1.7665 55
2.97 3,96 1.987! :i 73
3,05 5,26 2.63 If the need for effective surface rams is small, the number n can of course be lowered. That is, it is possible to increase the distance pressure in the fMJ polar system and arrange a small number of strips.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は本発明の陽極系の実施例を示すもので、第1
図は2つの平らな陰極の間に焼結チタン細長片がジグデ
ク状に配置された陽極系の平面図であシ、第2図は2つ
の平らな陰極の間に焼結チタン細長片が平行に配置され
た実施例の平面図であシ、第3図は2つの焼結細長片を
示す、1〉0の場合の第1図からの部分図であシ、第4
図は同じく2つの焼結細長片を示す、(1<0の場合の
第2図からの部分図である。 1・・・焼結チタン細長片、2・・・陰極、3・・・陽
極系の平面、a・・・細長片の幅、b・・・細長片の厚
さ、d・・・陽極系の平面上への細長片の投影での細長
片間の距離、D=陽極系の厚さ。
The attached drawings show embodiments of the anode system of the present invention.
The figure is a plan view of an anode system in which sintered titanium strips are arranged in a zigdek pattern between two flat cathodes. Figure 2 shows a parallel sintered titanium strip between two flat cathodes. FIG. 3 is a partial view from FIG. 1 for 1>0, showing two sintered strips;
The figure also shows two sintered strips (a partial view from FIG. 2 in the case of 1<0). 1... sintered titanium strip, 2... cathode, 3... anode Plane of the system, a... Width of the strip, b... Thickness of the strip, d... Distance between the strips when projected onto the plane of the anode system, D = Anode system thickness.

Claims (1)

【特許請求の範囲】 1、それぞれ2つの平らな陰極の間に陽極系が懸吊して
おり、焼結チタン細長片の縦軸が陽極系の平面内に存在
する、電解褐石を陽極析出させるための電解槽中の、焼
結チタン細長片からなる陽極系において、焼結チタン細
長片がその縦軸を中心に陽極系の平面から外方へ旋回し
、かつこの平面と10〜90°の間の角度αを回むこと
を特徴とする、電解褐石を陽極析出させるための電解槽
中の焼結チタン細長片からなる陽極系。 2、焼結チタン細長片がたがいに平行に配置されている
、特許請求の範囲第1項記載の陽極系。 3、陽極糸の平面上への細長片の投影で測定した、焼結
チタン細長片間の距離dが<0;0;または>0である
、特許請求の範囲第2項記載の陽極系。 4、焼結チタン細長片が陽極系の平面と、ジグザグ配置
で交互に角度αおよび180−αを囲む、特許請求の範
囲第1項記載の陽極系。 5、陽極系の平面上への細長片の投影で測定した、焼結
チタン細長片間の距離dが≧0である、特許請求の範囲
第4項記載の陽極系。 6、角度αが30〜70°の間である、特許請求の範囲
第1項から第5項までのいずれか1項記載の陽極系。 7、焼結チタン細長片の幅が、その厚さの2倍よりも大
きいが、陰極と陰極との距離の半分よりも小さい、特許
請求の範囲第1項から第6項までのいずれか1項記載の
陽極系。
[Claims] 1. Anodic deposition of electrolytic brownstone, in which the anode system is suspended between two flat cathodes in each case, and the longitudinal axis of the sintered titanium strip lies in the plane of the anode system. In an anode system consisting of a sintered titanium strip in an electrolytic cell for the purpose of sintering, the sintered titanium strip pivots outward from the plane of the anode system about its longitudinal axis and lies between 10 and 90 degrees with this plane. An anode system consisting of a sintered titanium strip in an electrolytic cell for anodic deposition of electrolytic brownstone, characterized by turning an angle α between. 2. The anode system according to claim 1, wherein the sintered titanium strips are arranged parallel to each other. 3. An anode system according to claim 2, wherein the distance d between the sintered titanium strips, measured by projection of the strips onto the plane of the anode thread, is <0;0; or >0. 4. An anode system according to claim 1, wherein the sintered titanium strips surround the plane of the anode system alternately at angles .alpha. and 180-.alpha. in a zigzag arrangement. 5. An anode system according to claim 4, wherein the distance d between the sintered titanium strips, measured by projection of the strips onto the plane of the anode system, is ≧0. 6. The anode system according to any one of claims 1 to 5, wherein the angle α is between 30 and 70°. 7. Any one of claims 1 to 6, wherein the width of the sintered titanium strip is more than twice its thickness but less than half the cathode-to-cathode distance. Anode system described in section.
JP61140445A 1985-06-19 1986-06-18 Anode system comprising elongated sintered titanium piece inelectrolytic cell for anodic precipitation of electrolytic brown stone Granted JPS61295385A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853521827 DE3521827A1 (en) 1985-06-19 1985-06-19 ANODE SYSTEM FOR THE ELECTROLYTIC PRODUCTION OF BROWN STONE
DE3521827.4 1985-06-19

Publications (2)

Publication Number Publication Date
JPS61295385A true JPS61295385A (en) 1986-12-26
JPS6311436B2 JPS6311436B2 (en) 1988-03-14

Family

ID=6273587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61140445A Granted JPS61295385A (en) 1985-06-19 1986-06-18 Anode system comprising elongated sintered titanium piece inelectrolytic cell for anodic precipitation of electrolytic brown stone

Country Status (10)

Country Link
JP (1) JPS61295385A (en)
AU (1) AU575486B2 (en)
BR (1) BR8602824A (en)
DE (1) DE3521827A1 (en)
ES (1) ES8706857A1 (en)
GB (1) GB2177115B (en)
GR (1) GR861562B (en)
IN (1) IN167385B (en)
SU (1) SU1574180A3 (en)
ZA (1) ZA864537B (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2631115A (en) * 1949-08-06 1953-03-10 Manganese Battery Corp Electrodes for electrochemical cells
US2608531A (en) * 1949-11-02 1952-08-26 Reginald S Dean Electrolytic preparation of manganese dioxide
GB977569A (en) * 1961-10-05 1964-12-09 Union Carbide Corp Improvements in and relating to the electrolytic production of manganese dioxide
US3436323A (en) * 1966-07-25 1969-04-01 Furukawa Electric Co Ltd Electrolytic method for preparing manganese dioxide
US3654102A (en) * 1970-08-25 1972-04-04 American Potash & Chem Corp Method of preparing electrolytic manganese dioxide
US4141814A (en) * 1976-08-04 1979-02-27 Imperial Chemical Industries Limited Diaphragm cell
DE2645414C2 (en) * 1976-10-08 1986-08-28 Hoechst Ag, 6230 Frankfurt Titanium anodes for the electrolytic production of manganese dioxide, as well as a process for the production of these anodes
DE2752875C2 (en) * 1977-11-26 1986-05-15 Sigri GmbH, 8901 Meitingen Electrode for electrochemical processes and processes for their production
DE2853820A1 (en) * 1978-12-13 1980-06-19 Conradty Nuernberg Gmbh & Co M ANODE WITH A VALVE METAL CORE AND USE THEREOF

Also Published As

Publication number Publication date
GB2177115B (en) 1989-07-12
ES556278A0 (en) 1987-07-16
GB8614842D0 (en) 1986-07-23
GR861562B (en) 1986-11-03
JPS6311436B2 (en) 1988-03-14
BR8602824A (en) 1987-02-10
DE3521827C2 (en) 1990-01-11
DE3521827A1 (en) 1987-01-02
ES8706857A1 (en) 1987-07-16
GB2177115A (en) 1987-01-14
ZA864537B (en) 1987-02-25
AU5882286A (en) 1986-12-24
SU1574180A3 (en) 1990-06-23
AU575486B2 (en) 1988-07-28
IN167385B (en) 1990-10-20

Similar Documents

Publication Publication Date Title
US3853739A (en) Platinum group metal oxide coated electrodes
CN102888625B (en) Non-ferrous metal electrodeposition palisading type positive plate
US3915837A (en) Anode and method of production thereof
US4555317A (en) Cathode for the electrolytic production of hydrogen and its use
US4203810A (en) Electrolytic process employing electrodes having coatings which comprise platinum
JP2003507580A (en) Cathode usable for electrolysis of aqueous solution
WO2021047687A2 (en) Electrode and preparation method and use thereof
US3974058A (en) Ruthenium coated cathodes
US4253933A (en) Electrode substrate alloy for use in electrolysis
US4159231A (en) Method of producing a lead dioxide coated cathode
JP2574699B2 (en) Oxygen generating anode and its manufacturing method
JP2931812B1 (en) Electrode for electrolysis and method for producing the same
CN107829109B (en) A kind of titanium-based iridium dioxide coated electrode and preparation method thereof
JPS61295385A (en) Anode system comprising elongated sintered titanium piece inelectrolytic cell for anodic precipitation of electrolytic brown stone
JP3236686B2 (en) Gas electrode and its manufacturing method
GB1446168A (en) Elect4odes
EP0545869A1 (en) Electrolytic electrode
JPH0257159B2 (en)
JP2919169B2 (en) Electrode for oxygen generation and method for producing the same
US4295942A (en) Process for preparing manganese oxide
JPH01132789A (en) Resin molded electrolytic electrode and its production
SU1440355A3 (en) Anode for electrolytic refining of copper
CN117568878B (en) Production equipment of titanium anode and electrolytic copper foil
JP2000049372A (en) Insulation substrate for solar battery and its manufacture
CN105019011B (en) Pickling battery lead plate and pickling battery lead plate system